
Differential effect of sleep deprivation on place cell 
representations, sleep architecture, and memory in young and 
old mice

Robin K. Yuan1,2,7, Matthew R. Lopez3,7, Manuel-Miguel Ramos-Alvarez4,7, Marc E. 
Normandin3,7, Arthur S. Thomas5, David S. Uygun6, Vanessa R. Cerda3, Amandine E. 
Grenier3, Matthew T. Wood3, Celia M. Gagliardi3, Herminio Guajardo3, Isabel A. Muzzio3,8,*

1Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham 
and Women’s Hospital, 221 Longwood Avenue, Boston, MA, USA

2Division of Sleep Medicine, Harvard Medical School, 221 Longwood Avenue, Boston, MA, USA

3University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 
78249, USA

4University of Jaen, Psychology Department, Campus Las Lagunillas, Jaen 23071, Spain

5Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, 
Philadelphia, PA 19104, USA

6VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West 
Roxbury, MA 02132, USA

7These authors contributed equally

8Lead contact

SUMMARY

Poor sleep quality is associated with age-related cognitive decline, and whether reversal of these 

alterations is possible is unknown. In this study, we report how sleep deprivation (SD) affects 

hippocampal representations, sleep patterns, and memory in young and old mice. After training in 
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a hippocampus-dependent object-place recognition (OPR) task, control animals sleep ad libitum, 

although experimental animals undergo 5 h of SD, followed by recovery sleep. Young controls 

and old SD mice exhibit successful OPR memory, whereas young SD and old control mice are 

impaired. Successful performance is associated with two cellular phenotypes: (1) “context” cells, 

which remain stable throughout training and testing, and (2) “object configuration” cells, which 

remap when objects are introduced to the context and during testing. Additionally, effective 

memory correlates with spindle counts during non-rapid eye movement (NREM)/rapid eye 

movement (REM) sigma transitions. These results suggest SD may serve to ameliorate age-related 

memory deficits and allow hippocampal representations to adapt to changing environments.

Graphical Abstract

In brief

Age-related cognitive decline is associated with poor sleep quality. Yuan et al. show that acute 

sleep deprivation has beneficial effects on sleep microarchitecture, memory, and hippocampal 

representations in old mice and has opposite effects in young animals. These findings suggest that 

acute sleep deprivation may serve to mitigate age-related cognitive decline.

INTRODUCTION

A large amount of evidence suggests that sleep plays a key role in memory consolidation 

(Abel et al., 2013; Rasch and Born, 2013; Stickgold and Walker, 2013; Tononi and Cirelli, 
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2014). Studies have shown performance gains following post-training sleep (Gais and 

Born, 2004; Gais et al., 2006; Smith, 2001), as well as learning impairments when sleep 

deprivation (SD) is conducted after training (Graves et al., 2003; Prince et al.,2014; Smith 

and Rose, 1996). However, the effects of SD are complex and vary across the lifespan. For 

example, although SD produces deficits in psychomotor tasks in adolescents (de Bruin et 

al., 2017), its impact in adults is highly variable (Krause et al., 2017), with some studies 

showing within- and across-individual differences in cognitive susceptibility (Saletin et al., 

2016; Wilson et al., 2019). Notably, although limiting sleep periods decreases insomnia 

in old subjects (Wennberg et al., 2013), it remains unclear whether this procedure also 

improves sleep quality and/or microarchitecture.

Sleep involves interspersed periods of non-rapid eye movement (NREM), a 

state characterized by high amplitude, low frequency (0.2–4 Hz), synchronous 

electroencephalographic (EEG) activity, and rapid eye movement (REM), a state 

characterized by low-amplitude fast desynchronized EEG waves. NREM is important for 

memory formation because it is thought that, during this stage, information is transferred 

to cortex for long-term storage (for a review, see Antony et al., 2019), whereas REM has 

been associated with both consolidation of novel information and forgetting of previously 

encoded information (Poe, 2017). During NREM, there are rapid bursts of activity (10–

14 Hz) of short duration, known as spindles. Spindles are thought to facilitate memory 

reactivation, which is essential for proper consolidation (Rasch and Born, 2013). Critically, 

changes in NREM and spindle characteristics predict early memory impairments in old 

subjects (Taillard et al., 2019). However, it is unknown whether reversing these sleep 

alterations can have positive effects on cognition.

The hippocampus plays a critical role in the formation of episodic memories—recollections 

of events happening in specific contexts at particular times (Smith and Mizumori, 2006; 

Squire and Zola, 1998). It is assumed that the activity of hippocampal place cells, which 

fire in specific locations when animals navigate (O’Keefe and Dostrovsky, 1971), provides 

a cognitive map in which episodic events are embedded (Mizumori, 2006; Smith and 

Mizumori, 2006). In support of this idea, it has been shown that networks of hippocampal 

cells active during wake are reactivated during NREM sleep at compressed timescales 

(Drieu et al., 2018; Hwaun and Colgin, 2019; Lee and Wilson, 2002), which is important for 

memory formation (de Lavilléon et al., 2015).

Both sleep and cognition undergo age-related changes across the lifespan (Huang et al., 

2002). Older humans exhibit more fragmented sleep, less slow-wave sleep, and alterations 

in spindle characteristics in comparison to young adults (Espiritu, 2008; Hasan et al., 

2012; Ohayon et al., 2004; Clawson et al., 2016). Additionally, old subjects also show 

impairments in hippocampus-dependent cognitive tasks (Lester et al., 2017; Lister and 

Barnes, 2009; Miller and O’Callaghan, 2005). These observations have suggested that age

related cognitive decline may be related to the sleep changes (Altena et al., 2010). In this 

study, we investigated whether an acute period of SD could serve to modify subsequent 

sleep architecture, hippocampal place cell firing, and object and place recognition (OPR) 

memory in young and old mice. Our results indicate that SD has differential effects in young 

and old mice. In young mice, an acute SD session impairs memory, decreases the flexibility 
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of hippocampal representations, and reduces the number of spindles during NREM/REM 

sigma transitions. Conversely, in old animals, SD enhances memory and improves the 

quality of NREM microarchitecture and hippocampal representations. We suggest that acute 

SD allows the hippocampus to adapt to changing environments and reverses age-related 

memory deficits.

RESULTS

SD impairs OPR memory in young adult mice but enhances performance in old mice

Four groups of animals, including young controls (YCs) (n = 16), young SD (YSD) (n 

= 15), old control (OC) (n = 13), and old SD (OSD) (n = 15), were trained in the OPR 

task, as illustrated in Figure 1A. Analysis of object and place preference during the test 

showed an interaction between age and sleep condition (Fw(1) = 0.55; p < 0.00001). Simple 

effects revealed that the YCs and OSD displayed greater preference for the moved object in 

comparison to YSD and OC (YC × YSD: Tw(16.07) = 3.39, p < 0.02; YC × OC: Tw(17.41) 

= 2.44, p < 0.03; OC × OSD: Tw(15.10) = 2.11, p < 0.05; YSD × OSD: Tw(15.89) = 2.99, p 

< 0.008; Figure 1B). These results indicated that SD was beneficial in old animals, bringing 

their OPR performance to the level of young controls.

Experiments with rats have shown that animals display more exploration of familiar objects 

when the animals perceive the context as different (Cohen et al., 2013; Dix and Aggleton, 

1999; Mumby et al., 2002). To determine whether failures in context recognition modulated 

preference for familiar object location, we calculated the percent change in preference for 

the unmoved objects. We found an interaction between age and sleep condition (Fw(1) = 

0.55; p < 0.0001; Figure 1C). Single effects corroborated that YC and OSD mice displayed 

less preference for the unmoved objects (YC × YSD: Tw(16.07) = 11.51, p < 0.01; OC 

× OSD: Tw(15.10) = 4.47, p < 0.05), but there were no significant differences between 

the YSD and OCs (YSD × OC: Tw(15.58) = 1.30; p = 0.26), neither of which showed a 

preference for the unmoved objects. These data indicate that the poor OPR performance 

exhibited by YSD and OCs is not related to a shift in preference for objects placed in 

familiar locations.

We evaluated the total time exploring the objects across trials to confirm that there were no 

differences in locomotor activity. We found no significant effects of age, sleep condition, or 

interactions on total object exploration (age: Fw(1) = 0.12, p = 0.73; sleep: Fw(1) = 0.07, 

p = 0.79; interaction age × sleep: Fw(1) = 0.31, p = 0.38; interaction age × sleep × trial: 

Fw(3) = 0.09, p = 0.81). However, there was an effect of trial (Fw(3) = 4.08; p < 0.0001). 

