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Abstract

The unexpected early cessation of the recent West Africa Ebola outbreak demonstrated

shortcomings of popular forecasting approaches and has not been fully understood yet. A

popular hypothesis is that public health interventions mitigated the spread, such as ETUs

and safe burials. We investigate whether risk heterogeneity within the population could

serve as an alternative explanation. We introduce a model for spread in heterogeneous host

population that is particularly well suited for early predictions due to its simplicity and ease of

application. Furthermore, we explore the conditions under which the observed epidemic tra-

jectory can be explained without taking into account the effect of public health interventions.

While the obtained fits closely match the total case count time series, closer inspection of

sub-population results made us conclude that risk heterogeneity is unlikely to fully explain

the early cessation of Ebola; other factors such as behavioral changes and other interven-

tions likely played a major role. More accurate predictions in a future scenario require

models that allow for early sub-exponential growth, as well as access to additional data on

patient occupation (risk level) and location, to allow identify local phenomena that influence

spreading behavior.

Introduction

The devastating 2014 outbreak of Ebola in West Africa was unexpected, as previous outbreaks

have been far smaller. A “perfect storm” of a broken health care system, increased mobility,

recent unrest and low public trust were cited to explain the unprecedented scale of the epidem-

ics [1].

Based on the assumption of prolonged exponential growth of the epidemic, exceedingly

dire predictions were disseminated by both scientific press [2] and news media outlets [3].

However, the spread of the epidemic slowed down quicker than expected and eventually

ceased, even though the vast majority of people were still susceptible to the virus. Similarly,

early modeling efforts to predict the likely trajectory in the autumn of 2014 greatly overesti-

mated the size and duration of the outbreak.
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A modeling analysis of different scenarios after September 2014 predicted a case count of

170 000 for Montserrado county (Liberia) in a worst case scenario and 40 000 cases in a best

case with significantly increased mitigation efforts [4]. Based on data until the end of August

2014, another study forecasted a total of 550 000 reported cases in Liberia and Sierra Leone

until January 20, 2015 [5]. A worst case estimate from August 2014 projected 80 000 cases or

more during the remainder of the year [6]. Even projections based on a model considering a

decaying reproduction number suggested that the epidemics could reach a size of more than

140 000 cases, based on the case counts until August 2014 [7]. However, all of these forecasts

significantly exceed the final case count of less than 30 000 cases across the three most heavily

affected countries Guinea, Sierra Leone and Liberia [8], which corresponds to less than 0.2%

of the population.

A systematic review of modeling studies published during the epidemic shows that the

examples above are not isolated cases [9]. The discrepancy between prediction and data is

largely rooted in an unexpectedly fast decline of the reproduction number. As basic S(E)IR

models assume constant and homogeneous spread, epidemics are expected to end only after a

substantial part of the population have become immune. In the West Africa epidemic however,

the fraction of the suceptible population removed from the dynamics due to Ebola infection

remained negligible. This suggests that other mechanisms restricted the long-term growth of

the epidemics, leading to dramatically overestimated final case counts in predictions based on

traditional S(E)IR models.

A variety of mitigation mechanisms have been proposed as explanations [10], but not all

mechanisms have been studied with respect to the Ebola epidemic in West Africa. These expla-

nations can be separated into two broad classes: (1) The observed slowdown is caused by delib-

erate mitigation strategies, such as individual efforts to avoid risk, as well as population-wide

efforts, such as the establishment of ETUs and improved testing, prevention and treatment.

(2) The observed slowdown is caused by intrinsic properties of the host-virus epidemiology,

which will always lead to a rapid cessation of the outbreak. Multiple studies have investigated

how different kinds interventions of class 1 may affect the transmission of the virus [4, 11, 12].

This study supplements these efforts by investigating the impact of a mechanism of class 2 on

transmission. In particular we propose heterogeneity in the population with respect to the risk

of contracting Ebola could be an overlooked (intrinsic) factor. This is motivated by a similar

situation in the 1980s, when modelers initially greatly overestimated the trajectory of the global

HIV/AIDS epidemic, based on it’s initial rapid growth. It has subsequently been demonstrated

that population heterogeneity is key to explaining the observed slowdown in the spread of

HIV [13, 14]. Furthermore, other studies support a generally quicker decline of the reproduc-

tion number, in case of population heterogeneity [15–19].

