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Abstract: The residual-based (RB) receiver autonomous integrity monitoring (RAIM) detector is a
widely used receiver integrity enhancement technology that has the ability to rapidly respond to
outliers. However, the sensitivity and vulnerability of the residuals to the outliers are the weaknesses
of the method especially in the case of multi-outlier modes. It is an effective method for enhancing
the validity of residuals by robust estimation instead of least squares (LS) estimation. In this paper,
a modified RB RAIM detector based on a robust MM estimation with a higher detection performance
under multi-outlier modes is presented. A fast subset selection method based on the characteristic
slope that could reduce the number of subsets to be calculated is also presented. The experimental
results show that the proposed algorithm maintains a more robust performance than the RB RAIM
detector based on the LS estimator and M estimator with an IGG III function especially with the
increase in the number of outliers. The proposed fast subset selection method can reduce the
calculation time by at least 80%, demonstrating the practical application value of the algorithm.

Keywords: RAIM; robust statistics; MM estimator; characteristic slope

1. Introduction

Integrity is a required feature for global navigation satellite system (GNSS) users. The snapshot
receiver autonomous integrity monitoring (RAIM) algorithms based on consistency checks with
redundant observations have been widely used especially in aviation [1]. The residual-based (RB)
snapshot RAIM schemes are typical post-processing outlier detection methods. Outliers participate
in the process of parameter estimation and take the sum of the squares of pseudo-range residuals as
the test statistic for outlier detection [2,3]. When a significant deviation exists between the estimated
and the actual parameter, the test statistics of the RB RAIM detector can respond quickly and the
calculation amount is required. RB RAIM schemes have been developed for aerial navigation where
the presence of multiple simultaneous outliers is unlikely. Due to the modernization of American
GPS, the full deployment of Russian GLONASS, the emergence of Chinese BDS and European Galileo
and the development of regional navigation satellite systems NAVIC and QZSS, more satellites have
become available, causing the possibility of double simultaneous satellite failures to be higher than the
integrity risk requirement [4–6].

For multi-constellation, the probability of three or more simultaneous faults remains an order of
magnitude below the integrity requirement [7]. However, the GNSS signal can also be reflected by the
multipath effect and non-line-of-sight (NLOS) receptions especially in urban city areas [8,9]. The three
or more outliers mode could not be neglected any more. In this case, traditional RB RAIM schemes are
invalid as the residuals cannot be used as the basis for outlier identification.
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There are two kinds of modified methods for the detection and identification of multiple
simultaneous outliers. One is a redesign of the RAIM detector and the other is the optimal parameter
estimator. In this paper, we propose solutions aiming at an RB RAIM detector based on a robust
estimator. The main contributions of this paper are as follows.

(1) We propose an RB RAIM method based on the MM estimator, which contains a least trimmed
squares (LTS) estimator with a high breakdown point and an M estimator with high efficiency, making
residuals more consistent with the actual ranging errors. The advantages of the RB RAIM detector are
preserved and the ability to detect multiple simultaneous outliers is significantly improved.

(2) We present a fast subset selection method based on the characteristic slope. With an increasing
amount of available observations, the number of subsets that an LTS estimator needs to estimate
increases dramatically. The efficiency of robust estimation is improved as much as possible by removing
the satellites that make little contribution to the geometry while ensuring a better position dilution of
precision (PDOP) condition.

The remainder of this paper is organized as follows. The related works on RAIM for a multi-outlier
mode are given in Section 2. The camouflage effect of an RB RAIM in a multiple outlier mode is
analyzed in Section 3. The proposed RB RAIM based on MM estimation and the fast subset selection
method are detailed in Section 4. Section 5 describes the experiments used to demonstrate the practical
utility of our approach. Finally, the discussion and conclusions are provided in Section 6.

2. Related Works

Over the past decade, scholars have done some related work on a modified RAIM algorithm for a
multi-outlier mode. The multiple hypothesis solution separation (MHSS) algorithm detects outliers
via comparing the position estimate made with all satellites in view with estimates from subsets
that have removed some hypothetical outliers [10–14]. The range consensus (RANCO) algorithm
calculates position solutions based on the best four-satellite subset and compares this estimate with the
pseudo-ranges of all the satellites not contributing to this solution [15,16]. The core idea of this kind of
method is to find the best subset that does not contain outliers by relying on a combinatorial search,
which could be intractable as the number of visible satellites and hypothetical outliers increases [17–19].
Juan et al. [17] modified the MHSS algorithm using a fixed set of subsets to reduce the computational
load. Ge et al. [18] presented a modified method that evaluated multiple outlier cases using subsets
that excluded entire constellations to narrow the search range for outliers. Other approaches neglect
many of the less likely scenarios to simplify the RAIM detector based on the MHSS algorithm [19,20].
These methods only consider outliers caused by satellite failure; in that scenario, the probability of
three or more simultaneous outliers is lower than the integrity risk requirement, which can be ignored.
The computational burden of these methods increases dramatically as the number of simultaneous
outliers increases.

