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In an effort to define the relationship between the chemical and physical 
properties of compounds and their effectiveness as stimuli for chemoreception, 
the response of blowflies (Phormia regina Meigen) to tarsal contact with aqueous 
solutions has now been studied in several different aliphatic series. Results 
obtained with the primary normal alcohols and with several types of glycols 
(2, 3) showed in each case a logarithmic increase in stimulative potency as the 
carbon chain was lengthened. Straight carbon chains proved to be more stim- 
ulating than isomeric branched chains or than chains containing ether linkages, 
and the simple alcohols were more effective than the corresponding dihydroxy 
compounds, a finding which agreed with results obtained earlier with various 
aliphatic acids (1). With the objective of gaining additional information as 
to the fundamental factors in sensory stimulation, we have in the present study 
extended this type of observation to two additional series, similar in chemical 
structure to those previously examined but with different polar groups. 

Materials and Methods 

Details of the experimental technique and of the method of treating the data have 
already been described (2, 3). Compounds used in the tests reported below included 
aldehydes, ketones, and a series of alcohols comparable to the latter in the position of 
the polar group. The following grades of chemicals were available: 

Methanal . . . . . . . . . . . . . . . . . . . . . . . .  formaldehyde Merck reagent 
Ethanal . . . . . . . . . . . . . . . . . . . . . . . . .  acetaldehyde Eastman B. 1,. 20-220C. 
Propanal . . . . . . . . . . . . . . . . . . . . . . . . .  propionaldehyde Eastman B.P. 47-49°C. 
Butanal . . . . . . . . . . . . . . . . . . . . . . . . .  n-butyraldehyde Eastman B.P. 72-74°C. 
Heptanal . . . . . . . . . . . . . . . . . . . . . . .  n-heptaldehyde Eastman B.P. 40-42°C./10 

m i l l .  

2-Ethylhexanal . . . . . . . . . . . . . . . . . . .  octaldehyde Carbon and Carbide Chemicals 
Corp. B.P. 163.4°C. 

2-Methylpropanal . . . . . . . . . . . . . . . . .  /so-butyraldehyde Eastman B.P. 63-640C. 

* The work described in this paper was done under contract between the Medical 
Division, Chemical Corps, United States Army and The Johns Hopkins University. 
Under the terms of this contract the Chemical Corps neither restricts nor is respon- 
sible for the opinions or conclusions of the authors. 
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3-Methylbutanal . . . . . . . . . . . . . . . . . .  iso-valeraldehyde Eastman B.P. 91-93°C. 
2-Propanone . . . . . . . . . . . . . . . . . . . . .  acetone Merck reagent 
2-Butanone . . . . . . . . . . . . . . . . . . . . . .  methyl ethyl ketone Eastman B.P. 79-80°C. 
2-Pentanone . . . . . . . . . . . . . . . . . . . .  methyl n-propyl ketone Phillips Scientific 

Specialties Co. 
2-Heptanone . . . . . . . . . . . . . . . . . . . . .  methyl n-amyl ketone Eastman s .P .  149- 

150°C. 
3-Pentanone . . . . . . . . . . . . . . . . . . . . . .  diethyl ketone Eastman B. ~. 100.5-102.5C °. 
4-Heptanone . . . . . . . . . . . . . . . . . . . . .  di-n-propyl ketone Phillips Scientific Special- 

ties Co. (Technical grade). 
5-Nonanone . . . . . . . . . . . . . . . . . . . . . .  di-n-butyl ketone Eastman B. P. 188.5- 

192.5¢C. 
3-Pentanone, 2,4-dlmethyl-. . . . . . . .  dJ-iso-propyl ketone Eastman (Pract.) 
2-Propanol . . . . . . . . . . . . . . . . . . . . . . .  iso-propyl alcohol Eastman 98-99 per cent 
2-Butanol . . . . . . . . . . . . . . . . . . . . . . . .  see-butyl alcohol Eastman B. t'. 99-101°C. 
2-Pentanol . . . . . . . . . . . . . . . . . . . . . . .  sec-~t-amyl alcohol Eastman 
2-Heptanol . . . . . . . . . . . . . . . . . . . . . . .  methyl-n-amyl carbinol Paragon Testing 

Laboratories 
2-Octanol . . . . . . . . . . . . . . . . . . . . . . . .  capryl alcohol Merck 
3-Pentanol . . . . . . . . . . . . . . . . . . . . . . .  diethyl carbinol Eastman~B. P. 114-116°C. 

R E S U L T S  

In  Table I are collected the data  required for a comparison of the compounds 
and for defining the response of the blowfly population to each. 