Given that both HIV and Ebola transmission require close contact with infected individu-

als, it seems fitting to consider that differences in behavior due to occupation and behavior

may influence an individuals risk of infection. In fact, surveillance data suggests that health

care workers as a group were at 100-fold higher risk than the general population in the 2014

outbreak [20].

Here we explore a simple model that takes heterogeneous contact rates into account, by

introducing a small population with high risk of contracting the virus. We show that a good

fit for the declining effective reproduction number Rt and the time-series of infections can be

obtained with this model. Using agent-based simulations we also explore the models sensitivity

to the stochastic nature of disease spreading dynamics.

The heterogeneous spreading model introduced in this paper is unique in its simplicity and

small number of parameters. Its application requires only estimates of the size and the basic

reproduction number of the high risk population as additional parameters, while removing
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the need to estimate the total population size. Furthermore the effective reproduction number

can be calculated in one step from the cumulative case count at any point in time. The model

is intended as an easily applicable tool in the early stages of future epidemics like the Ebola epi-

demic in West Africa, where risk heterogeneity is likely to play a role.

Model

We consider a scenario with two subpopulations: A large population with low risk of contract-

ing Ebola, and a small high risk population, possibly representing health care workers or other

caretakers with higher exposure to the pathogen. We use a SEIR model with a fully mixed pop-

ulation (E represents the incubation period). The sizes of the high- and low-risk populations

are denoted by NH and NL. Their respective basic reproduction numbers are RH and RL. See

Fig 1 for a model schematic.

This distinction is only considered relevant for the risk of infection of healthy individuals.

No distinction is made between infected individuals from either population. Consequently any

primary case will result in secondary cases in both populations according to their respective

basic reproduction number (RH and RL). Thus the basic reproduction number for the popula-

tion as a whole is R0 = RH + RL.

In this paper we consider a scenario where the low risk population is much larger than the

high risk population (NL>> NH). Furthermore, the low-risk population has a basic reproduc-

tion number significantly smaller than one (RL< 1). These constraints are motivated by the

desire to minimize the number of parameters of the model, to aid application of the model

even if little data beyond the time-series of infection counts is known.

Agent based model

The assumption of a small high risk population and a small low risk reproduction number RL,

generally results in epidemics where removal of susceptible individuals in the low-risk popula-

tion is negligible. As a result the size of the low risk population NL is not relevant to the spread-

ing dynamics. This allows us to simplify the effective reproduction number R(t), by only

accounting for the depletion of susceptible hosts in the high risk population:

RðtÞ ¼ RL þ RH �
SHðtÞ
NH

SHð0Þ ¼ NH

) Rð0Þ ¼ RL þ RH ¼ R0

; ð1Þ

where SH(t) represents the number of people in the high risk population that are susceptible

(have never been infected) at time t.

Simplified differential equation model

Assuming a large number of infections we can describe the resulting dynamics in terms of dif-

ferential equations (see Materials and methods for details). This leads to an expression for the

effective reproduction number R(t), that only depends on the cumulative number of all infec-

tions C(t) at time t and the size of the subpopulation NH. With this approach we achieve the

simplicity of an SIR differential equation model in the otherwise much more complex case of
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two interacting subpopulations:

RðtÞ ¼ RL þ RL �W
RH

RL
� e

RH

RL
1 �

CðtÞ
NH

� �0

B
@

1

C
A ð2Þ

W represents the “product logarithm” (see Materials and methods).

This is the model equation we will fit to the data.

Results

Only the results for Liberia are shown in the main text. See supplement S1 Additional Figures

for Sierra Leone, Guinea and additional figures.

