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Abstract

Astrocytes are a heterogeneous population of glial cells with multifaceted roles in the central nervous system. Recently, the
new method for the clonal analysis Star Track evidenced the link between astrocyte heterogeneity and lineage. Here, we
tested the morphological response to mechanical injury of clonally related astrocytes using the Star Track approach, which
labels each cell lineage with a specific code of colors. Histological and immunohistochemical analyses at 7 days post injury
revealed a variety of morphological changes that were different among distinct clones. In many cases, cells of the same
clone responded equally to the injury, suggesting the dependence on their genetic codification (intrinsic response).
However, in other cases cells of the same clone responded differently to the injury, indicating their response to extrinsic
factors. Thus, whereas some clones exhibited a strong morphological alteration or a high proliferative response to the
injury, other clones located at similar distances to the lesion were apparently unresponsive. Concurrence of different clonal
responses to the injury reveals the importance of the development determining the astrocyte features in response to brain
injuries. These features should be considered to develop therapies that affect glial function.
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Introduction

Damage to the central nervous system (CNS) is classified in two

general groups depending on the type of injury. Injuries involving

rupture of the brain blood barrier (BBB) along with bleeding and

edema are called anisomorphic or ‘‘open’’ lesions. These injuries

produce structural damage of the CNS and group all traumatic

injuries and strokes. On the other hand, lesions that do not disrupt

the BBB, and usually do not involve bleeding, are called

isomorphic or ‘‘closed’’ injuries [1]. Examples of these injuries

are the multiple sclerosis or the toxic damage. Both types of

injuries trigger a cascade of cellular and molecular events trying to

restore the CNS homeostasis to minimize the tissue damage. In

traumatic injuries the damaged tissue is rapidly enclosed by the

generation of a glial scar, a barrier mainly constituted by reactive

astrocytes, microglia, fibroblasts, pericytes, endothelial and men-

ingeal cells [2–4]. Among these cells, astrocytes react by exhibiting

hypertrophy of their cellular processes and hyperplasia (prolifer-

ation), a process referred as reactive astrogliosis [5–8]. Reactive

astrocytes increase their cytoplasmic content overexpressing glial

fibrillary acidic protein (GFAP), vimentin and S100b intermediate

filaments besides inhibitory molecules such as chondroitin sulfate

proteoglycans [9–12]. Reactive astrocytes undergo alterations in

phenotype and gene expression depending on parameters such as

distance to the injury, indicating a high degree of heterogeneity

[13,14].

The heterogeneity in astrocytes is not exclusive of reactive cells.

The concept of astrocyte heterogeneity emerged in the late

nineteenth century based on morphological differences [15].

During the last two decades, the development of new immuno-

cytochemical and molecular techniques allowed identifying

differences between astrocytes from the same or different CNS

regions, which revealed the importance of the heterogeneity in

astrocytes as an intrinsic feature at the morphological, molecular

and functional levels [16–19]. This heterogeneity is also reported

in reactive astrocytes located close to or surrounding an injury in

the CNS [20–22]. Although knowledge about the biochemical

profiles of reactive astrocytes is increasing, the origin of these cell

populations is still under discussion. Some authors reported a

limited cells division confined to the penumbra area [23], while

others suggested that they arise from preexisting astrocytes [24].

Recently, the development of a novel tool for the analysis of

astrocyte clones, the Star Track method, evidenced the relationship

between heterogeneity and lineage in astrocytes [25], although it is

unknown whether the cell lineage also determines the heteroge-

neity in reactive astrocytes. To address this issue, in this work we

used the Star Track method to study the relationship between the

phenotype and heterogeneity of reactive astrocytes with their

ontogenetic origin [25]. Additionally, we performed an analysis of

cell division to study the proliferative response of astrocyte clones

to the injury.

Materials and Methods

Animals
C57 mice were obtained from the Cajal Institute animal facility.

Animals were housed in standard cages, maintained under to 12 h

controlled light-dark cycles with food and water available
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ad libitum. All procedures were in compliance with the guidelines

for animal care of the European Union (2010/63/EU) and

approved by the Bioethical Committee at the Spanish National

Research Council (CSIC).