Mathieu et al. [21] designed a detector based on a non-least-squares (NLS) estimator to reduce the
integrity risk at the cost of lower accuracy. The concept aimed to improve the combined availability of
accuracy and integrity. Hwang and Brown [22] proposed NIORAIM to better balance accuracy and
integrity. The weights were designed both in the position domain and in the measurement domain.
Song et al. [23] proposed the correlation-weighted least squares residual (CW-LSR) algorithm in which
the pseudo-range residuals were weighted with the characteristic slope, making it approximate to
the optimal test statistic. However, the characteristic slope was valid only in a single outlier mode.
The robust estimators could also improve the robustness and effectiveness of residuals although the
accuracy was not optimal. Yang [24] presented an RB RAIM detector based on a robust M estimation with
an IGG III function for multiple outlier detection and exclusion, which could also control the influence
of near-failure observations. However, the robustness of the M estimation built on the relatively
reliable iterative initial value, which was generally the LS estimation, thus having a breakdown point
tending to zero especially when the number of simultaneous outliers increased [25–27]. Knight and
Wang [28] compared the outlier test and robust methods and identified MM estimators [29,30] and the
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L1 norm obtained the highest rates of normal exclusion as the number of outliers increased. Thus, it is
the objective of this paper to improve the ability of an RB RAIM to detect and identify simultaneous
outliers based on MM estimation.

3. Camouflage Effect of an RB RAIM Detector in Multi-Outlier Mode

3.1. Baseline of an RB RAIM Detector

This section introduces notations describing the well-established least squares (LS) estimator and
residual-based (RB) RAIM detector and analyzes the camouflage effect of pseudo-range residuals,
which is the main factor in reducing the fault detection and exclusion (FDE) performance of an RB
RAIM detector in a multiple outlier mode.

Let m and n denote the number of states to be estimated and visible satellites, respectively. Assume
the linearize functional model is [8]:

y = Hx + ε+ b (1)

where y is an n× 1 vector of observations containing the differences between the expected ranging
values and the raw ones to all visible satellites, H is an n × (m + 3) linear observation matrix, x is
an (m + 3) × 1 state vector that obtains m clock offsets and 3-dimensional (3D) positions in the local
Cartesian coordinate (ENU), b is an n × 1 bias vector that is a zero vector when there is no outlier
among the observations and ε is an n× 1 observation error vector, which is assumed to be normally
distributed with the zero-mean and covariance matrix D [8]:

ε ∼ N(0, D) (2)

where 0 is an n× 1 zero vector and D is assumed to be diagonal. The probability distribution of nominal
observation noise can be reliably modeled using large amounts of experimental data and bounded by
the Gaussian function described in Equation (2).

The LS solution for the state vector x in Equation (1) is:

x̂ =
(
HTWH

)−1
HTWy, W = D−1. (3)

The correction of the state parameter vector is:

δx̂ = x̂− x =
(
HTWH

)−1
HTW(ε+ b). (4)

Let A =
(
HTWH

)−1
HTW. We obtain δx̂ = A(ε+ b). The pseudo-range residual vector r is:

r = y−Hx̂. (5)

Here, we take a single GNSS as an example and the number of state parameters to be estimated
should be added accordingly for multiple GNSSs.

By substituting Equation (4) into Equation (5), the residual vector can be expressed as:

r = (ε+ b) −Hδx̂ = (ε+ b) −H
(
HTWH

)−1
HTW(ε+ b) =

(
I−H

(
HTWH

)−1
HTW

)
(ε+ b). (6)

Let S = I−H
(
HTWH

)−1
HTW and r = S · (ε+ b). The residual vector r can be regarded as the

projection of the error vector (ε+ b) through the symmetric idempotent matrix S. The residual vector
is used as a substitute for FDE because the error vector (ε+ b) is unknown.