Fig 2 shows weekly estimates R̂t of the reproduction number since 1st of January 2014 (Eq

3). Up to week 33 the reproduction number is substantially greater than 1 and does not show a

Fig 2. Weekly estimates of the effective reproduction number R̂ t in Liberia (purple crosses). Fitted R(t) (green line)

with RH = 2.0, RL = 0.6 and NH = 2500 (see Eq 2).

https://doi.org/10.1371/journal.pone.0210638.g002

Fig 1. Schematic representation of the SEIR model with a small highly susceptible subpopulation. The transition

rates from susceptible to incubating are expressed in number of infections per 2 weeks (the infectious time of an

infected host).

https://doi.org/10.1371/journal.pone.0210638.g001
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substantial decline. However by week 38 it declines to less than 1, entering the sub-critical

regime where it remains without changing recognizably after week 40.

Note that the uncertainty of individual weekly estimates in the beginning and end of the

epidemics is naturally large, because the number of infected is small and subject to compara-

tively large fluctuations. However, in combination we can use these individual estimates to fit

Rt as described by Eq 3 (green line).

From this fit we obtain not only a smooth estimate Rt, but also estimates for the reproduc-

tion number in the high- and low risk population (Rs, Rn) and the size of the high risk popula-

tion (Ns), which are shown in Table 1.

Parameter sensitivity

Fig 3 shows the likelihood surface of the Rt-fit for a range of value combinations of Rs, Rn and

Ns. The maximum likelihood values (green star) within the shown parameter range were used

for the Rt-curve in Fig 2. However, there is a range of parameter combinations that result in

good fits of the weekly reproductive numbers shown in Fig 2. Especially the value of Rs/Rn

allows for variation. This factor describes how much higher the high risk populations contri-

bution (Rs) to the basic reproduction number is, compared to the low-risk populations contri-

bution (Rn). For example Rs/Rn = 2 would imply that at the beginning of the epidemics each

Table 1. Parameters and results of best R(t)-fit (see Eq 2 and green line in Fig 2).

Sierra Leone Liberia Guinea

Observation

Total cases 12k 6k 4k
Model

Predicted cases (C1) 12k 6k 3.5k
R0 = RH + RL 1.5 2.5 1.3

RH (high risk) 1.3 2.0 1.2

RL (low-risk) 0.1 0.6 0.1

high risk population (NH) 16k 2.5k 6.2k

Cases in high risk population 10.5k 2.5k 3.4k

https://doi.org/10.1371/journal.pone.0210638.t001

Fig 3. Quality of the fit shown in Fig 2 for different parameter choices. The grey line marks the 95% confidence

interval.

https://doi.org/10.1371/journal.pone.0210638.g003
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primary case generates on average twice as many secondary cases in the high risk population

as in the low-risk population.

It is important to note that Rs and Rn already account for different subpopulation sizes,

such that the basic reproduction number is simply R0 = Rs + Rn. To compare the risk of infec-

tion for individuals we have to take into account that the high risk population is much smaller

than the low-risk population. The individual risk of infection in the high risk population com-

pared to the low-risk population is higher than Rs/Rn by a factor N/Ns (N: total population).

The corresponding R0 for each parameter combination is shown in Fig F in S1 Additional

Figures. However, for any reasonable fit R0 doesn’t vary much because it must agree with the

Rt values from early case counts (see Fig 2). For this reason we show the fit-quality over the

two remaining parameters Ns and Rs/Rn.

After obtaining the range of reasonable parameters we can make predictions for the final

fraction of the subpopulation that will be infected (Fig 4) and the final epidemics size (Fig E in

S1 Additional Figures).

Health-care workers (HCWs) are an obvious candidate as members of the high risk popula-

tion. According to Kilmarx et al. [20] approximately 5% of the infected in Sierra Leone were

HCWs, which indicates about 100 fold higher risk of infection for HCWs. However, even in

the light of these numbers the number of high risk cases predicted by our model seems unreal-

istically high. However, there are multiple possible explanations for this: 1) The high risk popu-

lation may not include all HCW, but only those working in particularly dangerous conditions.

2) The model only takes symptomatic cases into account, where the victim is also infectious. 3)

The high risk population may not primarily consist of HCW, but other people who are at

higher risk due to their particular environment or behavior.

Of particular interest for scenario 2) is that 27% are estimated to be asymptomatic [21]. The

model can be adapted to account for this by scaling the total size of the high risk population

accordingly. All other parameters and predictions remain unchanged under the assumption

that asymptomatic infections are typically not transmitted.