Simple effects revealed that all groups displayed more total object exploration during the 

first object trial and the test (T1-T2: Zw = 3.82, p < 0.0001; T3-test: Zw = 1.75, p < 0.04; 

Figure 1D), which likely resulted from the initial novelty of the objects and the change 

in configuration, respectively. Because we observed this difference, we also calculated the 

percent change in object preference, excluding the first object trial to ensure that our results 

were not biased by the novelty of the objects. The results were almost identical to those 

including all trials (interaction age × sleep: Fw(1): 0.55, p < 0.0001; YC × YSD: Tw(17.06) 

= 2.15, p < 0.05; OD × OSD: Tw(13.66) = 3.74, p < 0.003; YC × OC: Tw(16.13) = 2.34, 
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p < 0.04; YSD × OSD: Tw(14.50) = 3.66, p < 0.003; Figure 1E), which indicated that the 

observed differences were not due to variability in object exploration.

The observation that old SD animals displayed better OPR performance suggested that post

learning SD followed by recovery sleep had a beneficial effect on memory. To determine 

whether this effect was time dependent, we delayed the SD by 5 h in a separate group 

of young (n = 6) and old (n = 7) animals. These mice were trained and tested exactly as 

described above but were allowed to sleep ad libitum for 5 h after training, prior to the SD 

procedure. This manipulation neither impaired young mice, which showed a preference for 

the moved object, nor rescued the memory impairments in old animals, which displayed 

no object preference during the test (Tw(6.88) = 4.85; p < 0.002; Figure 1F). These results 

indicate that there is a time window during which SD leads to memory deficits in young 

animals or ameliorates age-related cognitive decline in old ones.

Levels of corticosterone are similar in young and old sleep-restricted mice

Total or partial SD has been shown to induce mild stress in rodents (Coenen and van 

Luijtelaar, 1985; Tobler et al., 1983). Additionally, sleep alterations correlate with a rise 

in cortisol levels in older human subjects (Castello-Domenech et al., 2016; Morgan et al., 

2017). We collected blood from young (n = 5) and old (n = 5) mice following 5 h of SD 

(experimental groups) or 5 h of ad libitum sleep (control groups) to determine whether our 

sleep manipulations had a differential effect on corticosterone levels. Although SD produced 

an increase in plasma corticosterone compared to normal sleep conditions (F(1) = 16.85; 

p < 0.02), there were no differences between the age groups (F(1) = 0.29; p = 0.61) or 

interactions between age and sleep condition (F(1) = 0.04; p = 0.87; Figure 1G). These 

data indicated that corticosterone levels could not account for the differences in performance 

between YSD and OSD mice.

Rate remapping increases during testing in YC and OSD animals

A subset of animals was implanted with tetrodes in area CA1 to determine the effects of 

SD on hippocampal neuronal activity during OPR memory (electrode positions are shown 

in Figures S1A). First, we corroborated that there were no differences in performance 

between tetrode or electroencephalogram (EEG)/electromyogram (EMG)-implanted animals 

(interaction between age and type of implant: Fw(1) = 0.13, p = 0.72; interaction between 

sleep condition and type of implant: Fw(1) = 2.06, p = 0.17). The groups displayed 

OPR memory patterns similar to those described in Figure 1B, which was evident in an 

interaction between age and sleep condition (Fw(10) = 17.53; p < 0.001). These results 

indicate that the type of implant did affect performance (Figure 2A).

Then, we examined place cell activity in 110 cells recorded in 10 young mice (60 cells in 

6 controls and 50 cells in 4 SD mice) and 77 cells recorded in 10 old mice (36 cells in 5 

controls and 41 cells in 5 SD mice). The quality of the isolated clusters was examined by 

calculating isolation distance, a parameter that evaluates the distance between the spikes of a 

particular cluster and other spikes or noise (Harris et al., 2001) and L-ratio, a parameter that 

estimates how well cluster spikes are separated from other spikes recorded from the same 

tetrode (Schmitzer-Torbert et al., 2005). There were no significant differences over time 
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and/or across groups (Figure 2B; isolation distance: interactions: age versus sleep condition: 

Fw(1) = 0.14, p = 0.71; age versus trial: Fw(4) = 0.32, p = 0.87; sleep condition versus 

trial: Fw(4) = 0.20, p = 0.94; age versus sleep condition versus trial: Fw(4) = 0.11, p = 0.98; 

Figure S1B: L-ratio: interactions: age versus sleep condition: Fw(1) = 0.001, p = 0.97; age 

versus trial: Fw(4) = 0.31, p = 0.87; sleep condition versus trial: Fw(4) = 0.44, p = 0.78; age 

versus sleep condition versus trial: Fw(4) = 0.14, p = 0.97). Then, we analyzed several place 

cell parameters. There were no significant effects of age, group, or interactions in mean, 

peak, or out-of-field firing rate, number of fields, field size, or spatial information content 

(p > 0.05; Figures S1C–S1H). These data indicate that place cell parameters did not differ 

between age groups or sleep conditions throughout training and testing.

Hippocampal cells have previously been shown to code environmental changes through 

increases or decreases in firing rate, a phenomenon known as rate remapping (Leutgeb et al., 

2005). Therefore, we hypothesized that average firing activity could have masked potential 

rate-remapping differences. To assess this possibility, we calculated rate remapping as the 

absolute difference in peak firing rate for each cell across trials. This analysis revealed main 

effects of age (Fw(1) = 10.20; p < 0.00001) and trial (Fw(3) = 2.12; p < 0.005) and an 

interaction between age, trial, and sleep condition (Fw(3) = 1.30; p < 0.05). Analysis of 

simple effects indicated that rate remapping was different between the groups exclusively 

during the test trial. YCs and OSD animals, the two groups that exhibited successful 

learning, displayed more rate remapping than YSD during the test session (YC versus YSD: 

Tw(46.29) = 2.30, p < 0.03; YSD versus OSD: Tw(29.79) = 3.93, p < 0.005) and increased 

rate remapping during the test in comparison to the last training trial (T3 versus test: YC: Zw 

= 1.69, p < 0.02; OSD: Zw = 2.80, p < 0.02; Figure 2C). These results indicate that changes 

in rate remapping are important for updating OPR memory representations.

The overall stability of hippocampal representations decreases during the moved-object 
test in all groups

Hippocampal cells respond to spatial cues, including objects (Cohen et al., 2013). Therefore, 

we expected a shift in the cells’ preferred firing location (i.e., global remapping) when the 

objects were first introduced (Hab versus T1) but short-term stability across the training 

trials when the objects and environment remained unchanged (T1–T3). We also anticipated 

global remapping during the test trial (test), reflecting the change in the object configuration. 

Analysis of similarity between place cell maps revealed significant effects of age (Fw(1) 

= 8.32; p < 0.008) and trial (Fw (3) = 29.35; p < 0.000001), as well as interactions of 

age and trial (Fw(3) = 1.45; p < 0.04) and sleep condition and trial (Fw(3) = 1.63; p < 

0.02). Analysis of simple effects showed that old mice displayed more global remapping 

than young animals when the objects were first introduced (Tw(98.60) = 2.95; p < 0.004), 

which likely reflected the unstable nature of spatial representations in this group (Barnes 

et al., 1997). However, no differences in stability were observed during the object training 

trials (T1 versus T2: Tw(101.10) = 1.08, p = 0.28; T2 versus T3: Tw(95.97) = 1.12, p = 

0.26). As expected, all groups displayed lower place field stability during the test trial in 

comparison to the high short-term stability observed during training (p < 0.05), with old 

animals displaying more instability than the young ones (T3 versus test: Tw(91.84) = 3.40; 
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p < 0.001; Figure 2D). These results indicate that all groups exhibit some global remapping 

during the moved-object test trial.

Distinct cell types are differentially affected by SD and age

We have previously observed that distinct CA1 subpopulations respond differently during 

fear learning (Wang et al., 2015). To determine whether the same happened during the 

OPR task, cells were classified according to their remapping patterns during training. The 

threshold used to classify place cell stability was determined using correlation scatterplots 

and distributions as well as a machine learning algorithm (Figures S2). Using these tools, we 

establish that a correlation of 0.35 was the best cutoff value to categorize the cells (e.g., cell 

correlations above 0.35 were considered stable and those below 0.35 unstable). “Context” 

cells displayed high stability throughout habituation and training; “object configuration” 

cells remapped when objects were first introduced but remained stable during all the object 

training sessions; and “unstable” cells remapped across all training sessions. As previously 

reported, we observed that object configuration cells were active in the context, even before 

the objects were introduced (Ásgeirsdóttir et al., 2020). Therefore, it is likely that these 

cells coded the arrangement of the objects in relation to contextual cues already present in 

the environment, rather than purely object-related firing. In young animals, each of these 

categories made up roughly 1/3 of the cells recorded. However, old animals had a lower 

percentage of stable context cells than young mice (Figures 2E and 2F).