In Utero Electroporation
Pregnant mice at embryonic day 14 (E14) were deeply

anesthetized by isofluorane inhalation (IsovaH vet, Centauro,

2 ml/L) and maintained at 37uC. Uterine horns were exposed and

the location of the embryos was visualized by trans-illumination

through a optical fiber. Plasmid mixture (2 ml, 2–5 mg DNA/ml

containing 0.1% fast green) was injected into lateral ventricles (LV)

using a glass micropipette (Fig. 1A). Then, each embryo was hold

between tweezer-type electrodes (Fig. 1B) to deliver one or two

trains of 5 square pulses (35 V; 50 ms followed by 950 ms

intervals). Uterine horns were placed back into abdominal cavity.

Abdominal incision and skin were sutured with absorbable

polyglicolyc acid (Surgicryl, Hünningen, BE) and silk (3/0

Lorca-Marin, Murcia, ES) sutures respectively. Skin was cleaned

with povidone-iodine and pregnant mice received a subcutaneous

injection of both 5 mg/kg of the antibiotic enrofloxacine (Baytril;

Bayer, Kiel, DE) and 300 mg/kg of the anti-inflammatory/

analgesic meloxicam (Metacam; Boehringer Ingelheim). Injected

embryos were allowed to develop normally and were analyzed at

selected adult ages.

Fine Needle Cortical Injuries
Adult mice (2–3 months) were deeply anesthetized with

equithesin (30 ml/kg) and their heads were placed in a stereotaxic

frame. A skin midline incision was made on the skull, and

Figure 1. Procedure for in utero Star Track electroporations at E14 and cortical lesion in adult mice. A–B. A pregnant mouse was
anesthetized at E14, and the uterus was exposed. A. The plasmid mix solution is in utero injected into the lateral ventricles of the cerebral cortex of
each embryo. B. in utero electroporation. C. Brain injuries were practiced at 0 and 22 mm AP/3.5 mm ML stereotactic brain coordinates from bregma
in 2–3 months adult mice. D. Lesions were performed after electroporation in both hemispheres using a stereotactic frame by inserting a microliter
syringe attached to a 22-gauge needle and mice were allowed to survive for one week after surgery. E. Scheme of Star Track plasmid mixture injected
at embryonic stages.
doi:10.1371/journal.pone.0074039.g001
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lidocaine (Xilonibsa Aerosol, Barcelona, ES) was applied locally.

Four skull holes were drilled bilaterally at the following stereotactic

coordinates from bregma: 0 and 22 mm AP/3.5 mm ML

(Fig. 1C, D). Lesions, consisting in cortical holes, were practiced

by the insertion of a 22-gauge needle syringe (Hamilton 7101N)

through the cranial holes at 2 mm deep for 2 min. (brain-injured

mice; N = 20). Sham animals underwent similar procedure except

the cortical injuries (sham-injured mice; N = 10). Afterwards, skin

was sutured and postoperative cares included injections of

enrofloxacine (5 mg/kg, Bayer, Kiel, DE) and buprenorphine

(8 mg/kg, Buprex, Merck & Co.) for 3 days.

Star Track Plasmid Vectors
Star Track plasmids (Fig. 1E) were generated as previously

described [25]. Briefly, the promoter chosen to direct the

expression of reporters corresponded to a 2.2 kb fragment that

spans base pairs 22163 to +47 relative to the transcriptional start

site of the human Gfap gene, with the normal protein-initiating

ATG codon converted to TTG. This promoter was inserted in a

PB-UbC-EGFP vector (Piggybac transposon plasmid encoding

EGFP under the Ubiquitin C human gene promoter regulation;

kindly provided by Prof. Bradley). The resulting plasmid, PB-

GFAP-EGFP was subsequently used to replace the EGFP between

BamHI and EcoRI with mTSapphire, mCerulean, yellow

fluorescent protein (YFP), monomeric Kusabira Orange (mKO),

and mCherry. To generate the nuclear forms of these markers, the

human H2B histone (GenBank ID X00088.1) was amplified from

genomic human DNA and upstream fused to these reporters. All

plasmids were sequenced to ensure the accuracy of cloning.