Agent based simulations

To further investigate the validity and uncertainty of our predictions we have to take the sto-

chastic nature of real world infection spreading into account. Using an agent based implemen-

tation of our agent based model (see Materials and methods for details) we can simulate this

Fig 4. Expected final fraction of infected high risk population for different parameter choices. The matching R0 for

is shown in Fig F in S1 Additional Figures.

https://doi.org/10.1371/journal.pone.0210638.g004
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stochastic dynamics. Fig 5 shows the averaged simulation results for the total case number, the

number of cases in the high risk population and the corresponding prediction intervals. The

simulations use the fitted parameter set we use in Fig 2.

For both Liberia (Fig 5) and Sierra Leone (see S1 Additional Figures) the number of

observed infections tends to be slightly lower than the prediction. In Liberia this trend leads to

a final epidemic size that is slightly smaller than the prediction interval. This could be a due to

stochastic nature of the process, an artifact of the data, or an indication that relief efforts and

behavioral adaptation contributed to the decreased spreading, which is not accounted for in

this model.

Other countries

All figures in the main text only show our results for Liberia. The corresponding figures for

Sierra Leone and Guinea are shown in the supplementary material S1 Additional Figures,

along with additional figures for all countries. Compared to Liberia, for Sierra Leone and

Guinea better fits are achieved with a larger relative difference in susceptibility between high

risk and low-risk population (
Rs
Rn

). To allow easy visual comparison between the three countries

we constrained the explored parameter ranges to
Rs
Rn
2 ½0; 10� and Ns 2 [0, 20 000]. Even though

the best likelihood is achieved for larger
Rs
Rn

, we obtain a good fit of Rt and matching case num-

ber predictions for Sierra Leone.

In the case of Guinea the estimates for Rt show large fluctuations with at least 2 cycles of

alternating high and low effective reproduction number. This likely indicates unreliable data

or external factors, such as a re-ignition of the epidemics from the outside. Due to the small

total number of cases in Guinea (< 4000), of which many are located at the borders to Sierra

Leone and Liberia, we expect that the dynamics in Guinea is influenced by cases across it’s

borders.

Our model predictions for Guinea match the reported case counts roughly. Allowing for a

larger
Rs
Rn

factor would increase the similarity further. However, both explanations we consid-

ered for the fluctuations in Rt (unreliable data or external influence) make the case counts

from Guinea unsuitable to evaluate our model.

Fig 5. Observed case count and results of the agent based simulations using the fitted parameter set (see green

star in Fig 3 and fit in Fig 2). Orange line: Observed case count in Liberia. Black line: Mean total case count. Red line:

Mean case count in the high risk population. Grey and red areas: Prediction interval (95%) for case counts (95% of our

simulations produce case counts within this area).

https://doi.org/10.1371/journal.pone.0210638.g005
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Discussion

Given the assumption of a heterogeneous population with a small high risk population, we for-

mulate a minimal 3 parameter SEIR-model for the spreading dynamics of Ebola in West Africa

in 2014. Our model reproduces the early exponential growth, with R0 > 2 in some places [8],

as well as the cessation of the epidemic.

However, the best fits to the case count data require a much higher risk of infection

(> 1000 fold) in the high risk population and attribute nearly half of all cases to the high risk

population. One such subpopulation that has been identified are health care workers (HCW),

with an approximately 100-fold elevated risk [20] accounting for less than 10% of all cases.

Both a broader definition of the high risk population, including other caretakers and people

engaging in risky behavior, or further differentiation of subpopulations may reconcile this dis-

crepancy. Alternatively, additional factors could be considered, such as behavioral changes on

an individual level or mitigating interventions as discussed in other modeling studies of this

[11] and previous epidemics [22]. In particular we favor the idea that individuals are increas-

ingly cautious after experiencing Ebola in their local community. This hypothesis of learned

caution is supported by the observation that the local spreading on a district level often

stopped after about 100 days [23]. This is long enough for population heterogeneity to play a

role, but also strongly suggests a local transition from members of high risk to lower-risk sub-

populations after the epidemics reached a local community. These local patterns are easily

missed when looking at aggregated national data, since the spread to new regions obscures the

local cessation, causing apparent sustained exponential growth.