DISCUSSION 

Five normal aldehydes, two iso-aldehydes, and 2-ethylhexanal were tested. 
As shown in Fig. I, the plot of rejection thresholds against chain length is 
similar in nearly all respects to tha t  found previously for the normal alcohols, 
and includes a rather sharp break or change in slope between the three and 
four carbon members. The upper limb of the curve is fitted by a line having 
the equation 

Y -- 0.0690 - 1.2010(x - 0.2593) 
( v a r i a n c e  o f  a ---- 0.0104; variance of b m 0.0232) 

and the lower limb (2-ethylhexanal excluded) by  

Y = 1 . 9 7 3 7  - 11.2533(x - 0.7153) 
(variance of a ~ 0.0176; variance of b -- 1.2567). 

Although the slopes for these lines are not significantly different from those 
for the corresponding portions of the curve for normal alcohols (the difference 
in slope divided by  its s tandard error is less than 3 in both cases), the position 
of the aldehyde curve is lower on the graph and the individual aldehydes were 
more stimulating than the corresponding alcohols in all of the seven pairs 
tested. They  averaged about  2.66 times as effective. 
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Compound 

Eight  sufficiently water-soluble ketones were available. Since this small 
group includes representatives of several s t ructural ly  different series and  since 
some of the threshold values appear slightly aberrant ,  lines of best  fit have 
not  been determined.  However, the ketones clearly follow the same sort of 

TABLE I 
Response of Phormia to Aldehydes, Ke~onea, and Secondary Alcohols in 0.1 ~s Sucrose 

a "-  S . E . *  

Methanal 
Ethanal 
Propanal 
Butanal 
Heptanal 
2-Ethylhexanal 
2-Methylpropanal 
3-Methylbutanal 

2-Propanone 
2-Butanone 
2-Pentanone 
2-Heptanone 
3-Pentanone 
4-Heptanone 
5-Nonanone 
3 -Pentanone, 2,4-di- 
methyl- 

2-Propanol 
2-Butanol 
2-Pentanol 
2-Heptanol 
2-Octanol 
3-Pentanol 

Log molar concen- 
tration rejected by 50 
per cent -4-2 £75 S.E. 

0.365 4- 0.135 
0.061 4- 0.147 

-0.219 4- 0.120 
--0.837 4- 0.147 
-3.531 4- 0.166 
-3.688 4- 0.148 
-0.717 4- 0.152 
--1.553 4- 0.189 

--0.094 4- 0.257 
--0.597 4- 0.136 
--1.220 ::k 0.162 
-2.529 -4- 0.208 
--1.274 4- 0.145 
-2.855 4- 0.185 
-2.770 4- 0.171 
--2.022 4- 0.150 

0.272 4- 0.036 
-0.011 4- 0.029 
-0.856 4- 0.084 
--2.833 4- 0.161 
--2.866 -4- 0.193 
-0.908 4- 0.105 

b-4- S.E 

5.124 4- 0.144 
4.467 -4- 0.131 
4.952 -4- 0.184 
4.858 -4- 0.154 
4.715 4- 0.145 
4.917 4- 0.155 
5.159 -4- 0.13~ 
5.251 4- 0.173 

5.100 4- 0.20C 
5.136 -4- 0.133 
5.010 4- 0.132 

4.870 4- 0.208 
5.183 4. O. 125 
5.244 4- 0.15~ 
4.900 4- 0.151 
5.015 -4- 0.144 

2.766 4- 
2.610 4- 
3.952 4- 
2.727 -4- 
2.371 4- 
2.709 4- 
2.339 4- 
2.449 4- 
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2.022 4- 
2.540 4- 
2.108 4- 
2.6004- 
2.258 4- 
2.789 4- 
2.285 -4- 
2.471 4- 

5.244 4- 0.194 
5.225 -4- 0.154 
5.104 -4- 0.155 
5.008 -4- 0.150! 
4.950 -4- 0.328 
5.222 q- 0.111 

10.239 -4- 
11.300 q- 
4.753 4- 
2.350 4- 
3.213 4- 
2.801.4- 

S.E. = standard error. 
* The 4th, 5th, and 6th columns of the table give the calculated values for a, b, and i in 

the equation Y - a + b(X - ~), which is the regression of per cent flies rejecting, Y, ex- 
pressed as probits, on log concentration, X. 

relationship observed in other series and  seem in general to be intermediate  
in s t imulat ing effect between the corresponding alcohois and the aldehydes. 
T h a t  the ketones should be somewhat less effective than  the aldehydes would 
be expected from the position of the polar group, which is terminal  in the 
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aldehydes but subterminal in the ketones. As noted previously, alcohols with 
the hydroxy substitution elsewhere than in the 1-position are slightly less stim- 
ulating than their normal isomers (3). This is seen also in Fig. 1, where thresh- 
old values for five secondary alcohols and 3-pentanol may be compared both 
with the lines of best fit for the normal series and with the individual values 
for the corresponding ketones. 