Histology and Immunohistochemistry
Seven days after lesions, animals were anesthetized with an

overdose of equithesin and transcardially perfused with a 0.1%

heparinized saline solution and then with 1 ml/g of ice-cold 4%

paraformaldehyde. Brains were removed and sectioned in the

coronal plane at 50 mm using a vibratome. Selected sections were

immunolabeled with the following primary antibodies: mouse IgG

anti-GFAP (1:1000; Millipore), mouse IgG anti-bIII-Tubulin

(1:1000; Millipore); rabbit IgG anti-PDGFRalpha (1:300; Santa

Cruz Biotechnology), anti-phospho-histone H3 (pH 3) (1:300;

Upstate) and anti-Ki67 (1:500; RabMAbs), all of them diluted in

PBST 0.1 supplemented with 1% normal goat serum (NGS,

Millipore). Unspecific protein binding was blocked by incubating

the sections with PBS-0.1% Triton (PBST) +10% NGS for 1 h at

RT and then secondary antibodies, goat anti-mouse IgG-Biotin

conjugated (Molecular Probes), were incubated 2 h at RT.

Figure 2. Cortical clonal dispersion in control adult mice after electroporations at E14. A. Representative scheme of the most anterior
cortical lesion. B. Low magnification view of the clonal groups located at the level of the rostral coordinate chosen for the injury. The majority of
clonal groups exhibit protoplasmic morphologies throughout the cortical layers. Note some clonal cells attached to the lateral ventricle with their
radial processes extending from the ventricle across the corpus callosum. C. Detail of inset in B. D. Representative scheme of the posterior stereotaxic
coordinate chosen for the cortical lesion. E. Clonal dispersion of cells with some clones attached to the pial surface with a fibroblast-morphology F.
Detail of the inset in E. Scale bars: B,E 500 mM; C,F 200 mm.
doi:10.1371/journal.pone.0074039.g002
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Figure 3. Representative astrocyte morphologies in adult cortical areas after in utero StarTrack electroporation at E14. A.
C. Immature astrocytes/progenitors,

classified as a subtype of protoplasmic astrocytes. D–E. Pial astrocytes that extend their somas along the pial surface and emit brush cellular
processes into the brain parenchyma. F. Radial glia in the ventricular/subventricular zone. G–H. Mesh-forming cells resembling NG2-glia. I.
Immunohistochemistry against PDGFRa typically expressed by NG2 cells. J–K. Astrocytes radially arranged around a single blood vessel. Scale bar:
50 mm.
doi:10.1371/journal.pone.0074039.g003
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 Immunohistochemistry against GFAP in brain sections labeled by Star Track.                            B.Protoplasmic astrocytes.   



Labeling was visualized by incubating the sections 2 h at RT with

Alexa-633 conjugated streptavidin (Molecular Probes) diluted

1:1000 in PBST.

Fluorescent labeling was visualized using a Leica TCS-SP5

confocal. The excitation and absorption conditions for each

fluorophore were (in nanometers): mT-Sapphire (Ex: 405; Ab:

525–553), mCerulean (Ex: 458; Ab: 464–481), EGFP (Ex: 488;

Ab: 496–526), YFP (Ex: 514; Ab: 520–543), mKO (Ex: 514; Ab:

550–600), mCherry (Ex: 561; Ab: 601–612), and Alexa 633 (Ex:

633; Ab: 649–760).

Cumulative Proliferation Assays
Proliferation during the 7 days post lesion was evidenced