The Chi-square test statistic of an RB RAIM detector is computed as:

TRB =
√

rTWr/(n−m− 3) ∼ χ2(n−m− 3,λ2
RB). (7)
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The test statistic TRB follows a non-central Chi-square distribution with (n −m − 3) degrees of
freedom and a non-centrality parameter λ2

RB, which is function of the fault vector b:

λ2
RB = bTDSb. (8)

The threshold TD of the Chi-square test can then be calculated by the number of satellites and the
possibility of a false alarm. The detector rejects the observation with the largest test statistic in the
outlier exclusion. If multiple outliers exist, then the single outlier test is applied iteratively until all
outliers have been removed.

Equation (5) shows that if we can obtain an absolutely accurate estimation of the state parameters
then we obtain r = (ε+ b). However, it is impossible to achieve the expected result. However, the
more accurate the estimated state parameters, the more reliable the FDE result of an RB RAIM.

3.2. Camouflage Effect of Residuals

The residual vector is the projection of the error vector under matrix S. Equation (6) can be
expressed as the following equations:

r1

r2
...

rn

 =


S11 S12 · · · S1n
S21 S22 · · · S2n

...
...

...
...

Sn1 Sn2 · · · Snn

 ·


ε1

ε2
...
εn

+


b1

b2
...

bn


. (9)

As the residuals depend on the state parameters estimation, the residual vector r and the linear
observation matrix H are also polluted when there are some outliers in observations. An outlier affects
the residuals of all observations and the impacts of different outliers are different. The residual of each
observation could consist of two parts: one caused by itself, ri,sel f and the other one caused by other
observations, ri,others. In the case of no outliers, the bias vector b is a zero vector and the residual of
each pseudo-range could be expressed as:

ri = Si,: · ε = S · ε+
n∑

j=1, j,i

Si j · ε j = ri,sel f + ri,others (10)

where ri,sel f = Sii · εi and ri,others =
n∑

j=1, j,i
Si j · ε j. In general, ri,sel f > ri,others as Sii > Si j, j , i in matrix S.

In this case, the presence of ri,others does not have an obvious effect on the FDE performance of an RB
RAIM detector.

There are differences when different pseudo-ranges are outliers, which is also known as the
leverage effect. Therefore, the studentized residuals are used to replace the residuals. Leverage
observations are pseudo-ranges that have a high potential to influence the estimated parameters.
The corresponding residual may be unobvious, which may cause masking and swamping under poor
geometric conditions.

In the case of a single outlier, let the gth observation be the outlier and the bias vector can be

expressed as b =
[

0 · · · 0 bg 0 · · · 0
]T

. The residual of each observation can also consist of
two parts: one caused by noise, ri,noise and the other one caused by bias, ri,bias.

The residual of the normal pseudo-range ri could be expressed as:

ri =
n∑

j=1

Si j · ε j + Sig · bg = ri,noise + ri,bias (11)
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The residual of outlier rg can be expressed as

rg =
n∑

j=1

Sgj · ε j + Sgg · bg = rg,noise + rg,bias (12)

Matrix S has the following properties:

• It is a symmetric matrix, ST = S;
• It is an idempotent matrix, S2 = S and Si,: · S:,i = Sii; and
• The diagonal elements are Sii ∈ (0, 1) and Sii > Si j, i , j.

The influence of an outlier on its own residual is greater than that of the residuals of normal
observations

∣∣∣rg,bias
∣∣∣ > ∣∣∣ri,bias

∣∣∣; therefore, the outlier may be identified relatively easily by the RB RAIM
detector especially when using the studentized residuals. However, in a multiple outlier mode, let the
gth and kth pseudo-range be the two outliers and the residual of the normal pseudo-range ri could be
expressed as:

ri =
n∑

j=1

Si j · ε j + Sig · bg + Sik · bk (13)

The residuals of outliers rg and rk can be expressed as:
rg =

n∑
j=1

Sgj · ε j + Sgg · bg + Sgk · bk

rk =
n∑

j=1
Skj · ε j + Skg · bg + Skk · bk

(14)

At this time, it is not possible to identify outliers by the relationship of the elements of matrix S.
The following two factors should be considered.

(1) The combination of outliers. The diagonal elements of S are differentiated depending on
the geometry.

(2) The magnitude and direction of outliers. The ratio of two biases is β = bg/bk, taking two outliers
as an example.

Therefore, due to the overlapping of ri,bias, the residual of outliers may not be obvious. We define
this situation as the camouflage effect of residuals in a multiple outlier mode, which creates difficulties
for the performance of outlier identification in the RB RAIM detector.

The camouflage effect causes two types of mistakes in the FDE of the RB RAIM detector: masking
and swamping. Masking means the misidentification of outliers so the final state estimation will still
be contaminated by outliers. Swamping means the identification of normal observations as outliers so
that the accuracy of the final state estimation will be compromised.