After cells were classified, we examined similarity scores (e.g., the degree of global 

remapping) within each group across consecutive trials (Figure 3A). We hypothesized that, 

if animals remembered the environment, context cells should remain stable during the 

moved-object test but display instability if that was not the case. Context cells showed main 

effects of age (Fw(1) = 7.87; p < 0.007) and trial (Fw(3) = 3.04; p < 0.0001), as well as 

an interaction between age, sleep condition, and trial (Fw(3) = 0.82; p < 0.05). Analysis of 

simple effects showed that context cells in YCs and OSD mice were more stable than in 

OSD animals (OC versus OSD: Tw(7.30) = 2.82, p < 0.03; YC versus OC: Tw(7.38) = 3.31, 

p < 0.02). Interestingly, there was no difference between YCs and YSD mice in the stability 

of context cells (Tw(20.06) = 1.03; p = 0.32; Figure 3B), suggesting that the memory 

impairment observed in the latter was not due to a failure in recalling the environment.

We also hypothesized that, if animals noticed the change in object position during the test, 

object configuration cells should display remapping. However, if animals failed to notice 

the moved object, these cells should remain stable. Object configuration cells displayed 

effects of age (Fw(1) = 18.71; p < 0.0001), trial (Fw(3) = 24.30; p < 0.0001), an interaction 

between age and trial (Fw(1) = 3.88; p < 0.0001), and a trend in the interaction between 

sleep condition and trial (Fw(3) = 0.68; p < 0.06). Based on our definition of object cells, 

analysis of simple effects showed that all the groups displayed remapping between Hab and 

T1 (Zw = 12.52; p < 0.00001) and, as expected, between T3 and test (Zw = 7.31; p < 

0.0001). Importantly, successful memory performance in YCs and OSD was associated with 

similar levels of object cell remapping. Moreover, object cells in YSD animals displayed 

more stability than those in OSD mice during the test (Tw(59.48) = 4.34; p < 0.0001; Figure 

3C). Finally, there were no stability differences in unstable cells across groups or trials (age: 
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Fw(1) = 0.35, p = 0.56; sleep: Fw(1) = 0.76, p = 0.51; trial: Fw(3) = 0.76, p = 0.52; age 

versus sleep versus trial: Fw(3) = 0.43, p < 0.73; Figure 3D). Together, these data indicate 

that the successful memory performance observed in YCs and OSD mice is associated with 

stable context cells and flexible object configuration representations.

To evaluate whether the remapping observed in YC and OC animals reflected different 

mnemonic processes, the former being associated with memory updating and the latter 

reflecting typical long-term instability, we conducted an unmoved object control task in a 

subset of animals. Three young mice (30 cells) and four old mice (24 cells) were trained in 

the OPR task and allowed to sleep ad libitum during post-learning and recovery. However, 

during the test, all objects remained in the same position (Figure 4A). We found no 

significant differences in cluster quality in YC and OC cells (Figure 4B; isolation distance: 

age Fw(1) = 0.44, p = 0.51; trial: Fw(4) = 1.17, p = 0.35; interaction between age and 

trial: Fw(4) = 0.20, p = 0.94; see Figures S3 for L-ratio statistics). Then, we examined 

the stability patterns of context, object configuration, and unstable cells. As expected, the 

short-term stability of context and object configuration cells during training was higher than 

their long-term stability (context: trial: Fw(3) = 7.97, p < 0.04; T2/T3 versus T3/test: Zw 

= 0.75, p < 0.04; object configuration: trial: Fw(3) = 13.37, p < 0.004; interaction age and 

trial Fw(3) = 4.85, p < 0.04). Critically, both types of cells were more stable in young mice 

than in old mice during the test (context: Tw(5.73) = 3.49, p < 0.02; Figure 4C; object 

configuration: Tw(6.83) = 4.75, p < 0.003; Figure 4D). Unstable cells displayed similar 

remapping characteristics in both groups across all trials (p > 0.05; Figure 4E). These data 

indicate that the remapping observed in YC mice during the moved object test reflects 

memory updating rather than passage of time, and the high instability of object cells in OCs 

is inherent in this group.

Sleep analysis: Bayes classifier validation

Sleep patterns from young an old animals were recorded in chambers that provided free 

access to food and water (Figures S4A). To analyze the wake and sleep periods, we 

used a validated Bayes classifier to minimize inter-observer variability (Grigg-Damberger, 

2012). This classifier has been previously tested in young and old mice (Rytkönen et 

al., 2011). To visualize the accuracy of the classifier in our dataset, we color coded the 

EMG and EEG using the output of the Bayes classifier to determine that there were no 

significant errors in the scoring of wake, NREM, and REM states (Figure S4B). Then, 

we partially re-validated this method comparing manual visual scoring with the output of 

Bayes classifier. A confusion matrix was created for each animal, and an average matrix 

was generated by averaging values for each age group (4 young and 4 old mice; Figures 

S4C and S4D). Accuracy was calculated by adding the values in which algorithm and 

visual scoring correlated in wake, NREM, and REM divided by the total entries (Figure 

S4E). Then, we calculated sensitivity (true positive rate) and specificity (true negative 

rate) for both young and old animals to generate a receiver-operating curve (ROC). The 

classifier generated outputs with high positive rates and minimal false positives (Figure 

S4F). Together, the results indicated that the algorithm was very accurate for both young 

and old mice. Moreover, we compared the reliability of the classifier using 5% and 10% of 
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manually scored data, obtaining highly similar results (average inter-score correlation: 95% 

± 0.54%; 3 mice).

OC mice display more fragmented NREM sleep patterns than young mice during post
learning ad libitum sleep

We analyzed sleep patterns in YCs and OCs during the post-learning ad libitum sleep period 

(young: n = 9 [2 mice were not included due to noise in the recordings]; old: n = 8). We 

found that the total percent time spent in wake, NREM, and REM was equivalent in YC 

and OC animals (wake: Tw(10.33) = 0.91, p = 0.39; NREM: Tw(10.47) = 0.49, p = 0.63; 

REM: Tw(10.28) = 1.42, p = 0.19; Figure 5A). However, old animals displayed more NREM 

and REM bouts and a non-significant increase in wake bouts than young controls (NREM: 

Tw(9.23) = 2.84, p < 0.02; REM: Tw(8.46) = 2.97, p < 0.02; wake: Tw(6.75) = 1.37, p = 

0.22; Figure 5B). Additionally, old mice displayed a trend toward shorter wake and NREM 

bout length than young controls (wake: Tw(9.85) = 1.92, p = 0.09; NREM: Tw(10.97) = 

2.09, p = 0.06) but no differences in REM bout length (REM bout length: Tw(10.54) = 

1.01; p = 0.34; Figure 5C). These results indicate that old animals display more fragmented 

NREM sleep than young mice, as previously observed (Pace-Schott and Spencer, 2015).

Next, we analyzed sleep patterns in the SD groups during the first 5 h post-learning to 

corroborate that the animals remained awake during this period. On average, SD mice were 

awake 97.5% of the time (young: 97.55% ± 1.26%; old: 97.51% ± 1.59%; data not shown), 

indicating that the SD procedure was effective.

Old and young mice display increased NREM bout length during recovery sleep following 
SD

Following the initial 5-h post-training period, we recorded 5 additional h of ad libitum sleep 

in the control and SD groups to evaluate the effects of SD on recovery sleep (YC: n = 11; 

YSD: n = 11; OC: n = 8; OSD: n = 10). Old and young animals did not display differences 

in total time spent in wake or REM (wake: age: Fw(1) = 0.33, p = 0.57; sleep: Fw(1) = 3.02, 

p = 0.10; age versus sleep: Fw(1) = 0.04, p = 0.85; REM: age: Fw(1) = 0.84, p = 0.36; sleep: 

Fw(1) = 0.76, p = 0.39; age versus sleep: Fw(1) = 0.08, p = 0.68; Figure 5D). However, 

there was an effect of sleep condition in NREM (Fw(1) = 4.65; p < 0.05) but no age or 

interaction effects (age: Fw(1) = 0.09, p = 0.77; age versus sleep: Fw(1) = 0.06, p = 0.74), 

which reflected that both YSD and OSD animals displayed more time in NREM (Figure 

5D).