following the incorporation of the thymidine analog 5-bromo-2-

deoxyuridine (BrdU) occurring during S-phase. Since usual BrdU

protocols remove most of the fluorescence derived from fluores-

cent proteins, we performed an alternative approach. First, we

employed selected electroporated animals with plasmid mixtures

lacking the mKO and mCherry reporters. Starting from the next

day after surgery, mice were daily given with i.p. injections of

BrdU (50 mg/kg animal weight; Sigma) diluted in Tris-HCl

Figure 4. Reactive astrocyte clones in the lesion area and within the needle track. A. Nissl staining showing the damage after the cortical
injury. Note the increment in cell density and cellular debris delimiting the needle track. B. Representative section of the astrocyte clones disposition
around the injury. A bunch of astrocyte morphologies is observed around the injury with clones of reactive astrocytes close to the injury. C.
Magnification of the box highlighted in B. D. Groups of hypertrofied astrocytes around the wounded area. E–F. Hypertrophied clones emitting their
cell processes to the injury edge, full of cellular debri. G. Representative image of a typical protoplasmic clone located in intact cortical brain areas.
These astrocytes are characterized by their round shapes. Small insets show merged and individual channels of small clonal groups containing cells
that share the same fluorescent marks after electroporation with the Star Track mixture. H. Representative image of the fibrous hypertrophied
astrocytes typical in reactive astrocytes after injury. Note the change from round shapes (G) by one more enlarged with thicker cellular processes (H).
Scale bars: A, 1 mm; a, 100 mm; B, D, E 500 mm; C, F, G, H 100 mm.
doi:10.1371/journal.pone.0074039.g004
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(pH 7.6). Seven days after the lesion, animals were processed for

anti-GFP immunohistochemistry as is described above (GFP

antibody dilution 1:1000; Molecular Probes) and visualized using

an anti-rabbit IgG Alexa 633 conjugated antibody. This secondary

antibody recognized at the same time EGFP, EYFP, mT-Sapphire

and mCerulean reporters due to the structural similarities between

these molecules. Images were acquired using confocal stacks

showing the colocalization of the antibody staining and Star Track

labeling. These same sections were processed for BrdU immuno-

histochemistry as follows: sections were incubated for 30 minutes

at 37uC in HCl 2 N solution and finally rinsed in 0.1 M boric acid

for 10 minutes at room temperature. BrdU immunostaining

procedure was performed by incubation with BrdU antibody

(1:1000; Hybridoma Bank) followed by anti-mouse IgG Alexa 568

as secondary antibody. Since HCl does not affect GFP immuno-

histochemistry labeling, we used this labeling as bridge to compare

BrdU and Star Track labeling.

Nissl Staining
Selected sections from injured mice were processed for a Nissl

staining. Coronal sections (20 mm) were stained with acid thionin

(pH 4.5) for 45 seconds. Then, slices were sequentially rinsed

during 1 minute on 70%, 80%, 96%, 100% ethanol and xylene,

and mounted using Depex mounting media.

Circle and Solidity Measures
Measures of circle and solidity were taken using the NIH-

ImageJ software based on the cell perimeter (detailed information

about the selected parameters studied available on the software

website) of both protoplasmic and fibrous astrocytes (N = 15

astrocytes from 3 different animals, 5 per animal). These both

parameters represented how cells are round. Circularity represents

more circular cells when the value approaches 1: Circularity = 4p
(area/perimeter2). Solidity is defined as the ratio of the convex hull

area over the area: Solidity = area/convex area.

Statistical differences in circularity and solidity between

protoplasmic and fibrous astrocytes were analyzed applying a t-

student test using the Statistica7.0 software.

Results

Establishment of the Electroporation Areas before
Injuries

Electroporations of the StarTrack mixture at E14 generated an

inheritable mark in astrocyte lineages, visible in the most dorsal

part of the cerebral cortex at adult stages. We selected two specific

anterior-posterior stereotaxic coordinates that showed a maximum

number of labeled astrocytes to get an optimal analysis of the

lesions (Fig. 2A, D). Those astrocytes with the same code of colors

were assigned to the same lineage defining astrocyte clones. The

electroporations showed the same pattern of sparse clonal labeling

distributed throughout the cortical thickness at both anterior

(Fig. 2A–C) and posterior (Fig. 2D–F) locations. In both

coordinates astrocyte clones were attached to the wall of lateral

ventricles (LV), which in some cases extended radial processes

from the ventricle wall to the corpus callosum (Fig. 2B, E). A

characteristic feature, highlighted by the Star Track method, was

the different morphologies exhibited by the astrocyte clones in all

animals. Thus, some astrocytes were protoplasmic and turned into

the cortex perpendicular to the ventricular surface (Fig. 2B, C)

while others were attached to the pial surface with a fibroblast-

morphology (Fig. 2E–F) as we previously described [25]. Since the

pattern of clonal labeling was reproducible among animals, we

established those anterior-posterior stereotaxic coordinates to

perform anterior and posterior cortical injuries.