4. An RB RAIM Based on a Robust MM Estimation

4.1. Robust Principle and an RB RAIM Detector Based on a Robust Estimation

The least squares method has been criticized for its dramatic lack of robustness and outliers having
an arbitrarily large effect on the residuals by LS estimation. In this connection, Hampel introduced
the notion of the breakdown point ε∗, which is the smallest percentage of contaminated data that can
cause the estimator to take on arbitrarily large aberrant values. In the case of least squares, ε∗ = 0.

To reduce the effect of outliers on parameters estimations, robust estimation methods have been
widely used; M estimation is the most popular as it is based on the generalized maximum likelihood
estimation theory and is closely connected to traditional LS procedures.
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Mitigation of multiple outliers for GNSS positioning has been reported using M estimation. The
authors confirmed superior performance of the scheme over a classical LS solution for the scenarios
with multiple outliers. The M estimator was first proposed by Huber where the LS cost function of
squared residuals was replaced by a symmetric convex cost function ρ:

minimize
n∑

i=1

wiρ
( ri
σ̂

)
(15)

where ri is the residual of each observation and σ̂ is the scale factor of the residuals (an estimator of the
spread of the random errors). A robust alternative is subtracting the median instead of the mean and
then taking the median of the absolute values, which yields the median of absolute deviation (MAD)
and the normalized MAD (MADN) as:

σ̂ = MADN(r) =
median

(∣∣∣r−median(r)
∣∣∣)

0.6745
(16)

The normalized residual of the ith pseudo-range could be formed as vi =
ri
σ̂ .

The LS estimation makes full use of all pseudo-ranges that include the possible existence of
outliers; therefore, the LS residuals are directly affected by outliers. For a robust estimation, the weight
of outliers may be reduced in the process of iteration to weaken the influence of outliers on the residuals.
The flow chart of the RB RAIM detector based on a robust estimator is shown in Figure 1.
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Figure 1. Flow chart of a residual-based (RB) receiver autonomous integrity monitoring (RAIM)
detector based on a robust estimator.

The robust M estimator can be derived as:

x̂R =

(
HT ¯

PH
)−1

HT ¯
Py (17)

where
¯
P is a diagonal equivalent weight matrix and the ith diagonal element pii of

¯
P is computed as:

pii = piwi (18)

where wi is the ith diagonal element of W. The weight matrix W is replaced by
¯
P in a robust

M estimation.

4.2. Robust MM Estimation

When using an MM estimator, the main idea is to have a high breakdown point method that is
aggressive toward the elimination of observations, often eliminating more observations that necessary,
making it less efficient for obtaining an initial estimate for scale and state. The scale factor is then held
constant during consecutive iterations of the M estimator starting with the final robust state parameters.
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In this paper, the employed high breakdown point estimation is based on the LTS estimator and
the considered refining M estimation is based on the Huber score function. On this basis, a fast subset
selection method was designed to optimize the calculation amount of the LTS estimator to improve the
practicability of the MM estimator for more available observations.

The flow chart of the RB detector based on the proposed MM estimator is shown in Figure 2.Sensors 2020, 20, x FOR PEER REVIEW 7 of 21 
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4.2.1. Least Trimmed Squares Estimator

The LTS estimator was developed by Rousseeuw, which is close to ordinary least squares except
that the largest weighted squared residuals are excluded from the summation to be minimized [31].
The robust LTS estimation is based on the subset of h cases (out of n) whose least squares fit possesses
the smallest sum of squared residuals:

minimize

 h∑
i=1

r2
(i)

 (19)

where r2
(i) is the squared residuals in ascending order. Only one subset with the h smallest squared

residuals would be considered so that (n − h) pseudo-ranges would not be used in the robust
estimation. In this way, the LTS estimation has sufficient robustness when the number of outliers does
not exceed (n− h).

The LTS estimation is somewhat similar to the MHSS in principle. Given the trimmed parameter
h, the observation model in Equation (1) could be partitioned to distinguish the subset obtaining h
observations (subscript A) from the subset, obtaining (n− h) observations (subscript B):[

yA
yB

]
=

[
HA
HB

]
x +

[
εA
εB

]
+

[
bA
bB

]
. (20)

We obtain Ch
n = n!

h!(n−h)! possible subsets and obtain the corresponding state parameter vector
estimation based on LS estimation by the subset with subscript A. The corresponding residuals of all
n pseudo-ranges are then computed and the h smallest squared residuals are arranged in ascending
order for each subset. The flow chart of the LTS estimator is shown in Figure 3.