Next, we analyzed changes in sleep microstructure during wake, NREM, and REM. There 

were no significant changes in wake bout numbers or length (bout number: age: Fw(1) = 

1.23, p = 0.28; sleep: Fw(1) = 1.99, p = 0.18; age versus sleep: Fw(1) = 0.05, p = 0.82; bout 

length: age: Fw(1) = 0.40, p = 0.54; sleep: Fw(1) = 0.02, p = 0.90; age versus sleep: Fw(1) 

= 0.01, p = 0.97; Figures 5E and 5F). Conversely, there was an effect of sleep condition 

(Fw(1) = 5.34; p < 0.05) and an interaction between age and sleep condition in NREM 

bout number (Fw(1) = 0.32; p < 0.04). Analysis of this interaction showed that OSD mice 

displayed fewer NREM bouts than OCs (Tw(5.66) = 2.73; p < 0.04), but there were no 

differences between the young groups (Tw(8.88) = 1.04; p = 0.33; Figure 5E). Additionally, 
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there was an effect of sleep condition in NREM bout length, reflecting that both YSD and 

OSD groups displayed longer NREM bouts than controls (Fw(1) = 7.53; p < 0.02; Figure 

5F). The observation that OSD mice displayed fewer numbers of NREM bouts of longer 

length than OCs indicated that NREM was consolidated in this group.

Finally, there was an interaction between age and sleep condition in the number of REM 

bouts (TW(1) = −0.36; p < 0.05; Figure 5E), but these differences were modest and did not 

reach significance in post hoc tests (number of bouts: YC versus YSD: Tw(9.56) = 1.41, p 

= 0.19; OC versus OSD: Tw(9.83) = 0.84, p = 0.37). Differences in REM bout length were 

also not significant (p > 0.05; Figure 5F), suggesting that 5 h of SD only produce subtle 

changes in REM. In summary, these data indicate that acute SD serves to increase NREM 

bout length in both young and old mice, further decreasing NREM bout number in old mice. 

These changes may serve to consolidate the typical fragmented NREM sleep observed in old 

mice.

Acute SD increases relative delta power (RDP) during NREM and decreases relative theta 
power (RTP) during REM in SD mice

Because delta (0.25–4 Hz) and theta (4–10 Hz) oscillations have been associated with 

attention, spatial exploration, and memory (Hasselmo, 2006; Hutchison and Rathore, 2015), 

we investigated whether the power of these bands was differentially altered during the SD 

period and/or during subsequent ad libitum sleep periods. We found no differences in RDP 

or RTP during SD (RDP: YSD (n = 11): 0.12 ± 0.01; OSD (n = 10): 0.11 ± 0.02; RTP: YSD: 

0.41 ± 0.04; OSD: 0.39 ± 0.06; p > 0.05; data not shown), indicating that the movement of 

the bar did not differentially affect the EEG in the experimental groups.

We then generated average power spectra during NREM and REM in post-learning (Figures 

5G, 5H, S5A, and S5B) and recovery sleep (Figures 5I, 5J, and S5C-S5F). Power spectra 

displayed peaks at low frequencies (3 to 4 Hz) during NREM and medium frequencies 

(7 to 8 Hz) during REM, corresponding to delta and theta frequency bands, respectively. 

There were no significant differences in RDP during NREM (Tw(9.63) = 0.87; p = 0.41; 

Figure 5K) or RTP during REM (Tw(5.59) = 1.02; p = 0.35; Figure 5L) between YC and 

OC mice during the ad libitum post-learning sleep period. RDP showed an effect of sleep 

condition during recovery (Fw(1) = 9.40; p < 0.007; Figure 5M), reflecting an increase in 

both YSD and OSD animals, as previously shown (Halassa et al., 2009). However, there 

were no differences in RTP (age: Fw(1) = 0.26, p = 0.62; sleep: Fw(1) = 0.30, p = 0.59; 

interaction between sleep and age: Fw(1) = 0.33, p = 0.10; Figure 5N). Finally, we also 

examined relative sigma (10–15 Hz) and beta (15–25 Hz) power during post-learning and 

recovery, finding no significant differences between the groups (p > 0.05; Figures S5G-S5J). 

In summary, these data suggest that 5 h of SD followed by 5 h of recovery sleep do not 

result in age differences in relative power.

YC mice display more spindles of longer length than OC mice immediately following 
training

Spindles may play a role in memory consolidation by facilitating memory reactivation 

(Rasch and Born, 2013). We quantified spindle characteristics using a highly accurate 

Yuan et al. Page 10

Cell Rep. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



automated spindle-detection method (Uygun et al., 2019). First, we performed a partial 

re-validation of the method obtaining 95% reliability (n = 4; young: 97% overall correlation; 

old: 94% overall correlation). Errors included 2.5% of false positives and 2% of false 

negatives. Moreover, we color coded the detected spindles in the filtered EEG to visually 

inspect the reliability of the code (Figure 6A), observing very accurate results.

Using this method, we analyzed spindles during NREM periods. There were no significant 

differences in average number, frequency, or duration of spindles between young and old 

control mice during the ad libitum post-training sleep period (spindle count: Tw(10.99) = 

0.52, p = 0.62; spindle duration: Tw(9) =0.004, p = 0.99; spindle frequency: Tw(8.19) = 

0.01, p = 0.99; Figures 6B-6D). Because the initial hours following training have been 

shown to be critical for memory consolidation in young-adult animals (Bailey et al., 2004; 

Palchykova et al., 2006), we divided the post-training sleep period into consecutive 1-h 

segments to investigate whether there were differences at distinct stages. We found a 

significant main effect of segment and an interaction between age group and segment in 

spindle numbers (segment: Fw(4) = 8.73, p < 0.008; interaction: Fw(4) = 4.35, p < 0.05). 

Analysis of simple effects indicated that YC animals displayed more spindles than OCs 

during the 1st h post-learning (Tw(10.06) = 4.18; p < 0.002; Figure 6B). No differences in 

spindle duration or frequency were observed in the segment analysis (spindle duration: age: 

Fw(1) = 0.06, p = 0.82; hour: Tw(4) = 0.64, p = 0.65; age versus hour: Tw(4) = 1.15, p 

= 0.41; spindle frequency: age: Fw(1) = 0.22, p = 0.65; hour: Tw(4) = 0.81, p = 0.64; age 

versus hour: Tw(4) = 0.34, p = 0.89; Figures 6C and 6D). These results indicate that high 

number of spindles early during post-learning sleep may facilitate memory consolidation in 

young mice.

An acute session of SD increases total number of spindles in old animals during recovery

Previous research indicated that the time window for memory consolidation is extended or 

delayed in old animals in comparison to young ones (Schimanski and Barnes, 2010). These 

findings suggest that increases in spindle count occurring even several hours following 

learning may have a significant impact on memory consolidation in old animals. To test this 

idea, we examined spindle count, duration, and frequency during the recovery ad libitum 
sleep period following SD. We found a significant interaction between age group and sleep 

condition on spindle count (Fw(1) = 1.00; p < 0.02). Analysis of single effects revealed 

that OSD mice displayed more spindles than OCs (Tw(8.85) = 3.29; p < 0.01) and YSD 

mice (Tw(9.37) = 4.77; p < 0.001; Figure 6E). There were no differences in spindle duration 

during recovery (age: Fw(1) = 0.23, p = 0.64; sleep: Fw(1) = 0.30, p = 0.59; age versus 

sleep: Fw(1) = 1.0, p = 0.66; Figure 6F), but there was an interaction between age and sleep 

condition on spindle frequency (Fw(1) = 0.37; p < 0.05). This effect was driven by YSD 

animals displaying higher spindle frequency than old mice (Tw(10.29) = −3.73; p < 0.004; 

Figure 6G), a characteristic previously observed in adult humans following SD (Rosinvil et 

al., 2015).

We then examined whether there were differences in spindle characteristics across the 

groups at different times during recovery by subdividing this period into 1-h segments. 

We found a significant effect of segment (Fw(4) = 0.90; p < 0.009; Figure 6E) but no 
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interactions (p > 0.05). Analysis of single effects indicated that spindle counts during the 

last segment were higher than the preceding one (Zw = 3.05; p < 0.03; Figure 6E). There 

were no significant effects of segment, sleep, or interactions in spindle duration or frequency 

(spindle duration: sleep: Fw(1) = 0.01, p = 0.97; hour: Fw(4) = 0.37, p = 0.83; age versus 

sleep versus hour: Fw(4) = 0.08, p = 0.99; spindle frequency: sleep: Fw(1) = 0.01, p = 0.96; 

hour: Fw(4) = 0.17, p = 0.96; age versus sleep versus hour: Fw(4) = 0.09, p = 0.99; Figures 

6F and 6G). In summary, the spindle analysis revealed that there is a sustained increase in 

average number of spindles in OSD mice in comparison to OCs during recovery, which may 

serve to consolidate memory.