Clonal Groups Revealed Different Astrocytes
Morphologies in Intact Brains

The Stark Track method allowed visualizing astrocytes hetero-

geneity in clones based on their morphology. This method has an

important advantage compared with a classical immunostaining,

which is to visualize the whole cell somata, including their terminal

processes, compared with the 13% of cell volume labeled after a

GFAP immunostaining (Fig. 3A, B) [26]. Thus, Star Track

provided an optimal resolution to identify the following type of

astrocytes based on their morphology: 1) A type occupying most of

the cortical extension, usually known as protoplasmic astrocytes, which

showed spongiform shapes mostly clustered in non-overlapping

processes domains (Fig. 3A, B). It was remarkable the differences

in the cell body volume labeled with the Star Track method

(Fig. 3A) and a classical GFAP immunohistochemistry (Fig. 3B); 2)

a subtype of protoplasmic astrocytes resembling immature astrocytes/

progenitors, which had smaller somas and shorter/thick cellular

Figure 5. Quantitative analysis of morphological astrocyte features. A. The graphic represents the measures of two morphological
parameters analyzed in both protoplasmic and fibrous astrocytes: circle and solidity. Both parameters are significantly lower in fibrous than in
protoplasmic astrocytes indicating the lost of rounded morphologies. B. Estimation of astrocyte area in the different astrocyte types. None
differences were evident between fibrous reactive and protoplasmic astrocytes (Graphics represent mean 6 SD. Significant differences, *** are
p,0.01).
doi:10.1371/journal.pone.0074039.g005
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processes poorly ramified (Fig. 3C); 3) pial astrocytes [25], being part

of the pial layer in the brain surface, which spread cellular

processes into the brain parenchyma (Fig. 3D, E); 4) radial glia

whose cell bodies were located in the ventricular/subventricular

zone and extended thin radial processes along the corpus callosum

(Fig. 3F); 5) mesh-forming cells, with small, thin and poorly branched

cellular processes that spread out from a small cell soma,

corresponding to NG2-glia (Fig. 3G–I). The NG2 phenotype of

these cells was demonstrated by the expression of the PDGFRal-

pha (Fig. 3H,I); and 6) astrocytes radially arranged in a single large

blood vessel (Fig. 3J, K; Movie S1).

Hypertrophy of Astrocyte Clones in Response to the
Injury

The model of fine-needle cortical injury chosen in this work

affected both grey and white matter of the brain parenchyma that

gave rise to a large accumulation of cellular debris and an

increment in the cell density, produced by an increase in cellular

migration to the injured area (Fig. 4A, a). A barrier delimiting the

Figure 6. Heterogeneity in astrocyte clones depending on their position with respect to the injury. A. Clones located close to the injury,
adopted the classic hypertrophied morphology with enlarged cytoplasm and thick cellular processes oriented to the injury border B–C. Reactive
clones sited into the injury show smaller sizes and acquire a mesh-like morphology. GFAP immunohistochemistry is represented in magenta. D–E.
Reactive clones show cytoplasmic protrusions in the terminal cell processes, with a constant diameter size of 5 mm. F. Representative clone shows a
change in cell morphology from protoplasmic to a fibrous/hypertrophied as their cells approach to the needle track. G. Low magnification view of
different reactive clonal groups around the lesion area. It is remarkable the different astrocyte responses in relation with the distance to the injury.
Some astrocyte clones are entirely protoplasmic (arrowheads) while others are highly hypertrophied. The magenta represents an
immunohistochemistry against B-III-Tubulin neuronal marker. H. Clonal group of astrocytes changing their morphologies as they approach to the
injury in a section processed for GFAP immunohistochemistry (magenta). Scale bars: A 100 mm; B, C, D, E 50 mm; F 100 mm; G 500 mm;
doi:10.1371/journal.pone.0074039.g006
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damaged and undamaged tissue was evident in the scared tissue

(Fig. 4a). Although many type of cells react to a brain injury, this

work was focused in the analysis of astrocytes labeled to identify

clones. Gliosis of astrocytes clones was analyzed both in the

proximity of this barrier and in the core of the injury (Fig. 4B–F).

