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Abstract: In this work, we studied the anthracene oxidation by hydroxyl radicals. Hydroxyl
radical was generated by reaction of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Fe (III) (TPPFe) with
hydrogen peroxide under visible radiation at a nitrogen atmosphere. The TPPFe was synthesized by
Adler Method followed by metal complexation with Fe (III) chloride hexahydrate. Hydroxyl radical
was detected by fluorescence emission spectroscopy and we studied kinetic of anthracene selective
oxidation by hydroxyl radicals through the differential method. The TPPFe was characterized by
UV-Vis spectrophotometry, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy
(SEM) measurements. The results indicated that TPPFE was compound by micro-particles with
a size distribution of around 2500 nm. Kinetic results showed that the apparent rate constant
for the oxidation of anthracene increased exponentially on as temperature increases, furthermore,
the activation energy for the Anthracene oxidation by hydroxyl radicals under visible irradiation was
51.3 kJ/mol. Finally, anthraquinone was the main byproduct generated after oxidation of anthracene
by TPP-Fe under visible irradiation.
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1. Introduction

Nowadays polycyclic aromatic hydrocarbons (PAH) originate from the incomplete combustion of
fossil fuels are an important researching subject, from the environmental point of view, PAH are very
important since they are involved in metabolic processes that affect human health [1,2]. Reactive oxygen
species (ROS) are an emerging class of endogenous, highly reactive, oxygen molecules, these species
can originate oxidation reactions of PAH, main ROS involve singlet oxygen and oxygen free radicals
such as hydroxyl radical (HO•), superoxide anion (O2

−•), hydroperoxyl (HOO•) or other similar
radicals [3,4]. Specific photodynamic oxidation reactions have become an alternative methodology
for PAH oxidation; the complex primary photochemical reaction processes due to an interaction of
a photosensitizer with visible light could generate several reactive oxygen species in the reaction
medium (1O2, O•, HO•) [5,6]. Hydroxyl radical can be achieved through different methodologies: (a)
chemical trapping, (b) laser flash photolysis, (c) pulse radiolysis, and (d) laser-induced fluorescence.
Hydroxyl radical reaction to PHS (e.g., Naphthalene, Biphenyl, Anthracene) is reported for ROS
detection in solution [7]. F. Goulay et al., reported the first direct measurement of the reaction rate
constant of a polycyclic aromatic hydrocarbon in the gas phase in the temperature range 58–470 K [8].

Different factors involve in ROS generation: photo-sensitizers, electromagnetic radiation and
the molecular oxygen 3O2. Under visible light irradiation, the photosensitizer (PS) excites from basal
state (oPS) to singlet state (1PS*) after that, 1PS* could decay to triplet state (3PS*) through internal
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cross-system process; in this stage 3PS* could produce radical species as hydroxyl or superoxide radicals
through electron transfer reaction, this kind of reaction is known as type I [9]. Many compounds have
been reported as sensitizers (e.g., porphyrin, phthalocyanines, and their metal derivatives), among these,
porphyrins their metalcomplexes are macrocyclic molecules with an extensive delocalized electrons
system, they have electronic and optical properties, applied in fields like artificial photodynamic therapy,
solar cells and photocatalysis [10–12], furthermore, metalloporphyrin derivatives have reported as
hydroxyl radical generators, however, knowledge about kinetic information is few; about this topic,
a detailed knowledge of oxidation mechanisms initiated by molecular oxygen and OH• radicals is
important to optimization of experimental conditions [13]. It is known that the efficient photo-activity
of both the simple porphyrins and the metal complexes porphyrins is due to their capability to produce
either superoxide anion radical or singlet oxygen by type I and type II processes, respectively; for which
the type II process is thought to be dominant in free base porphyrin [14]. Selective oxidation of
anthracene to anthraquinone before by reaction with acetic acid [15] and metachloroperbenzoic acid by
electron-withdrawing metalloporphyrins [16] has been reported.