Because spindles are more prominent during NREM/REM transitions (Uygun et al., 2019), 

we also plotted sigma power during NREM/REM transitions and corroborated that our 

groups displayed the typical power shift (Figures 7A-7F). Sigma power increased during 

NREM prior to the transition and decayed rapidly at the onset of REM, as previously shown 

in mice (Uygun et al., 2019; Winsky-Sommerer et al., 2008; post-learning: Figures 7A and 

7B, Fw(1) = 52.85, p < 0.00001; recovery: Figures 7C-7F, Fw(1) = 259.31, p < 0.00001). We 

did not observe significant differences between young and old mice when we evaluated 

spindles during post-learning transitions, which parallels the absence of differences in 

average spindle count during this period, i.e., the differences were only observed during the 

1st h post-learning (Figure 7G; age: Fw(1) = 0.94, p = 0.39; interaction age versus transition 

phase: Fw(1) = 0.26, p = 0.60). However, YC and OSD animals displayed more spindles 

than YSD mice during sigma transitions occurring during recovery (Figure 7H; interaction 

between sleep and age: Fw(1) = 4.38, p < 0.05; YC versus YSD: Tw(17.24) = 2.70, p < 0.02; 

OSD versus YSD: Tw(1) = 2.55, p < 0.02).

Finally, to determine whether the number of spindles occurring 60 s prior to 

the NREM/REM sigma transitions were associated with performance, we calculated 

correlations between these measures. In all cases, regardless of whether, on average, 

the groups displayed OPR memory or not, we observed positive correlations between 

performance and spindle counts. However, the correlations reached significance for the YCs 

post-learning, as well as the OSD and YSD group during recovery (p < 0.05; Figures 7I-7L). 

These results indicate that spindle counts immediately prior to NREM/REM transitions are a 

good predictor of memory.

DISCUSSION

In this study, SD impaired OPR memory in young adult mice but unexpectedly enhanced 

performance in old mice. Successful OPR memory in YCs and OSD mice was associated 

with stability of context cells representing the static aspects of the context and remapping 

of object configuration cells coding the arrangement of the objects within the context. 

Although NREM bout length increased in both YSD and OSD groups, the latter group 

also exhibited fewer NREM bouts during recovery, suggesting a reduction in NREM 

fragmentation typically observed in old subjects. Improved memory performance was also 

associated with high spindle counts early during post-learning sleep in YCs and an increase 

in average spindle counts during recovery in OSD mice. Notably, spindle counts during 

NREM/REM sigma transitions were a good predictor of performance, especially for YCs 
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during post-learning sleep and SD groups during recovery. These data indicate that SD has 

differential effects in young and old mice. We suggest that acute SD produces changes in 

sleep microarchitecture that serve to ameliorate age-related cognitive deficits and improve 

the flexibility and stability of hippocampal representations.

Sleep fragmentation has been associated with impaired memory consolidation (Sportiche 

et al., 2010; Tartar et al., 2006; Ward et al., 2009a, 2009b). Because memory traces are 

reactivated during NREM, a phenomenon thought to be crucial for consolidation (Abel et 

al., 2013; Rasch and Born, 2013), reducing NREM fragmentation may be advantageous for 

cognitive function. However, NREM consolidation may not be sufficient to enhance memory 

because YSD animals also display longer NREM bouts but poor OPR performance. Strong 

evidence links spindles with memory consolidation (Antony et al., 2019; Ulrich, 2016), and 

alterations in spindles are good predictors of age-related cognitive decline (Taillard et al., 

2019). Therefore, the enhanced memory performance observed in OSD animals may be 

due to both improved NREM sleep quality and increases in spindle counts during recovery. 

Interestingly, YSD mice not only displayed low spindle counts but also an increase in 

spindle frequency during recovery sleep. Although the significance of spindle frequency in 

rodents remains to be determined, studies in children found that high spindle frequencies 

show negative correlations with cognitive abilities, whereas low ones show the opposite 

results (Chatburn et al., 2013; Geiger et al., 2011). These findings suggest that performance 

deficits in YSD mice could also be related to changes in spindle frequency.

How are spindles connected to hippocampal memory consolidation? One of the most 

prevalent theories suggests that memories are simultaneously formed in hippocampus and 

cortex (Preston and Eichenbaum, 2013). Following learning, additional crosstalk between 

these regions is necessary to strengthen the cortical engrams (Squire et al., 2015). In the 

hippocampus, patterns of neuronal activity are replayed during NREM sharp wave ripples 

(Buzsáki, 2015; Joo and Frank, 2018). Additionally, spindles generated in the thalamic 

reticular nucleus are also relayed to cortex during NREM (Contreras et al., 1996). Because 

cortical spindles are associated with increased dendritic activity (Seibt et al., 2017) and 

intracellular calcium (Niethard et al., 2018), their activity may serve to initiate plastic 

changes involved in cortical memory consolidation (Peyrache and Seibt, 2020). Critically, 

spindles serve to organize hippocampal replay during sharp waves (Varela and Wilson, 

2020), a phenomenon that likely facilitates hippocampal memory consolidation. In this 

context, the increase in spindle activity observed in OSD animals during recovery may 

facilitate mnemonic function by enhancing replay.

It was previously thought that the stability of place cells was critical for memory (Kentros 

et al., 2004; Muzzio et al., 2009a). However, recent findings in mice found that hippocampal 

cells expressing cfos, an activity marker associated with the formation of memory engrams 

(Liu et al., 2014), are much more unstable than cells that do not express this early gene 

(Tanaka et al., 2018). This confirms that subsets of cells participating in memory processes 

are unstable. Furthermore, unstable subpopulations coexist with stable ones, potentially 

having distinct mnemonic functions. These observations are in line with our finding 

suggesting that instability of object configuration cells is important for memory updating, 

whereas stability of context cells likely reflects coding of static contextual aspects.
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A previous OPR study in young adult rats allowed to sleep ad libitum showed that 

hippocampal CA1 neurons exhibited changes in firing rate, but not in the cells’ preferred 

firing locations, during the moved-object test (Larkin et al., 2014). Similarly, we observed 

rate remapping during the moved-object test in YC and OSD mice. However, we also 

found that successful learning was associated with place-field remapping in a subset of CA1 

neurons. The differences in stability between our observations and Larkin et al. may be 

related to the intrinsic differences between mice and rats (Kentros et al., 2004; Muzzio et al., 

2009b) and/or the different retention intervals used in these studies (5 min in Larkin et al. 

compared to ≥15 h in our study). In future studies, it will be important to determine whether 

SD also affects remapping in other tasks and/or improves the long-term stability of object 

configuration cells when objects are unmoved.

Other studies using the OPR task in young adult animals found that immediate post

training sleep is critical for memory. Performance is optimal when the retention interval 

occurs during the inactive light phase and animals are allowed to sleep (Binder et al., 

2012), whereas impaired OPR memory is consistently observed following post-training SD 

(Havekes et al., 2014; Prince et al., 2014; Sawangjit et al., 2018). Although these behavioral 

deficits have been attributed to complete disruption of memory consolidation, our results 

suggest otherwise. The long-term stability of context cells in YSD mice suggests that static 

representations of the environment are retrieved correctly, but the lack of remapping of 

object configuration cells suggests that the object arrangement is not properly updated. 

This interpretation is corroborated by the fact that YC mice do not show object cell 

remapping when the configuration remains stable (i.e., unmoved control task). The synaptic 

homeostasis hypothesis proposed by Tononi and colleagues posits that, rather than actively 

strengthening memories, sleep may instead serve to downscale synapses in order to allow 

further memory acquisition (Tononi and Cirelli, 2006). Our results suggest that, in young 

adult animals, SD may interfere with this process by making hippocampus-dependent 

representations more rigid and less flexible. Thus, the lack of remapping in response to 

environmental changes may reflect incomplete downscaling of synapses, which prevents 

correct encoding of a new object configuration. This idea is supported by observations 

showing that place cell remapping involves plastic mechanisms associated with synaptic 

depression (Schoenenberger et al., 2016).

Similarly to YSD mice, OC animals showed deficits in OPR performance, corroborating 

previous findings (Wimmer et al., 2012). However, hippocampal representations are 

different in these groups: context cells are stable in YSD mice, but not in OCs. Place 

cell instability in old animals has been previously reported (Barnes et al., 1997), along with 

impairments in several spatial tasks (Rosenzweig and Barnes, 2003) and sleep fragmentation 

(Wimmer et al., 2013). Our data suggest that age-related sleep fragmentation contributes to 

impaired consolidation of the static aspects of the environment.

It is well established that, in young adult animals, the initial hours after training are critical 

for initiating transcriptional events leading to the translation of new proteins important for 

memory consolidation (Bailey et al., 2004). Our data support this idea by showing that 

SD impairs young adults when it happens immediately following learning, but not when it 

is delayed 5 h after training, as previously shown (Palchykova et al., 2006). Interestingly, 
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it is thought that protein-synthesis-mediated consolidation is extended and/or delayed in 

old animals (Schimanski and Barnes, 2010). Moreover, it was shown that SD inhibits 

translational processes in young mice, but not in old ones (Naidoo et al., 2008), further 

suggesting that consolidation processes are different in old animals. Our data showing 

increases in spindle counts and enhanced OPR performance in OSD mice appear to 

corroborate this idea. Because mnemonic advantages in old animals disappear when SD 

happens 5 h after training, it is likely that the time window for consolidation in this group 

also has boundaries. Alternatively, delayed SD may not be beneficial because it pushes 

recovery sleep to the beginning of the dark cycle, when rodents are normally active, making 

the process more ineffective.