The scale factor estimated by the LTS estimator is

σ̂LTS =

 h∑
i=1

|v|2i


1/2

. (21)
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From Equation (21), we determine that the breakdown point of the LTS estimator is determined
by h. In general, the range of h is n/2 ≤ h < n and the breakdown point is h/n, which should be set to
0.5 to achieve maximum robustness.
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We can adjust the balance between robustness and efficiency by setting an appropriate value for h.
Considering the requirements for the number of visible satellites in GNSS positioning:

• At least (m + 3) satellites are required to complete the positioning solution. Defining the basic
lower limit of the trimmed parameter is the maximum of (n−m− 3) and n/2;

• In general, the PDOP decreases as the number of visible satellites increases. The accuracy
deteriorates, which affects the effectiveness of the corresponding residuals;

• The value of the trimmed parameter should be as large as possible to avoid too many subsets to
be calculated; and

• All possible multiple outlier modes need to be within the effective robust range to ensure the
robustness of the estimation, which defines the upper limit of the trimmed parameter according
to the integrity requirements.

4.2.2. Equivalent Weight Function of the M Estimation

The M estimation is based on the minimization of a score function of residuals that aim at a result
not influenced by outliers. There are more than 10 kinds of score function and the following four
representative functions (Cauchy, Huber, Tukey and IGG III) were selected for comparison, as shown
in Table 1.

Table 1. Four representative score functions.

Scheme Function Parameter

Cauchy pi =
1

1+
(
|vi |

k

)2 k = 2.3849

Huber pi =

1, |vi| < k
kσ
|vi |

, |vi| ≥ k
k = 1.3450

Tukey pi =


(
1−

(
vi
k

)2
)2

, |vi| < k

0, |vi| ≥ k
k = 4.6851

IGG III pi =


1, |vi| < k0
k0
|vi |
·

( k1−|vi |

k1−k0

)2
, k0 ≤ |vi| < k1

0, |vi| ≥ k1

k0 = 1.0 ∼ 2.0
k1 = 2.5 ∼ 3.5

A monotone-based M estimator is then applied, which is not as aggressive as the previous one,
to neglect some observations but not decrease the efficiency. Therefore, the M estimate after the initial
LTS almost always uses the Huber score function. Otherwise, when using a hard-redescending function,
such as the Tukey or the IGG III, concatenate an aggressive initial estimate with an also-aggressive
posterior one. The Huber function was found to be the best choice of the above four and was adopted
in this study, as shown in Figure 4.
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4.3. Fast Subsets Selection Based on the Characteristic Slope

The LTS estimation requires more operations for sorting the squared residuals than MHSS,
which means that LTS estimation creates a larger computational burden for the receiver especially for
multiple GNSS users.

When the number of visible satellites reaches a certain value, the improvement of the PDOP
by adding additional satellites gradually decreases but the growth of the number of subsets to be
calculated gradually increases. A fast subset selection method was designed to determine the satellite
with the least contribution to the PDOP in the current set based on the characteristic slope. These
satellites are eliminated until the termination condition is reached.

The observation matrix is denoted by Hn =
[

hT
1 · · · hT

n

]T
and hi, i = 1, . . . , n is the row vector

corresponding to each satellite. After removing the kth one of all satellites, the observation matrix is

Hk
n−1 =

[
hT

1 · · · hT
k−1 hT

k+1 · · · hT
n

]T
and the relationship between Hn and Hk

n−1 is:

HT
nHn = HkT

n−1Hk
n−1 + hT

k hk. (22)

Let Gn = (HT
nHn)

−1
; the PDOP could be calculated as:

PDOP =

√√√ 3∑
i=1

Gn(i, i) (23)

and let Gn−1 = (HkT
n−1Hk

n−1)
−1

. The Sherman–Morrison formula provides a numerical relationship
between Gk

n−1 and Gn:

Gk
n−1 = (HT

nHn − hT
k hk)

−1
= Gn +

GnhT
k hkGn

1− hkGnhT
k

. (24)

Let Kk = (1 − hkGnhT
k ) and Pk = GnhT

k hkGn/Kk. The relationship between PDOPn and
PDOPn−1 is:

PDOPk2
n−1 = PDOP2

n +
3∑

i=1

Pk(i, i). (25)

The contribution of the kth satellite to the PDOP is then:

√
PDOPk2

n−1 − PDOP2
n =

√√√ 3∑
i=1

Pk(i, i) =

√√√√√√√m+3∑
i=1

(An(k, i))2

Sn(k, k)
= Slopek. (26)
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Following Kaplan, the characteristic slope [32] is defined as:

Slopek =

√√√√√√√ 3∑
i=1

(An(k, i))2

Sn(k, k)
(27)

The characteristic slope is an indicator used to measure the degree of leverage in RB RAIM.
Equation (27) shows that it also represents the degree of contribution of each satellite to the PDOP.
The matrices A and S here are calculated by the observation matrix H. Although there is an error
between the matrix H used here and the real value, the position error of the receiver is negligible here
because the distance between the receiver and the satellite is usually tens of thousands of kilometers.
In this way, we remove the satellite with the lowest characteristic slope from the set that contributes the
least to the PDOP but can effectively reduce the number of subsets to be estimated in the LTS estimator.

The main advantage is that we do not need to calculate the PDOP of all (n−1) satellites combinations
to identify the satellite that has the least impact on the PDOP, which avoids a large number of repeated
complex matrix operations. Only the elements in matrix A and S then need to be used for numerical
calculation, which considerably reduces the computation. The flow chart of the subset selection
method based on the characteristic slope is shown in Figure 5. Set the termination threshold of the
selection iteration, including the threshold λ of the change rate of the PDOP, the threshold PDOPT of
the position dilution of precision, the protection threshold nsin of the number of remaining satellites
of a single constellation and the protection threshold nmul of the number of remaining satellites of
all constellations.
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Figure 5. Flow chart of subset selection method based on the characteristic slope.

The termination criteria for subset selection include the following aspects:

• If PDOPS > PDOPT, the process is terminated and the result is output;
• If ∆PDOP > λ, move the satellite back to S and take the set S as the selected subset, terminate the

process and output the result;
• If the number of remaining satellites of the constellation meets the protection threshold nsin, mark

the constellation as a protected one; if numcon_pro = numcon, take the current set as the selected
subset, terminate the process and output the result;

• If numsat ≤ nmul, terminate the process and take the current set as the selected subset.
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After the proposed fast subset selection, the number of subsets to be calculated by the LTS
estimator is reduced by:

∆numsubset =
Ch

n −Ch
nsel

Ch
n

=
n!(nsel − h)!− nsel!(n− h)!

n!(nsel − h)!
. (28)

With the decrease in h, the effect of the proposed fast subset selection on the reduction of
computation is more obvious. However, the number of satellites in each subset decreases accordingly
so the termination threshold of the subset selection can be appropriately relaxed.

5. Algorithm Verification and Simulation Results

5.1. Simulation Conditions

To compare the RB RAIM detectors, 24 h of GPS and BDS data were simulated. The orbit data
of the 210th day of 2020 were download from CELESTRACK with a 10◦ masking angle and the
observation update rate was 10 Hz. The simulated receiver was set on the roof of the Aerospace
Information Research Institute, Chinese Academy of Sciences (Lat. 40◦4′12′′, Lon. 116◦16′12′′, height
100 m). As simulation hardware an Intel Core i5-10210U CPU @2.60 GHz with 16 GB RAM was used
and all simulations were performed within MATLAB 2019a. The number of visible satellites during
simulation is displayed in Figure 6.
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The pseudo-range noises follow the same uncorrelated Gaussian distribution and the ith element
of diagonal covariance matrices σ2

i,i satisfies:

σ2
i,i = σ2

URA,i + σ2
tropo,i + σ2

user,i (29)

where σ2
URA,i is the user range accuracy (URA) of the ith satellite, which was set to 0.75 m [2].

The tropospheric delay model and the user error model are shown in Table 2.
Four RB RAIM detectors were compared:

• Detector 1: Baseline RB RAIM detector based on the LS estimator.
• Detector 2: RB RAIM detector based on the M estimator with IGG III function with the constant

values k0 = 1.5 and k1 = 3.0.
• Detector 3: RB RAIM detector based on the MM estimator; the trimmed parameter was h = n− 4.
• Detector 4: RB RAIM detector proposed in this paper; the trimmed parameter was h = n− 4 and

the termination criteria were nsin = 6, nmul = 12 and λ = 0.03.
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Table 2. Error model.