Considering the adverse effects on environments and human health of PAH, we selected anthracene
as the target in this work because of the anthracene is considering one of the 16 priority PAHs indicated
by the US environmental protection agency (EPA) [17]. There are reports concerning to oxidation
of anthracene with free radicals NO3

•, OH• and SO4
•− [18–21]. Furthermore, the formation of

nitro-anthracene from the degradation of anthracene by the OH• and NO3
• has been investigated

using quantum chemical calculations [22,23]. Karan et al. reported the photocatalytic degradation of
anthracene under UV irradiation on TiO2 nanoparticles, they found that the main product of oxidation
of Anthracene is 9,10-Anthraquinone, which is safer for the environment than Anthracene [24]. Kozak et
al. removed PAHs from the pretreated coking wastewater by using CaO2, Fenton reagent under
UV irradiation [25]. The applications of Fenton oxidation of different PAH have been shown to
have great potential (e.g., photo-Fenton, sono-Fenton and electro-Fenton [26–29]). Fenton reaction
mechanism relies on OH• generation by the reaction of a ferrous ion with hydrogen peroxide (H2O2)
this mechanism is useful to break down a different organic compound. The Scheme 1 shows the general
reaction for Fenton reaction.
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Scheme 1. OH• generation by Fenton reaction.

The photo Fenton reaction has been already used to degrade samples of phenol [30,31]. The rate
of this reaction could be increased when exposed to UV light. Otherwise, although the developments
related to PAH photooxidation under UV irradiation research have been significant, great attention in
the field is directed to reach the PAH photooxidation under solar irradiation (visible light) to achieve
a practical application [32,33].

In this work, we presented a kinetic study of the anthracene oxidation trough
5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Fe (III) under visible irradiation, we used the initial rates
method to determine activation energy and kinetic parameters of the process.

2. Results and Discussion

2.1. UV-Vis Assay

Figure 1 shows the UV-Vis spectra of TPPFe and the TPP in ethanol solution. Results show the
typical Soret and four Q bands for the TPP, see Figure 1. The highest band located at 419 nm was
assigned to Soret band, and bands located between 516 nm and 650 nm corresponding to Q bands,
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these signals are associated to a2u(π)-eg
*(π) electronic excitations. The TPPFe UV-vis spectra exhibited

one Soret band (413 nm) and only a Q band (535 nm), this result is typical of this kind of compound,
after metal complexing symmetry of porphyrin increases thus Q bands number decreases. Figure 1
shows little blue shift to Soret band of TPPFe, this result indicates that energy necessary for electronic
transitions increases after metal complexing, this could be associated to a decreasing of the average
electron density of the metalloporphyrin [34–36].
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Figure 1. The UV-Vis spectra for the TPP and TPPFe.

2.2. Dynamic Light Scattering Characterization

Figure 2 shows the DLS assay results for TPPFe after. Figure 2a shows the correlation function
(fitting quality for the diameter of the particles in suspension). Figure 2b shows the intensity weighted
particle size distribution for TPPFe, the figure shows only one signal indicating TPPFe is formed by one
particle type with an average size distribution of around 2500 nm. Figure 2 did not show additional
signals suggesting that porphyrin aggregation was not present inside suspension under experimental
conditions [37–39].
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Figure 2. Results for DLS assay: (a) correlation function and (b) Intensity weight particle size
distribution TPPFe obtained from correlation function.

2.3. SEM Characterization

The Figure 3 shows the SEM image for TPPFe powders. According to DLS results, the main size of
the particles is around 2.5 µm, however, the Figure 3 shows that samples are formed by micro-particles
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and (Figure 3), the micro-particles show little aggregates on the surface around 300–400 nm, besides,
Figure 3 shows that TPPFe surface was regular and uniform.
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Figure 3. SEM micrograph for TPPFe, magnification 80 K.

2.4. Identification of Hydroxyl Radical

Hydroxyl radical detection was performed by selective reaction of disodium terephthalate with
hydroxyl radical to form 2-hydroxyterephthalate, the Figure 4 shows the chemical reaction and the
Figure 5 shows the fluorescence emission spectra of by product obtained for the reaction of hydroxyl
radical and disodium terephthalate recorded at different reaction times. Results shows an increase of
the maximum emission band of the 2-hydroxyterephthalic acid during the reaction time.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 11 

 

particles and (Figure 3), the micro-particles show little aggregates on the surface around 300–400 nm, 
besides, Figure 3 shows that TPPFe surface was regular and uniform. 

 
Figure 3. SEM micrograph for TPPFe, magnification 80 K. 

2.4. Identification of Hydroxyl Radical 

Hydroxyl radical detection was performed by selective reaction of disodium terephthalate with 
hydroxyl radical to form 2-hydroxyterephthalate, the Figure 4 shows the chemical reaction and the 
Figure 5 shows the fluorescence emission spectra of by product obtained for the reaction of hydroxyl 
radical and disodium terephthalate recorded at different reaction times. Results shows an increase of 
the maximum emission band of the 2-hydroxyterephthalic acid during the reaction time. 