Increased delta power has been reported following SD (Davis et al., 2011). However, 

this effect depends on the duration of wakefulness (Dispersyn et al., 2017; Halassa et 

al., 2009), animal housing conditions (Kaushal et al., 2012), and several other variables 

(Davis et al., 2011). In our experiments, SD produced an increase in RDP in SD animals 

but no age differences. Other studies using similar normalization methods reported age

dependent increases in RDP (Mendelson and Bergmann, 1999; Panagiotou et al., 2017). 

These discrepancies may reflect differences in procedures, including length of SD (48 h 

versus 5 h) or recovery period (24 h versus 5 h) and/or evaluation of RDP at distinct times 

of the sleep cycle. For example, old rats display higher RDP than young ones only during 

the first part of the dark cycle (Mendelson and Bergmann, 1999). We evaluated RDP during 

the second half of the light phase, following training and SD. Therefore, our results do not 

contradict previous reports but rather highlight the effects of distinct analysis times and/or 

procedures.

In summary, our findings contribute to a better understanding of the effects of sleep quality 

on memory and hippocampal representations and have potential clinical implications for 

rescuing age-related cognitive deficits.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and/or code should 

be directed to and will be fulfilled by the Lead Contact, Isabel Muzzio 

(isabel.muzzio@utsa.edu)

Materials availability—This study did not generate new unique reagents.

Data and code availability—The code generated during this study is available in 

GITHUB. Tetrode and sleep datasets are uploaded in Mendeley.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Young and aged adult male C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME) 

were housed individually on a 12-hour light/dark cycle and allowed access to food and water 

ad libitum. The age range of animals implanted with EEG headstages and EMG wires was 

10-14 weeks old for young and 60-64 weeks old for old mice. For tetrode recordings, it was 
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10-24 weeks old for young and 60-76 weeks old for old. The wide age range in the latter 

group reflected the fact that positioning tetrodes in the cell body layer and optimization of 

recording stability required a different time frame from animal to animal.

The age range of animals implanted with EEG headstages and EMG wires was 10-14 

weeks old for young and 60-64 weeks old for old mice. For tetrode recordings, it was 

10-24 weeks old for young and 60-76 weeks old for old. The wide age range in the latter 

group reflected the fact that positioning tetrodes in the cell body layer and optimization of 

recording stability required a different time frame from animal to animal. Animal living 

conditions were consistent with the standard required by the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). All experiments were approved by 

the Institution of Animal Care and Use Committee of the University of Texas at San Antonio 

and were carried out in accordance with NIH guidelines.

METHOD DETAILS

Surgery—For sleep recordings, prefabricated 2 EEG and 1 electromyograph (EMG) 

channel headmounts (Pinnacle Technology) were implanted [from Bregma (in mm): frontal 

leads: AP: +3.2, ML: ± 1., and parietal leads: AP: −1.8, ML: ± 1.2] and secured with 

cyanoacrylate and dental cement. Two EMG leads were placed under the nuchal musculature 

and affixed with VetBond. For place cell recordings, animals were implanted with custom 

made drivable six-tetrode microdrives made in our laboratory using Neuralynx connectors 

(EIB-36-narrow). The microdrives were affixed to the skull with cyanoacrylate and dental 

cement, with recording electrodes placed directly above the dorsal hippocampus [from 

Bregma (in mm): AP, −1.7; ML, −1.6; form dura; DV, −1.0]. A ground wire was connected 

to a screw placed on the contralateral side of the skull. Tetrodes were made with 0.25 μm 

insulated wires (California Fine Wire, Grover beach, CA) with impedance values ranging 

300-600 KΩ at 1 kHz (1-1.5 KΩ before plating). Animals underwent at least one week of 

recovery prior to recordings.

Sleep deprivation (SD)—An automated SD cylindrical apparatus (Pinnacle Technology, 

Lawrence, KS) containing a bar spanning the enclosure was used for all SD procedures. 

Animals were individually housed in the apparatus for at least 24 hours prior to the 

beginning of the experiments with fresh bedding, food, and water, and were returned to 

the apparatus in between trials. To induce SD, the bar was rotated continuously by a motor 

at approximately 3 rpm with random reversals in rotational direction to prevent subjects 

from acquiring brief sleep periods through adaptation to the pattern of rotation. A trained 

experimenter verified visually that the bar rotated at all times and that mice did not use any 

alternative strategies to sleep.

Behavioral training—For all animals, behavioral procedures (e.g., exposure to the objects 

on day 1 and memory testing on day 2) were conducted during the first 4 hr of the 

light cycle (ZT 0-4). All animals were exposed to either SD or ad libitum sleep periods 

immediately following training. The object/place recognition task (OPR) was conducted in 

a square context (35cm x 35cm) with visual features on each wall for orientation (Figure 

1A). Everyday items (glass beer bottle, metal soda can, and plastic juice bottle) were used as 
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objects after pilot testing determined that on average mice showed roughly equal preference 

for all items. On day 1, animals were habituated to the empty context for a 6 min habituation 

trial (Hab). After the habituation, the 3 objects were arranged along one of the diagonal 

axes of the context and three 6-min object exploration trials (T1-3) were conducted. During 

the inter-trial interval (2 min), the animals were placed in their home cage and the context 

and objects were wiped down with 70% ethanol. Immediately following the third object 

trial (T3), animals in the experimental groups were housed in the experimental chamber 

and were SD for 5 hr, whereas controls were housed in the same chamber but allowed to 

sleep. On day 2, one object was moved from its original location to an adjacent corner and 

mice were tested for 6 min in the context with the moved object (Test). In the delayed SD 

procedure, animals were also trained as described above and allowed to sleep ad libitum 
for 5 hr following training before undergoing the delayed 5 hr SD, followed by 5 hr of 

recovery sleep. In the unmoved object control condition, animals were trained as described 

for the traditional OPR and allowed to sleep ad libitum following training, but all objects 

remained in their original locations during the test. In all conditions object positions were 

counterbalanced across trials.

Behavioral analysis—All object exploration trials were video recorded using Limelight 

(Actimetrics, Wilmette, IL) and analyzed offline by researchers blind to the group condition. 

All instances when an animal was oriented toward and touching an object with nose, 

vibrissae, and/or forelegs within 0-3 cm of the object were recorded as “object exploration”; 

contacting an object while passing or oriented away were not considered. Animals with an 

average object exploration time less than 10 s were excluded from analysis (2 mice were 

excluded due to poor exploration). Behavioral data from animals used for sleep analysis was 

combined with data from animals used for place cell recordings.

Object preference was calculated as the percentage of time spent exploring the moved object 

in the test session relative to total object exploration time during testing minus the relative 

time exploring the same object during training, as previously described (Oliveira et al., 

2010). This formula estimates object preference taking into account any potential object bias 

that animals may have during training:

% cℎange in preference = 100 ∗
moved object explorationtest
total object explorationtest

−
moved object explorationtrial 1 − 3
total object explorationtrian 1 − 3

A larger percentage change indicates greater preference for the moved object during the test 

session, while lower values indicate little change in preference from day 1 to day 2, after the 

object is displaced. To rule out novelty effects, we repeated the same analysis excluding trial 

1 when the objects were first introduced. To calculate preference for the unmoved objects we 

used the following formula, but replaced the numerator of the second term in the equation 

with the time spent exploring the unmoved object.

Plasma corticosterone measures—Young and old animals were randomly assigned 

into control and experimental conditions between 8-10 AM. The experimental animals 

were SD for 5 hours, whereas control mice were allowed to sleep ad libitum in the 

experimental chamber. Following this period, all animals were deeply anesthetized with 
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a mixture of ketamine and xylazine (100/10 mg/kg) and blood samples were extracted by 

cardiac puncture. Plasma was frozen and sent to Penn Diabetes Center Radioimmunoassays 

and Biomarkers Core for analysis (University of Pennsylvania, Philadelphia, PA). Blood 

collection was conducted during the second quarter of the light cycle between 2-4 PM for all 

animals.