Those clones that were closer to the injury were strongly reactive

showing hypertrophied cell bodies, evidenced by a strong labeling

of their thick cellular processes oriented to the injury. These cells

formed clones of fibrous reactive astrocytes (Fig. 4B–F, H).

Remarkably, this hypertrophy was strongly asymmetric, with long

and thick processes pointing out to the injury core and few and

short processes in the opposite side (Fig. 4C, F, H). In an overview,

the wounded region resembled an attractor for cells and processes

(Fig. 4D). All fibrous-reactive clones were characterized for

changing their typical round shapes by one more enlarged with

thicker cellular processes (Fig. 4G–H), as shown after the analysis

of the circularity and solidity morphological parameters (Fig. 5A).

This change in morphology did not affect to the area of cell bodies

(Fig. 5B).

Figure 7. Cell proliferation detected by iMmunohistochemistry against pH 3 and Ki67 proliferative markers at seven days post
injury. A. Low magnification of the injured hemisphere showing the merge of the Star Track staining with the labeling against the proliferative
marker pH 3. B. pH 3 labeling of the image in (A). C–F. High magnifications of the regions highlighted in A–B. C–E PH 3 labeling, D–F pH 3 channel
merged with the Star Track labeling. G, I, K, M. Labeling of the Ki67 inmunohistochemistry. H, J, L, N. Merging of the Star Track and Ki67 labeling.
Blue circles indicate those cells labeled by the Star Track co-expressing the proliferation markers pH 3 and Ki67. Blue circles indicate those Star Track
labeled cells co-expressing proliferation markers. Scale: A–B 400 mm; C–N 100 mm.
doi:10.1371/journal.pone.0074039.g007
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Figure 8. Cumulative proliferation assay based on the BrdU incorporation during seven days after injury. A. Low magnification image
showing the Star Track clonal labeling. B. Same image showing immunohistochemistry against GFP (grey) and BrdU (red). C–F. High magnification of
areas highlighted in insets of A–B. G–L. Additional sections labeled with Star Track and GFP/BrdU immunohistochemistry. G–H. Images at low
magnification showing the Star Track labeling. I–L. High magnification images of regions highlighted in insets. For each image, cells that are part of
the same clone are encircled. Thick circles represent those cells that incorporated BrdU. Scale: A–B, G–H 400 mm; C–F, I–L 50 mm.
doi:10.1371/journal.pone.0074039.g008
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Heterogeneity in the Clonal Response to the Cortical
Lesion

Most astrocyte clones exhibited heterogeneous identities around

the lesion area. Thus, those clones located close to the injury

exhibited hypertrophic morphologies with enlarged cytoplasm and

thick cellular processes oriented to the injury border (Fig. 6A,

arrow). However, clones situated within the needle track were

smaller in size with short/thin cellular processes and acquired a

mesh-like structure (Fig. 6B, C). Unlike the protoplasmic

astrocytes, reactive clones showed cytoplasmic protrusions in the

terminal cell processes, with a constant diameter size of 5 mm

(Fig. 6D, E).

Since different type of astrocytes arise from specialized

progenitor cells [25], we expected that siblings astrocytes

responded equally to the brain damage. However, a concise

examination of the clones next to the injury revealed different

clonal responses. Thus, some reactive clones acquired hypertro-

phic morphologies in relation to distance to the injury (Fig. 6F–H,

arrowheads), while others did not modify their morphologies, even

at the same distance from the injury (Fig. 6G, arrowheads). Taken

together, our data suggests that astrocytes belonging to a same

clone were developmentally determined to respond differently to

an injury.

Clonal Proliferation in Response to the Injury
Open injuries correlated with a significant increase of the

cellular proliferation inside and surrounding the damaged area.