 
Figure 4. Specific oxidation chemical reaction of terephthalic acid by hydroxyl radical generated after 
visible irradiation of TPPFe. 

 
Figure 5. The fluorescence emission spectra of the product obtained for the reaction of hydroxyl 
radical and disodium terephthalate recorded at different irradiation times. 

0

20

40

60

80

100

120

140

160

180

350 400 450 500 550 600

In
te

ns
ity

Wavelenght (nm)

0 min

10 min

30 min

60 min

Figure 4. Specific oxidation chemical reaction of terephthalic acid by hydroxyl radical generated after
visible irradiation of TPPFe.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 11 

 

particles and (Figure 3), the micro-particles show little aggregates on the surface around 300–400 nm, 
besides, Figure 3 shows that TPPFe surface was regular and uniform. 

 
Figure 3. SEM micrograph for TPPFe, magnification 80 K. 

2.4. Identification of Hydroxyl Radical 

Hydroxyl radical detection was performed by selective reaction of disodium terephthalate with 
hydroxyl radical to form 2-hydroxyterephthalate, the Figure 4 shows the chemical reaction and the 
Figure 5 shows the fluorescence emission spectra of by product obtained for the reaction of hydroxyl 
radical and disodium terephthalate recorded at different reaction times. Results shows an increase of 
the maximum emission band of the 2-hydroxyterephthalic acid during the reaction time. 

 
Figure 4. Specific oxidation chemical reaction of terephthalic acid by hydroxyl radical generated after 
visible irradiation of TPPFe. 

 
Figure 5. The fluorescence emission spectra of the product obtained for the reaction of hydroxyl 
radical and disodium terephthalate recorded at different irradiation times. 

0

20

40

60

80

100

120

140

160

180

350 400 450 500 550 600

In
te

ns
ity

Wavelenght (nm)

0 min

10 min

30 min

60 min

Figure 5. The fluorescence emission spectra of the product obtained for the reaction of hydroxyl radical
and disodium terephthalate recorded at different irradiation times.



Int. J. Mol. Sci. 2020, 21, 353 5 of 11

Due to the fluorescent product (2- hydroxyterephthalic acid) formed during irradiation are
generated due to the specific reaction between hydroxyl radicals and terephthalic acid, these results
corroborate that hydroxyl radicals were generated by the TCPPFe under visible light irradiation
according to reaction in Figure 4 [40].

2.5. Kinetic Study

We determined the initial rates of reaction through the differential method for each of the
experiments for determining anthracene concentration. The determination of the slopes was solved
numerically using finite differences. Taking into account that the derivative of the concentration with
respect to time is defined by:

dC
dt

= lim
h→∞

C(t + h) −C(t)
h

(1)

where C represents de concentration, t the time and h is the spacing constant. Because of h is a fixed
value near to zero then, Equation (1) can be rewritten as:

dC
dt

=
∆[C](t)

h
(2)

The difference can be considered a differential operator, which matches the function C with ∆C
and, by using the Taylor theorem:

∆ = hD +
1
2

h2D2 +
1
3

h3D3 + . . . = ehD
− 1 (3)

where D is the operator derivative, which matches C with its derivative (C’) finally, by solving
the exponential:

hD = log(1 + ∆) = ∆ −
1
2

∆2 +
1
3

∆3 + . . . (4)

The first two terms of the series lead to:

dC
dt

= −
C(t + 2h) − 4C(t + h) + 3C(t)

2h
(5)

for using the first three points (t0, C0), (t1, c1), (t2, C2) whose abscissae equidistant h (h = t2 − t1 = t1 − t0

= 5 min) then, we can obtain:

initial rate(v) =
C2 − 4C1 + 3C0

2h
(6)

Using the experimental data and applying Equation (7), we can obtain the initial rates at different
temperatures for the reactions with hydroxyl radicals [41]. The initial rates for the oxidation of
anthracene by hydroxyl radical as a function of the concentration and temperature are shown in
Figure 6.