Place cell recordings and analysis—Beginning 1-2 weeks after surgery, neural 

activity was screened daily in an environment different from the context used for 

experiments, advancing the electrode bundle 5-10 μm per day until pyramidal cells could 

be identified by their characteristic firing patterns (Ranck, 1973). Lowering the electrodes 

in small steps minimizes electrode drift and ensures recording stability for several days 

(Muzzio et al., 2009b; Wang et al., 2012). Additionally, all animals yielding unit data 

remained connected to the recording setup via a commutator until the end of the experiment 

to further minimize the possibility of electrode drift through plugging/unplugging. Long

term recordings were considered stable when cells had the same cluster boundaries over two 

sessions (at least 24 hr apart), and the waveforms obtained from all four wires of a tetrode 

were identical. Experiments only began when recordings were stable for 24 hr. Animal 

position and electrophysiological data were recorded using Cheetah Data Acquisition system 

(Neuralynx, Bozeman, MN), as previously described (Wang et al., 2012, 2015).

Units were isolated using MClust software (developed by A. David Redish, University 

of Minnesota) and accepted for analysis only if they formed isolated clusters with clear 

Gaussian ellipses and minimal overlap with surrounding cells and noise. All cells were 

inspected to rule out the presence of events during the 2 ms refractory period. Place field 

maps were generated using custom MATLAB code as previously described (Keinath et al., 

2014; Wang et al., 2012,2015). Briefly, the arena was first divided into a 20x20 pixel grid 

and activity maps (the total number of spikes in each pixel) and sampling maps (the total 

amount of time spent in each pixel) were computed. Both maps were then smoothed with 

a 3 cm Gaussian kernel. The smoothed activity map was then divided by the smoothed 

sampling map, which yielded the place field map. Any location sampled for less than 1 

s was considered un-sampled. Only periods of movement were included in the analysis 

(minimum walking speed: 2 cm/s). Cells that fired less than 25 spikes during movement 

or displayed peak firing frequencies below 1 Hz before smoothing were excluded from 

analysis. Firing rate patterns were characterized by computing the overall mean (MFR: total 

number of spikes divided by time spent in the arena), peak firing rate (PFR: maximum 

rate value), and out of field firing rate (OFFR: spikes occurring outside areas defined as 

place fields). Place fields were defined as any set of at least 9 contiguous pixels in which 

the average firing rate was at least 20% of the peak firing rate (Rowland et al., 2011). 

If a cell yielded multiple place fields, the sum of all fields was taken as the place field 

size. Rate remapping was calculated as the absolute difference between the peak firing rate 

of individual cells on consecutive trials. The spatial information content, a parameter that 

estimates how well the firing pattern of a given cell predicts the location of the animal, was 

computed as previously described (Skaggs et al., 1993) using the following formula IC = 

Σpi(Ri/R)log(Ri/R),where pi is the probability of occupying location i, Ri is the firing rate at 

location i, and R is the overall mean firing rate.
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Place field stability was assessed by calculating pixel-to-pixel cross-correlations between 

maps. The generated Pearson R correlation value reflected the degree of map similarity 

across trials for all cells. Overall global remapping was estimated by averaging the Pearson 

r correlation values across cells and animals in each condition. Additionally, cell types were 

classified into three categories depending on whether they remapped in the presence of the 

objects (object configuration cells), remained stable throughout training (context cells), or 

displayed both short- and long-term instability (unstable cells), with stability defined as a 

correlation value above 0.35, a threshold. This threshold was estimated using correlation 

scatterplots, distributions, and a machine learning algorithm (MATLAB kmeans) (Figures 

S3).

Isolation distance and L-ratio—Cluster quality was assessed by computing two 

metrics: isolation distance (ID, (Harris et al., 2001), and L-Ratio (Schmitzer-Torbert et al., 

2005). Both measures use the Mahalanobis distance (D2
i,c), which calculates the distance 

between points in a high dimensional space where dimensions are correlated. D2
i,c is 

calculated as follows:

Di, c2 = (xi − μc)TEc−1(xi − μc)

In this formula, xi is the feature vector for spike i, μc is the mean of the of the distance values 

of the spikes in cluster c, Ec is the covariance matrix of the spikes in c. In all our calculations 

we incorporated spikes from other clusters as well as noise.

ID estimates how distant the cluster spikes are from other recorded spikes on the same 

tetrode. Thus, once Mahalanobis distances are calculated, the values are sorted closest to 

furthest. If a cluster contains N number of spikes, ID distance is the D2 of the Nth closest 

noise spike. A high ID means that non-cluster spikes are located far away from the evaluated 

cluster, a low value means the opposite. The ID is not normalized against cluster size. As 

such, clusters with less spikes tend to have lower ID values than those with many spikes.

L-Ratio estimates how well cluster spikes are separated from other spikes recorded from 

the same tetrode. This calculation is based on the assumption that for Gaussian spike 

distributions, the Mahalanobis distance will follow a χ2 with eight degrees of freedom (df). 

First, the parameter L is calculated as follows:

L − Ratio(c) = 1
nc ∑

i ∉ c
1 − CDFχdf

2 Di, c2

In this formula, (i not in C) are the spikes that are not part of the cluster, CDF χ2
df is the 

cumulative χ2 distribution with 8 degrees of freedom. L-ratio is defined as L divided by the 

number of spikes in the cluster (nc). A low L-Ratio indicates good cluster separation, a high 

L-Ratio the opposite.

Verification of tetrode placement—Tetrode placements were verified after completion 

of the experiments by passing a small current (0.1 mA) for 5 s through the tetrodes that 
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yielded data in anesthetized animals. The brains were removed and fixed in 10% formalin 

containing 3% potassium ferrocyanide for 24 hr. The tissue was cryosectioned and stained 

using standard histological procedures (Powers and Clark, 1955).

Sleep state analysis—EEG/EMG signals were recorded for 10 hours following training 

on day 1 (Pinnacle Technology, Lawrence, KS). The headmounts were attached to a 

preamplifier for first stage amplification (100x) and initial high-pass filtering (0.5 Hz for 

EEG and 10 Hz for EMG). All signals were then sampled at 400 Hz and digitized (Sirenia 

Acquisition software, Pinnacle Technology). Animals with excessive noise in any channels 

(> 10% of epochs classified as artifact) were discarded from analysis (2 animals were 

excluded from the post-training session due to noise and 2 animals were discarded from all 

sessions due to extremely noisy EEG and EMG).

Sleep recordings were divided into 4 s epochs. 5% of epochs were randomly selected 

for manual scoring with Sirenia Sleep analysis software using EMG power and EEG 

amplitude and frequency to categorize an epoch as a REM, NREM, or Wake states. Scoring 

randomly selected epochs produces more reliable outputs than continuous manual scoring 

of epochs (Rytkönen et al., 2011). The partially scored EEG/EMG files were then exported 

to MATLAB and the remaining epochs were analyzed using a naive Bayesian classifier, 

a highly accurate method that has been shown to produce inter-rater agreements of 92% 

(Rytkönen et al., 2011). The scoring method yielded total time, number of bouts, and bout 

length in wake, NREM, and REM. A bout was defined as a period of continuous epochs in a 

particular state.

Classifier validation—Complete visually scored data were compared with the output 

of the Bayes classifier to re-validate the method in a subset of animals. Additionally, 

outputs obtained with 5% and 10% manually scored inputs were compared to determine the 

effectiveness of the classifier using different amounts of input data in subsets of animals. To 

determine the accuracy, sensitivity and specificity of the classifier, a confusion matrix was 

created for each mouse visually scored. An experienced researcher visually scored 100% of 

the 4 s epochs comprising 5 hours of EEG and EMG activity. The researcher then selected 

only 5% of the epochs of the same recording. The 5% of visually scored epochs and the 

EEG and EMG recording were fed into the Bayes classifier to generated 5 hr of algorithm 

scored data. The scores from the researcher and classifier were then compared per epoch 

and added into the confusion matrix (y axis represents algorithm scoring and x axis visual 

scoring). Each entry of the confusion matrix was then divided by the total number of epochs 

and multiplied by 100 to turn the entries into percentages. An average confusion matrix 

was then computed for each age group (young and old, respectively). Confusion matrix 

measures:

a, e, and i (shown in gray in the diagram below) are the boxes that represent values in which 

algorithm and visual scoring coincided. Accuracy was calculated as follows:

Accuracy = (a + e + i)/(a + b + c + d + e + f + g + h + i)

Wake Sensitivity (True Positive) = a / (a + d + g)

Yuan et al. Page 20

Cell Rep. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wake Specificity (True Negative) = (e + f + h + i)/(b + c + e + f + h + i)

NREM Sensitivity (True Positive) = e / (b + e + h)

NREM Specificity (True Negative) = (a + b + g + i)/(a + d + g+ c + f+i)

REM Sensitivity (True Positive) = i / (c + f + i)

REM Specificity (True Negative) = (a + b + d + e)/(a + b + d + e + g + h)

Where the entries of a confusion matrix are denoted as follows:

Algorithem Scorning (predicted)

Wake a b c

NREM d e f

REM g h l

Wake NREM Visual scoring (Truth) REM

Power spectra and relative band power—The average power spectra were calculated 

using wavelet analysis. The EEG time series was down sampled from a sampling rate of 

400 Hz to 100 Hz and then the continuous wavelet transform (WT) was computed using the 

MATLAB command “cwt.” The resulting output was a matrix where columns represented 

time and rows frequencies. The wavelet power was computed by taking the absolute value 

of the wavelet transform. Since the frequency spacing of the continuous wavelet transform is 

not uniform (unlike the FFT), the power over a uniform frequency spacing was interpolated 

from 0.25 to 30.0 Hz in increments of 0.25 Hz. The relative band power was found by 

summing the power spectra over a band’s frequency range divided by the total power in a 

given state. The frequency bands were defined as follows: Delta: 0.25-4 Hz, Theta: 4-10 Hz, 

Sigma: 10-15 Hz, Beta: 15-25 Hz.