Altogether, the differences between any of the series, though fairly consistent, 
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FIo. I. Rejection of aldehydes, ketones, and secondary alcohols by Phormia. 

are not great. I t  seems, therefore, that while the nature and position of the 
polar group are of some importance in determining the stimulating effect, the 
length of the carbon skeleton is a more significant factor for series of this sort. 

The data now at hand for alcohols, glycols, aldehydes, and ketones suggest 
three principal questions: (1) Why is there regularly an increasing effectiveness 
of the members of each series as chain length is increased? (2) Why is the 
rate of increase in stimulating effect with increasing chain length less among 
the lower than among the higher members of a single series? (3) What chemical 
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or physical attributes determine the order of effectiveness of the several series 
studied, which is in descending order: aldehydes, ketones, alcohols, glycols? 

Despite the fact that there is within each series a very high degree of correla- 
tion between the observed threshold values and boiling points or other proper- 
ties related thermodynamically to them and to chain length, our attempts to 
find a single factor or set of factors which would reconcile the results from dif- 
ferent series and from two portions of each series have been largely unsuccessful. 
The task has been made more difficult by the scarcity of pertinent physical 
data, for, with the exceptions of boiling and melting points, the values available 
for the various properties which might be significant are relatively incomplete, 
and in most cases a rigorous analysis has not been possible. Again, many of 
the properties themselves vary logarithmically with chain length and therefore 
yield correlations of the sort shown in Fig. 1, which does not bring the solution 
of the problem any nearer. Among these may be mentioned molecular weights, 
molecular volumes and areas, oil-water distribution coetticients, activity coeif- 
cients, standard free energies, vapor pressures, and boiling points. 

Other objections to regarding the boiling point as an expression of the forces 
basically concerned in stimulation are the following: within a given series an 
increase in stimulating power accompanies an increase in boiling point, whereas 
the reverse is true when the several series are compared with one another. 
Thus, in the range of lower molecular weights, the order of increasing boiling 
points is: aldehydes, ketones, alcohols, diols: but this is the order of decreasing 
effectiveness in stimulation. Yet, among the various types of monohydric al- 
cohols, boiling point and stimulating power both increase in the direction: 
secondary, iso-, primary. In view of contradictions such as these it seems cer- 
tain that the factors involved in stimulation are not identical with those which 
determine the boiling point. 

Dipole moments from the study by Smyth (8) gave an exceUent correlation 
with threshold values in the series of normal alcohols (2). Possibly this was 
fortuitous, inasmuch as other determinations of dipole moments within a given 
series do not show a regular progression, and in fact vary but little (of. reference 
6). In any case, the differences between series cannot be explained on the basis 
of dipole moments, for the latter increase in passing from alcohols to alde- 
hydes to ketones (4-6), and this is not the order of relative stimulating power. 
A plot of the threshold data against dielectric constants also was not particularly 
helpful, partly because of variation in the value for this property under differing 
conditions of measurement and the absence of standard conditions of measure- 
ment in many of the determinations reported. 

Since it is known that the degree of association of polar-non-polar aliphatic 
compounds is greater in the lower range of molecular weights (9), it seemed 
possible that this might be concerned in the change in slope observed in plots 
of threshold values against chain length. Reasoning that the increase in boiling 
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point of the alkanes upon substitution of a polar group is in some degree a 
measure of the increased tendency for association (cf. reference 7), we compared 
the threshold values for the normal alcohols and aldehydes with the differences 
in boiling point between these compounds and the corresponding normal al- 
kanes. However, this procedure failed to eliminate the change in slope. One 
may argue also that association would decrease the effective molarity of the 
test solutions; correcting for this, if possible, would merely decrease the ob- 
served threshold molarities more for the lower members of a series and would 
thus accentuate the difference in slope. For these reasons, it seems doubt- 
ful that degree of association is a factor of much importance in the observa- 
tions. 

We have been unable, then, to bring our data into a single homogeneous 
system through correlations with the following molecular properties: number 
of carbon atoms, molecular weights, molecular areas and volumes, oil-water 
distribution coefficients, activity coefficients, standard free energies, vapor pres- 
sures, boiling points, melting points, dipole moments, dielectric constants, and 
degree of association. Thus we must conclude either that we have overlooked 
the significant factors or that we are not dealing with a single process through- 
out, since the evidence from the series considered individually is convincing 
that stimulation is in some way related to the thermodynamic properties of the 
compounds. 