The results show that the initial rates increase as the concentration of anthracene increases due to
a higher probability of collision between anthracene molecules and the oxygen species present in the
solution. Furthermore, Figure 6 shows that the initial rate increases with the temperature; however,
no significant change is observed in the initial rate to very low concentrations of reagent. Under the
experimental conditions of this study, the following rate law equation could be considered:

r = k[Anthracene]α[OH∗]α (7)

where r is the initial rate as function of the reagent concentration, α and β are the reaction orders from
each reagent and k is the rate constant. We can determinate the values of α, β in order to analyze how
the initial rate depends on the initial concentrations of reagent through of initial rates method. If the
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initial rate depends only on the reagent concentration which is being varied [Anthracene] and if the
concentration of the oxidant is in excess, we can express Equation (8) as follows:

r = kapp[Anthracene]α (8)

where kapp is the apparent constant representing the product k*[HO•]β. If the anthracene concentration
is changed, the reaction order α and the k value can be obtained from a linear fit of the ln v vs.
ln [Anthracene]. Kinetic results indicated that the reaction order α for the oxidation reaction between
the anthracene and the hydroxyl radical is approximately 1.0.
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Figure 6. Initial rates for the oxidation of anthracene at different temperatures and anthracene
concentration.

Figure 7a shows the kapp values for oxidation of anthracene at different temperatures. Results show
that the apparent rate constants increase with temperature, this result indicates that as temperatures
increase more particles acquired enough energy to overpass activation energy of the process and rate
constant increases also. The activation energy can be determined by the Arrhenius equation [41]:

kapp(T) = Ae
Ea
RT (9)

where kapp(T) is the apparent rate of the reaction (temperature dependent), A is a constant related with
the initial reagent concentration, Ea is the activation energy, and R is the molar gas constant. We can
rewrite the Equation (9) as follows:

Ln(kapp(T)) = LnA−
Ea

R

( 1
T

)
(10)

The activation energy can be calculated from the slope of the linear fit of the natural logarithm
of the apparent constant as function of 1/T. Figure 7a shows the graphic kapp vs. Temperature for
anthracene oxidation, and Figure 7b shows Ln v vs. 1/T fitting. The value of Ea obtained for oxidation
of anthracene by hydroxyl radical is 51.3 kJ/mol.
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2.6. Analysis of the Products of Oxidation

After photooxidation process, the anthraquinone was identified by CG-ME as the only one
product for anthracene reaction. In the presence of hydroxyl radical, the anthraquinone formation
could be explained via the formation of 9(10H)anthracenone. The latter could be obtained by
a hydrogen atom abstraction reaction following by subsequent addition of hydroxyl radical to yields
9,10-dihydroxyanthracene which can be readily oxidized to anthraquinone. These primary step events
could be considered as the rate-determining the stage of the process, this mechanism is an alternate
route to the mechanism proposed to anthracene oxidation in the advanced oxidation process [42–44].
Figure 8 proposes a mechanism leading to the formation of 9,10-anthraquinone.
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Figure 8. Mechanism for anthracene oxidation by hydroxyl radical: TCPPFe (III) absorbs radiation in
visible region and then an electron is transferred from the porphyrin to Fe3+ (I). The metal is reduced
from Fe3+ to Fe2+ (II), the Fe2+ interacts with H2O2 which produces hydroxyl radicals (III). Afterward,
the hydroxyl radicals react with anthracene generating 9-hydroxyanthracene (IV), the tautumeration
equilibrium is reached generating 9(10H)anthracenone (V). The subsequent addition of hydroxyl
radical to yields 9,10-dihydroxyanthracene (VI) which can be readily oxidized to anthraquinone (VII).
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3. Materials and Methods

3.1. Synthesis and Characterization

All reagents used in this work were analytical grade, the UV-Vis spectra were taken in
a Hewlett-Packard 8453 spectrophotometer. FT-IR spectra (KBr) were recorded in a Bruker Tensor 27
spectrometer, in this assay, we dissolved 2.0 × 10−5 g of each compound in ethyl acetate. The NMR
1H spectra were performed in a Bruker AC-400 spectrometer using DMSO-d6 as solvent. The 1H
MNR chemical shifts were reported as ppm (δ), relative to CDCl3 (signal located at 7.28 ppm).
Mass spectrometry assay was measured in ESI (LC)-MS/MS ion Trap Amazon, Bruker spectrometer.
The Scheme 2 shows the synthesis procedure.
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Scheme 2. The synthesis procedure: 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (1) and
5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin Fe (III) (2).