Error Function Parameter

Tropospheric
delay σtropo,i = 0.12 · 1.001/

√
0.002001 + sin (θi)

2 θi is the elevation angle

User error σuser,i =
√
σ2

MP + σ2
noise

√
f 4
1 + f 4

2 /( f 2
1 − f 2

2 )
For GPS:

fL1 = 1575.42 MHz, fL2 = 1227.60 MHz
For BDS:

fB1 = 1561.098 MHz, fB2 = 1207.14 MHz
Multiple path σMP = 0.13 + 0.53 exp(−18θi/π)

Noise σnoise = 0.15 + 0.43 exp(−180θi/6.9/π)

The PDOP value and the reduction of subsets to be calculated during simulation by the fast subset
selection method based on the characteristic slope are shown in Figure 7. The mean value of the PDOP
for the all-in-view and selected were 1.1928 and 1.3617, respectively, which increased by 14.16% after
subset selection but this was still within a relatively good range. However, at this time, the number of
corresponding subsets to be calculated decreased over 90%, which considerably reduced the calculation
amount for the LTS estimator.
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The simulation consisted of the following three cases:
Case 1: Each combination of two outliers was considered with a fixed bias in the first epoch

of simulation.
Case 2: A comparison of the detectors for the double outliers combination with the largest

characteristic slope in each sampling epoch with a fixed β = 1.
Assume that the ith and jth satellite are two failures and b j = βbi according to the definition of the

characteristic slope:

Slopei j =

√√√√(
A1i + βA1 j

)2
+

(
A2i + βA2 j

)2
+

(
A3i + βA3 j

)
Sii + (1 + β)Si j + βS j j

2

. (30)

Case 3: A comparison of the detectors for random one, two, three and four outliers with a random
bias in each epoch separately.

5.2. Comparison of Double Outlier Combinations with a Fixed Bias

The status of the visible satellites at the beginning of the simulation is shown in Figure 8.
BDS satellites are numbered from PRN 1 to 30 and GPS satellites are numbered from PRN 41 to 71.
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At the initial epoch of simulation, there were 19 visible satellites and 171 double outlier
combinations were obtained. Bias was fixed to 10 m and the positioning errors of the four RB
RAIM detectors after outlier elimination are shown in Figure 9.
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Figure 9. Positioning errors of four detectors for all combinations in Case 1: (a) detector 1, (b) detector
2, (c) detector 3 and (d) detector 4.

Compared with detector 1, detector 2 produced a better detection effect for individual but not all
combinations of double outliers as shown in Figure 9a,b. This showed that the M estimator could be
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robust but without a high breakdown point. Figure 9c,d showed that there was no obvious difference
between the positioning errors of detector 3 and detector 4. The numerical results extracted from the
detectors (Table 3) included the RMSE of the positioning error, maximum and 95% confidence level
errors and the simulation time.

Table 3. The numerical results of the four detectors in Case 1.

RMSE (m) 95% (m) Max (m) Time (s)

Detector 1 3.6112 5.8041 10.5030 10.7667
Detector 2 3.2587 5.1707 7.5235 11.5730
Detector 3 1.8418 2.6215 3.6394 173.8353
Detector 4 1.8418 2.6215 3.6394 33.5331

The simulation time of detector 4 reduced by 80.71% compared with detector 3 and there was
no significant difference in the accuracy of the final parameter estimation with obvious advantages
compared with detectors 1 and 2.

5.3. Double Outlier Mode with the Largest Characteristic Slope

For Case 2, a fixed bias of 10 m was added into the double outliers combination with the largest
characteristic slope with β = 1 at each epoch during simulation. The positioning errors (ENU) of the
four detectors are shown in Figure 10.
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Figure 10. Positioning errors of four detectors for the worst combination in Case 2: (a) detector 1,
(b) detector 2, (c) detector 3 and (d) detector 4.

In Figure 10, the M estimator in detector 2 did not produce an effective robust effect compared
with the MM estimator in detectors 3 and 4. The accuracy of detector 4 was slightly poorer than that of
detector 3 but the positioning result obtained was robust. The distribution statistics of 3D positioning
errors of the four detectors are shown in Figure 11. The numerical results extracted from the detectors
in Case 2 are shown in Table 4.
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Figure 11. 3D positioning errors of the four detectors for the worst combination in Case 2: (a) detector
1, (b) detector 2, (c) detector 3 and (d) detector 4.

Table 4. The numerical results of four detectors in Case 2.

RMSE (m) 95% (m) Max (m) Time (s)

Detector 1 4.8796 8.8160 13.8602 231.6745
Detector 2 3.1876 7.7496 16.1177 298.7104
Detector 3 1.7912 3.4720 8.5700 4711.9302
Detector 4 1.8132 3.4850 11.2629 832.5141

The simulation time of detector 4 was reduced by 82.33% compared with detector 3 by using the
proposed fast subset selection method. Compared with the simulation time in Table 2, the proposed
fast subset selection based on the characteristic slope was effective. Considering the considerably
improved efficiency of estimation, sacrificing some robustness within a reasonable limit was acceptable.