This proliferation characterizes the reactive astrocyte response [5–

8]. To elucidate the relationship between clonal organization and

proliferation, we performed immunohistochemistries for the

proliferation markers pH 3 and Ki67 at seven days post injury

(Fig. 7A–N). As expected, the presence of dividing cells was

critically related to the lesion (Fig. 7A–B). In the injured area, the

distribution of dividing cells was fairly homogeneous. However,

the number of dividing cells belonging to labeled astrocyte clones

was very low (Fig. 7C–N). This suggests that the proliferative peak

after 7 days post-injury was related to other cellular types located

within the injured area, while the proliferation of astrocytes was

earlier in the time. Another possibility is that the number of

proliferating cells in each instantaneous moment is too reduced to

detect clonal proliferation patterns. The expression of pH 3 was

only observed in one case, in two cells of the same clone (Fig. 7G–

H). Moreover, this proliferation was also very low in NG2 cells,

where we did not observe any labeled cell.

Since the proliferation snapshot at seven days post injury was

insufficient to discern clonal proliferation patterns, we labeled the

total number of dividing cells during this time-frame by a modified

BrdU assay. Similar to pH 3 and Ki67, BrdU revealed a

significant accumulation of dividing cells inside and surrounding

the lesion area (Fig. 8A–L). However, the number of dividing cells

labeled by this approach was much higher, and were distributed

both inside and surrounding the lesion. In those areas close to the

injury were observed a high proportion of Star Track labeled cells

containing this thymidine analog (Fig. 8C–E, K), in contrast to

those cells located far from the injury (Fig. 8F). BrdU assay showed

an apparent clonal response in terms of cell proliferation. As

evidenced in Fig. 8C–E, most of cells being part of some clones

(yellow, blue and pink clones) were de novo originated, in contrast

to other clones in which the majority of their cells were present

before the lesion (magenta and red clones). This response was also

elicited in NG2 clones, in which the proportion of dividing cells

per clone was even lower in some clones closer to the lesion, in

contrast to other clones with higher proliferation in distant regions

(Fig. 8I–J). In pial clones, the number of proliferating cells is very

low compared to their distance to the lesion (Fig. 8L).

The lack of BrdU in some clonal cells indicates that the

astrocyte proliferative response is mainly due to resident clones,

albeit the clonal and proliferation pattern also suggest a cellular

contribution from the subventricular zone. Moreover, the

proliferation rate rapidly decays with the distance, evidencing

the proliferation signals derived from the lesion acting at local

distances.

Discussion

This work addresses important aspects on the relationship

between astrocyte lineage and their response to injury. Our results

demonstrate that groups of astrocyte clones respond differentially

to cortical injury. Whereas in some clones all sibling cells showed

the typical hypertrophy of reactive astrocytes, other clones, located

at comparable distances, did not display altered cell morphologies.

Moreover, in other cases only some cells of the same clone showed

hypertrophied cytoplasm, closely related to the distance to injury

(Fig. 6F). These data indicate that intrinsic factors determined

during the embryonic development affect the astrocyte clones

depending on their lineages. On the other hand, some astrocytes

exhibited a clonal response in terms of proliferation. Whereas most

of the cells forming some clones were generated de novo, other

clones at similar distances showed limited cell proliferation. In this

case, the proliferative response indicates that there are both

intrinsic and extrinsic factors secreted in the injured environment,

which affect directly to the ability of cell proliferation. This

variability in the clonal response to injury clearly indicates that the

heterogeneity of reactive astrocytes could be determined both at

developmental stages, depending on their lineage, and because of

different signals present in the environment after the injury.

Heterogeneity in reactive astrocytes has been described over the

past twenty years and many factors have been shown mediating

the process of reactive gliosis [27,28]. However, despite the

growing interest in the study of astrocyte heterogeneity, many

issues remain unresolved. At this respect, we recently developed a

new method for cell clonal analysis named Star Track that allows to

study astrocyte lineages by the expression of different fluorescent

proteins under the regulation of the GFAP promoter [25]. In that

work we reported that different type of astrocytes are determined

early in the development from a single cell, giving rise to a cell

clone. Given the existence of astrocyte heterogeneity after injury

[20–22], we applied the Star Track method to analyze the clonal

response to cortical lesions.