5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (1) was synthesized by mixing pyrrole and
4-carboxybenzaldehyde (9 mmol) in propionic acid (100 mL) and nitrobenzene (45 mL). The mixture
was heated for 1h at 120 ◦C. After cooling and solvent removal under vacuum, the porphyrin was
dissolved in 250 mL of sodium hydroxide (0.10 M) and then it was precipitated by adding hydrochloric
acid (1.0 M) [45]. The obtained powder was purified using column chromatography; we used silica gel
(2.5 × 24 cm) as stationary phase and petroleum ether-ethyl acetate 20:2 as mobile phase (rf. 079); yield
7501 g (33%); melting point > 300 ◦C; UV-Vis (ethyl acetate) 419, 516, 552, 594, 650; FT-IR (cm−1): O-H
(3200–3500), N-H (3500 band overlapped by O-H), C=O (1687), C=C (1603), C=N (1211); 1H RMN
(400 MHz, DMSO-d6) δ (ppm): = 7.76 (8 H, d; J = 7.66 Hz, 3-Ar), 7.85 (8 H, d; J = 7.66, 2-Ar), 8.22 (8 H,
d; J = 7.6 Hz, Py), 8.86 (4 H, s, O-H), 12.85 (2 H, s; N-H); MS (ESI-IT), m/z: 791.2 [M + H]+.

5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin Fe (III) (2) was synthesized by mixing (1) (0.330 mmol)
and iron (III) chloride hexahydrate in 70 mL of N,N’-dimethylformamide (DMF) for 2 h in reflux
system. The DMF was removed by distillation and the (2) was precipitated in water. The TCPPFe was
dissolved in dissolution of solid sodium hydroxide (0.10 M) and after that, the TCPPFe precipitated by
adding hydrochloric acid (1.0 M). Finally, the compound was purified by column chromatography;
we used silica gel (2.5 × 24 cm) as the stationary phase and petroleum ether-ethyl acetate 5:1 as the
mobile, melting point > 300 ◦C; UV-Vis: 413, 535.

3.2. Physicochemical Assay

For hydroxyl radical generation, photosensitizer was added to H2O2 solution at pH = 3.0;
the mixture was introduced in a batch photo-reactor in nitrogen atmosphere under visible irradiation
(100 W OSRAM halogen immersion lamp). Hydroxyl radical generation was monitored through the
fluorescence emission signal of 2-hydroxyterephthalic disodium (excitation at 425 nm) of the solution
in a Shimadzu RF-5301PC spectrofluorometer. The reaction products were identified in a 5890 Hewlett
Packard gas chromatographer, with a 5972 mass selective detector and a HP5-MS column (30 m long
and 0.25 mm internal diameter) and He was the carrier gas (1 mL/min). Sample aliquots of 1,0 µL were
injected with split (1:30). The temperature program: heated at 200 ◦C for 5 min, then 10 ◦C/min up to
300 ◦C and kept at 300 ◦C for 15 min. Detector conditions were 70 eV, electronic impact, 35–400 m/z mass
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range, 200 V EM voltage (A-tune), 20 Hz Sweep Frequency at 230 ◦C. The particle size in suspension
was determined by the Dynamic Light Scattering (DLS). The equipment used was a Zetasizer version
6.2 of Malvern Instruments. For the analysis, 1g/L of TCPPFe was scattered in water at pH = 3.
The intensity distribution seen in the DLS program was obtained by the analysis of the correlation
function by the analysis of the smaller non-negative squares. Besides, the scanning electron microscopy
(SEM) characteristics for TPPFe were measured in SEM Tescan VEGA3 SB equipment under excitation
energy of 5 and 1 kV. Finally, reaction rates of the anthracene oxidation were obtained by using the
initial slope method. In this study, we changed the concentration of anthracene from 0.02 M to 2.0 M
and the activation energies for each process was calculated at different temperatures (283–323 K).

4. Conclusions

In this work, we studied the kinetics of the oxidation of anthracene on ferric
tetracarboxyphenylporphyrin under visible irradiation. Spectrophotometric results verified metal
complexation porphyrin and DSL and SEM results indicated that TPPFe was compound by
micro-particles with a narrow size 2500 nm. The corresponding rate constants and activation
energy were estimated for selective anthracene oxidation. Results showed an activation energy value of
51.3 kJ/mol for anthracene oxidation by hydroxyl radical. Furthermore, the fluorescent product proved
that hydroxyl radical was generated after visible irradiation of TPPFe sensitizer. Finally, anthraquinone
was identified as the only product during anthracene oxidation by hydroxyl radical and we proposed
a possible mechanism for the oxidation process. The anthracene removal by using TPPFe under visible
irradiation is an alternative procedure to removal dangerous PAH.
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