5.4. Detection and Exclusion for a Multiple Outlier Mode

Outliers were inserted into the pseudo-ranges and the success rates of the outlier test and 3D
positioning errors after outlier exclusion were recorded. Based on the comparison of the pseudo-ranges
excluded and the pseudo-ranges that contained simulated outliers, the estimated parameters were
categorized as shown in Table 1. The scenarios were:

(a) None of the outliers were excluded and some normal pseudo-ranges were excluded;
(b) Some of the outliers were excluded;
(c) Some of the outliers were excluded and some normal pseudo-ranges were also excluded;
(d) All of the outliers were excluded and some normal pseudo-ranges were also excluded; and
(e) All of the outliers were excluded and none of the normal pseudo-ranges were excluded.

For Case 3, a bias of 10 m was randomly added into one to four outlier combinations at each
epoch during simulation. The detection results of the four algorithms are shown in Figure 12 and the
statistical results are provided in Table 5.
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Figure 12. Identification result of four detectors in Case 3: (a) one, (b) two, (c) three and (d) four outliers.

The root mean squared error (RMSE) of the four algorithms are shown in Figure 13. The results of
detector 4 were similar to those of detector 3 especially when the number of outliers was less than four.

As the number of outliers increased, the amounts of categories (b) and (c) increased while
categories (d) and (e) of the correct exclusion decreased for all detectors and especially for detector 1.
For detector 2, the probability of category (d) decreased rapidly with the increase in outliers so that
many normal observations were excluded although outliers were excluded. However, for detectors 3
and 4, the probability of categories (d) and (e) were still over 90% although the probability of category
(e) also decreased with the increase in outliers.

Category (d) could be also an acceptable result when there were enough available pseudo-ranges
compared with the misidentification of any outlier.
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Table 5. The statistical results of four detectors in Case 3.

One Outlier Two Outliers

(a) (b) + (c) (d) + (e) (e) (a) (b) + (c) (d) + (e) (e)
Detector 1 4% 0% 96% 96% 0% 7% 93% 91%
Detector 2 1% 0% 99% 99% 0% 2% 98% 98%
Detector 3 0% 0% 100% 99% 0% 1% 99% 99%
Detector 4 0% 0% 100% 99% 0% 1% 99% 98%

Three Outliers Four Outliers

(a) (b) + (c) (d) + (e) (e) (a) (b) + (c) (d) + (e) (e)
Detector 1 0% 14% 86% 71% 0% 29% 71% 43%
Detector 2 0% 6% 94% 91% 0% 13% 87% 69%
Detector 3 0% 2% 98% 97% 0% 4% 96% 92%
Detector 4 0% 2% 98% 95% 0% 4% 96% 91%

6. Discussion and Conclusions

In this paper we first analyzed the residuals that could not be used as an effective basis for outlier
identification when there were multiple simultaneous outliers, which is called the camouflage effect of
residuals. In this case, replacing the LS estimator by the M estimator could not effectively improve
the identification rate of multiple outliers as the robustness of the M estimation is built on the basis
of a relatively reliable iterative initial value. We proposed an RB RAIM algorithm based on the MM
estimator, which contained an LTS estimator with a high breakdown point and an M estimator with
a Huber function with high efficiency. We designed a fast subset selection method based on the
characteristic slope to improve the practicability of the algorithm as the computation amount of the
LTS estimator increased sharply with the increase in the number of visible satellites. The simulated
experimental results demonstrated that the proposed RB RAIM detector based on the MM estimator
maintained a more robust performance than the LS estimator and the M estimator with an IGG III
function especially with the increase of the number of outliers. The fast subset selection method based
on the characteristic slope reduced the calculation time by more than 80%, which indicated the practical
application value of the algorithm.

Notably, categories (d) and (e) could be regarded as a correct exclusion; however, a high amount
of category (d) was generally undesirable as it could lead to the positioning solution being unavailable
if the number of satellites was small. The exclusion of normal observations was less than desirable
because all normal observations would not be used. Although the probabilities of categories (d)
and (e) were still more than 90%, with the increase of outliers, the actual detection effect of detector
3 and 4 gradually deteriorated. However, this became less of a concern as the number of visible
satellites increased.

Future work can focus on further reducing the computational burden. The subset selection process
is not necessary in each epoch so we can design a judgment threshold to determine the validity period
of each selected subset. In addition, the inertial information of the receiver can be used to provide
support to determine the reliable initial iteration value for a robust estimation [33]. However, this may
cause a new potential integrity risk, which requires further research and experimentation.
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