Our data show that the response of astrocyte clones to a

cortical injury after one week, coincident with both the peak of

cell proliferation and the upregulation of GFAP and vimentin

[29,30], is heterogeneous and in some cases dependent on the

distance to the injury. Thus, some clones responded with all of

their cells hypertrophied while others, at similar distances to the

lesion, exhibited a non-reactive phenotype. Given that, a priori,

cells belonging to the same clone were exposed to the same

molecular environment, these findings point to the existence of

intrinsic developmental mechanisms codified in their lineage

that are responsible for this heterogeneous response to injury.

However, while most clones responded homogeneously as a

whole, some clones showed some of their cells gradually

hypertrophied in relation to the distance to injury. Since astrocytes

are connected via gap-junctions forming networks in response to

neuronal activity [31,32], it would be expected a similar response

of sibling astrocytes. However, the fact that some sibling astrocytes

in the same clone responded differently in relation to the injury
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suggested that the reactive response was independent to the

coupling of astrocytes and, therefore, related to factors secreted in

the environment (extrinsic responses). In this regard, some

experiments suggested certain degree of uncoupling since some

astrocyte K+ currents change in relation to the distance to injury

[33]. Although further experimentation will be required to

establish if a brain injury induces loss of astrocyte coupling, this

could be related to the heterogeneity in the clonal response.

The intrinsic/extrinsic responses of astrocytes to an injury were

also evident after the study of cell proliferation. Thus, reactive

astrocytes increase in number after an injury, but it is still

controversial the source of these astrocytes and their relation with

the lineage. We analyzed the cell proliferation within the clones in

the injured area, showing that the majority of both astrocytes and

NG2 clones exhibited a proliferative clonal response. A detailed

analysis of the proliferation markers indicated that whereas some

clones exhibited a poor proliferative response other clones, located

at similar distance to the lesion, displayed the majority of their cells

as new-generated. This data suggested that intrinsic factors were

acting when these cells decided to proliferate.

Even though these results suggest a heterogeneous clonal

response codified in their lineage, the intrinsic response to the

injury, based in clones consisting completely by new generated

cells, could be explained by an alternative hypothesis. Progenitors

in the SVZ can proliferate in response to a lesion, giving rise to

glial progenitors that migrate throughout the corpus callosum to

cortical areas [34]. Since they are produced from SVZ stem cells,

these migratory progenitors and their whole progeny should

contain BrdU. However, in our BrdU experiments we could not

find any clone completely comprised by BrdU positive cells,

questioning the relevance of this cellular immigration and the

existence of extrinsic factors affecting cell proliferation. Thus, we

concluded that this heterogeneous clonal response should be

determined during the development of these clones. Similarly,

these findings also showed a close correspondence between

proliferation and distance to the lesion. In concordance with

previous estimations [23,35,36], proliferation of resident astrocytes

is not noteworthy and it rapidly decays with the distance. Only

those clones inside or in the border of the lesion exhibited a

significant proliferative response, suggesting a releasing of diffus-

ible molecules from the injured area acting at short distances. This

new rationale combining both BrdU and Star Track will be

tremendously helpful in future studies to discern both types of

cellular contributions.

As long as Star Track outlines the morphology of individual

cells, it allows understanding many crucial points of the glial

response to lesion. For example, it is showed the link between

distance to lesion and the hypertrophy of cellular processes.

Indeed, the strong asymmetry of hypertrophied processes suggest-

ed the occurrence of chemotactic mechanisms determining this

reaction. Several diffusible molecules could be responsible of this

process, including factors such as transforming growth factor-beta

1 (TGF-beta 1), basic fibroblast growth factor (bFGF), epidermal

growth factor (EGF), transforming growth factor-alpha (TGF-

alpha), and heparin-binding epidermal growth factor [37].

Star Track provides in vivo evidences of how development leaves

a fingerprint of heterogeneity in the capacity of astrocytes

responding to an injury. Taken together, these findings indicate

the existence of intrinsic factors, determined during the embryonic

development and related to the cell lineage, which affect the

astrocyte response to a brain injury. These factors are not exclusive

from others secreted in the environment that also affect

differentially to astrocyte clones. This implies that there is a high

heterogeneity in the astrocyte responses to injury suggesting the

importance of designing selective strategies to promote the CNS

repair.

Supporting Information

Movie S1 Three-dimensional reconstruction of a Star
Track astrocyte clone covering a single blood vessel.
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