One other comparison remains to be discussed. This is between the thresh- 
old concentrations of the compounds and their solubilities in water. Here again 
a quantitative evaluation is impossible, because of the incompleteness of pub- 
lished solubility data and because we have no means of grading the solubility 
among compounds which are freely miscible with water. It is a fact, however, 
that the order of stimulative effectiveness follows the inverse of the order of 
water solubilities with fewer contradictions than appear in most of the other 
comparisons attempted. Thus, within each series, solubility decreases con- 
sistently as chain length and stimulating power increase. The order of de- 
creasing solubility: diols, alcohols, aldehydes is also the order of increasing 
stimulating effect, and iso-aldehydes are more soluble and less stimulating than 
the normal compounds, while the order of decreasing solubility for the isomeric 
alcohols: secondary, iso-, normal, is likewise that of increasing stimulation. 
2-Butanone, on the other hand, is more stimulating than 2-butanol and slightly 
more soluble, so that it constitutes an exception; among the higher members 
compared in these two series both solubilities and threshold values tend to 
agree closely. 

In spite of the generally good correspondence between low solubility in water 
and high stimulating power, it seems likely, from the data on oil-water dis- 
tribution coefficients, that plots of threshold values against solubilities would 
also yield a smaller slope for the lower than for the higher range of compounds 
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in each series, if such an analysis could be made. The consistent recurrence 
of this type of relationship, which is well attested for the aldehydes, primary 
alcohols, and diols, strongly indicated for the ketones, iso-alcohols, and sec- 
ondary alcohols (series lacking the one and two carbon members), and which 
seems to have no counterpart in any of the tabulated values for the physical 
properties, prompts us to consider the possibility that different forces may be 
of primary importance in stimulation by the lower and higher members of each 
of the types investigated. This amounts to postulating at least a two-phase 
system for the limiting mechanism in contact chemoreception. The hypothesis 
that smaller molecules gain access to the receptors in part through an aqueous 
phase, while the larger aliphatic molecules penetrate chiefly through (or ac- 
cumulate in) a lipoid phase, would appear to offer a basis for reconciling most 
of the contradictions encountered when it is attempted to fit the facts into a 
single-phase system. Movement of the smaller molecules through an aqueous 
medium should occur at rates related inversely to the molecular weight, which 
would help to account for their being more stimulating than anticipated from 
the relationship found for the higher members of a series, though it is doubtful 
that the entire difference can be explained in this way. It may be noted also 
that the inflections in the curves relating thresholds to molecular size occur 
at increasing chain lengths in passing from the less to the more water-soluble 
species. At the same time the predominant importance of lipoid affinity is 
suggested by the logarithmically increasing stimulating power of both lower 
and higher members of all series, as well as by the inverse relationship between 
water solubility and stimulating effectiveness in comparisons of the several series 
with each other. Although it is not known to what extent recent observations 
on the structure of insect cuticle (10, 11) may apply to the chemoreceptive 
surface, a scheme such as that proposed here is in accord with current views 
as to the general makeup of the integument, and would also allow for the fact 
that highly water-soluble ions as well as nearly insoluble non-electrolytes are 
adequate stimuli when presented in an aqueous medium. 

SIYMMARY 

Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 
3-pentanol has been studied in the blowfly Phormia regina Meigen. The data 
agree with results previously reported for normal alcohols and several series 
of glycols in showing a logarithmic increase in stimulating effect with increasing 
chain length. The order of increasing effectiveness among the different species 
of compounds thus far investigated is the following: polyglycols, diols, sec- 
ondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal 
aldehydes. 

Curves relating the logarithms of threshold concentration to the logarithms 
of chain length for diols, alcohols, aldehydes, and ketones show inflections in 
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the 3 to 6 carbon range. Above and below the region of inflection the curves 
are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are 
of the order of --2; for the lower limbs, about - 1 0 .  

Comparisons of the threshold data with numerical values for molecular 
weights, molecular areas and volumes, oil-water distribution coefficients, activ- 
ity coefficients, standard free energies, vapor pressures, boiling points, melting 
points, dipole moments, dielectric constants, and degree of association are dis- 
cussed briefly, and it is concluded that none of the comparisons serves to bring 
the data from the several series and from the two portions of each series into 
a single homogeneous system. A qualitative comparison with water solubilities 
shows fewer discrepancies. 

It  is suggested that the existence of a combination of aqueous and lipoid 
phases at the receptor surface would fit best with what is presently known 
about the relationship between chemical structure and stimulating effect in 
contact chemoreception. In this hypothesis the smaller and more highly water- 
soluble compounds are envisaged as gaining access to the receptors partly 
through the aqueous phase, the larger molecules predominantly through the 
lipoid phase. 
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