While it seems unlikely, that our model includes all important factors that an accurate

model of this epidemic would require, it showcases a simple extension of traditional S(E)IR

models, that greatly improves the prediction of the effective reproduction number and the pro-

jected case counts. Our results, the observation of increased risk of infection in the HCW pop-

ulation [20], suggest that the homogeneous population approach, which works well in the case

of respiratory viruses may not be sufficient for viruses that require close contact for transmis-

sion to occur (Ebola, HIV).

Our study as well as previous work on HIV model overestimation highlight that early pre-

dictions regarding the spread of a pathogen that requires close contact would greatly benefit

from more detailed observed data. Early availability of data regarding patient occupation and

geographical location would allow modelers to identify risk heterogeneity and adjust their

predictions accordingly. Going forward, pandemic threats will be evaluated in context of con-

clusions drawn from outbreaks such as the 2014 Ebola epidemics. Our minimal and easily

applicable model may be useful for early predictions in cases where intrinsic features of the

contact network make naive R0 estimates unsuitable for long term predictions. Also, a look at

the local Ebola epidemics suggest behavioral changes may have a mitigating effect in affected

areas, which deserves more study. Ultimately, a robust understanding of population patterns

of risk heterogeneity and existence of behavioral changes in exposed populations will add to

models ability to produce more accurate forecasts during a future epidemic emergency.

Materials and methods

Estimating R from data

We use the weekly incidence (counts) of confirmed and suspected symptomatic cases in the

patient database data published by the WHO [24]. The data consists of a cumulative weekly

case count. The incubation period of 1 week, followed by a 2 week infectious period (account-

ing for symptomatic cases and unburied corpses). This results in an average serial interval of 2

Exploring the contribution of exposure heterogeneity to the cessation of the 2014 Ebola epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0210638 February 1, 2019 8 / 11

https://doi.org/10.1371/journal.pone.0210638


weeks (time between primary to secondary infection). No distinction is made between fatal

and non-fatal courses of disease. Assuming that the infection rate is constant within one week,

these spreading parameters allow us to estimate a weekly effective reproduction number R̂t :

R̂ t ¼
dtþ1

dt
4
þ

dt� 1

2
þ

dt� 2

4

¼
new inf : in week t

sympt: during week t
; ð3Þ

where dt represents the number of reported new symptomatic cases in week t. The evolution

of R̂t over time is shown in Fig 2.

Agent based simulations

Our agent based simulations are a stochastic implementation of the model described at the

beginning of this section (Fig 1, Eq 1). We start with 1 infectious agent on day 0. A random

number of agents from each population is infected per timestep (Δt = 2.4h). The probabilities

for the number of infections are distributed according to the infection rates (Fig 1, Eq 1).

Infected agents become infectious after an incubation period of 1 week and are removed from

the simulation 2 weeks later (death or recovery).

Derivation of R(t)
Given large enough infection numbers, the number of new infections in the subpopulation per

infections in the whole population can be described by:

dCHðtÞ
dCðtÞ

¼
RH �

SH ðtÞ
NH

RH �
SH ðtÞ
NH
þ RL

¼
RH � ð1 �

CHðtÞ
NH
Þ

RH � ð1 �
CH ðtÞ
NH
Þ þ RL

This leads to the following function for the cumulative number of infections in the subpopula-

tion:

CHðtÞ ¼ NH �
RL

RH
NH �W

RH

RL
e
RH
RL

1�
CðtÞ
NHð Þ

� �

Finally, substituting SH(t) with NH − CH(t) in Eq 1 yields Eq 2:

RðtÞ ¼ RL þ RH �
NH � CHðtÞ

NH

RðtÞ ¼ RL þ RL �W
RH

RL
� e

RH
RL

1�
CðtÞ
NHð Þ

� �

Note: W represents the “Product logarithm” or “Lambert W function”, which is defined by:

z ¼WðzÞ � eWðzÞ

Supporting information

S1 Additional Figures. Figures for Sierra Leone, Guinea and additional figures for Liberia.

(PDF)
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