Spindle detention—Spindle detection during NREM was computed using a validated 

automated system for rapid and reliable detection of spindles using mouse EEG. This 

method eliminates observer bias and allows quantification of sleep parameters including 

count, duration, and frequency as well as rapid quantification during selective sleep 

segments. Briefly, the raw EEG signal was bandpass filtered using the designfilt MATLAB 

function, which was then applied to filter the data using the filtfilt function with the 

following parameters: First stopband frequency = 3 Hz, first passband frequency = 10 

Hz, second passband frequency 15 Hz, second stopband frequency = 22 Hz, with stopband 

attenuation levels of 24 dB. Once the EEG was filtered, the root-mean squared of the 

signal was calculated using a 750 ms window to smooth the data. This window was 

selected to minimize erroneous detection of artifacts. The RMS values were then cubed to 

enhance separation of signal and noise. Finally, spindles were detected using a two-threshold 

approach that sets values from the mean cubed RMS transform of the NREM state. The 

lower threshold was calculated as 1.2 x mean cubed RMS and the upper threshold as 3.5 x 

mean cubed RMS (Uygun et al., 2019).
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NREM/REM sigma transitions—Each EEG recording was processed individually. The 

sleep state scored data were used to compute the mean and standard deviation under Wake. 

These values were then used to z-score the remaining EEG data (all states). The data were 

down sampled from 400 to 100 Hz. The continuous wavelet transform was then computed, 

and its absolute squared value was calculated. Frequencies from 0.25 to 30.0 Hz were 

interpolated in increments of 0.25 Hz. Sigma power over time was computed by summing 

the spectrum over the sigma band (10-15 Hz) (regardless of state). The scored data were 

then used to compute the mean sigma power (across the entire recording) of only NREM 

epochs. The sigma power series was divided by the mean sigma power for normalization. 

The score data were used to detect all instances of NREM to REM transitions, and 60 s of 

normalized sigma power were selected before and after each transition (120 s total). The 

average NREM to REM sigma power transition time series was then computed by summing 

up all transitions and dividing by the total number of transitions for each mouse and an 

average for each age group and sleep condition was generated.

Spindle counts during sigma transitions—The average NREM to REM sigma power 

transition time series were separated into 3 s windows and numbers of spindles (calculated 

as stated above) were added for comparison across groups and correlations with OPR 

performance.

QUANTIFICATION AND STATISTICAL ANALYSIS

Since the experimental data had irregular variability, e.g., some data did not fulfill the 

homoscedasticity assumption, we opted for robust statistical analysis, in order to protect the 

findings against such problems (Wilcox, 2012). Therefore, all the results obtained through 

experiments are summarized in a Box-Plot graph according to robust statistics. All statistical 

details are provided in Data S1. For all tests, p values are noted in the last column of each 

Table.

For all the behavioral and EEG/EMG implanted animals, the N represented the number of 

animals in each group. For tetrode recordings, the N represented the number of cells. In all 

cases the numbers of animals and cells are noted in the Figure legends and results. For all 

experiments, p level was set using an alpha level of 0.05. For tetrode recordings, criteria 

for exclusion included poor sampling of the arena below 75% of the total area (1 young 

mouse was excluded). For EEG/EMG recordings, criteria for exclusion included extreme 

noise in the EEG or EMG wire (2 old animals were excluded in the post-learning session), 

or unattachment of the EMG wire or EEG headstage during the course of the experiment (1 

old and 1 young animal were excluded).

For the highest order design, the four groups of mice were arranged in a 2 Age (Young * 

Old) x 2 (Control * SD) Between Factorial Design, to analyze the independent effect of 

Age group or Sleep condition, compared to the combined effect (or interaction) between 

the two manipulations. In all analyses, we first tested Age by Sleep interactions. If there 

was a significant interaction, we tested for simple effects of Age on each individual Sleep 

condition, and the simple Effects of Sleep condition on each individual Age group, all 

this through an analysis of contrasts. When there was no significant interaction, the main 
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effects analysis did not require post hoc tests since this was a 2x2 design. In some cases, 

the design required 1-way analysis (equivalent to t test since the variable had only two 

levels), while in other cases the design was more complex, requiring a 3-way type, e.g., 

2x2 basic manipulation, as well as the temporal trial (moment) manipulation as a factor of 

repeated-measures.

Robust analyses of variance on trimmed means (Fw statistic) were conducted by using the 

method described by Wilcox (2012), based on the generalization of Algina and Olejnik 

(1984) from the Johansen (1980) matrix algebra of factorial designs. This statistic is 

distributed according to a Chi-square, whose degrees of freedom (df) correspond to the 

number of contrasts necessary to decompose the variability of the effect, as is the case 

in the numerator of parametric F ANOVA (e.g., df = 1 for main effects of Age, or Sleep 

Condition, and df = 1*1 or 1, for interaction of both). Robust contrasts were conducted by 

a t test trimmed variant (TW on between, and ZW on within factors), based on Yuen-Welch 

post hoc test with Rom’s sequentially rejective method to control Type I error for multiple 

t tests [see details see, Wilcox, 2012]. Specifically, this robust t test is estimated from the 

squared standard error of trimmed means, calculated using the Winsorized variance. In the 

case of TW, the degrees of freedom are estimated with a logic similar to that of the t-student 

for samples with variances uneven but replacing the standard error of the mean by the 

robust standard error of trimmed means. Specifically, the distribution of the test statistic 

is approximated using a Student T-distribution with degree of freedom determined by the 

error variability (i.e., sample variance) and sample sizes (Wilcox, 2012). In contrast, the Zw 

test does not have degrees of freedom associated with the test statistic since its value is 

based on a single pool of critical z values from a normal distribution, regardless of sample 

size. In order to gain sensitivity, given the complexity of some of the designs (e.g., 3-way 

mixed) and the presence of outliers, the probabilities associated with the Trimmed ANOVA 

were re-estimated using specific tests of first-order interactions (Patel and Hoel, 1973) and 

Bootstrap-t methods (Wilcox, 2012) in the case of second-order interactions. On the other 

hand, in the designs that included some variable of repeated-measures, the basic test of 

contrasts was re-estimated using Percentile Bootstrap (Wilcox, 2012). All the functions that 

allow the robust ANOVA to be carried out according to all the types of designs used in the 

research are specified below. Finally, in all these analytical steps, we added the estimated 

effect size from Wilcox robust “Explanatory Measures.” Values of 0.15, 0.35, and 0.50 

correspond to the three bands of interpretation of the effect size as small, moderate, and 

large, respectively, from Wilcox robust interpolation of classical 0.2, 0.5, and 0.8 Cohen 

bands. Statistical significance was set at alpha 0.05. Data are graphed using boxplots, plus 

the trimmed mean (trimmed = 0.2).

All statistical analyses were performed using GNU R software, version 4.0.0 (R 

Development Core Team, 2020) with parallel, data.table, Hmisc, and ggplot2 libraries, as 

general libraries, and Wilcox’ Rallfun-v37.txt library (https://dornsife.usc.edu/labs/rwilcox/

software/) for specific robust ANOVAs. Ask for the functions bbwtrim, and bbwtrimbt for 

3-way Mixed designs [e.g., 2 Age (Young, Old) x 2 Sleep (Control, SD) x 5xS Trials (HAB, 

T1, T2, T3, Test)]; t2way, t2waybt, rimul, bdm2way, ESmainMCP, and esImcp for 2-way 

Between designs [e.g., 2 Age (Young,Old) x 2 Sleep (Control, SD)]; bwtrim, bwtrimbt, 
ESmainMCP, and esImcp for 2-way Mixed designs [e.g., 2 (Young, Old) x 5xS Hours (Hour 

Yuan et al. Page 23

Cell Rep. Author manuscript; available in PMC 2021 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://dornsife.usc.edu/labs/rwilcox/software/
https://dornsife.usc.edu/labs/rwilcox/software/


1 to Hour 5)]; t1way for 1-way Between design [e.g., 2 Age (Young Control, Old Control)]; 

yuen, yuenv2, and lincon for contrasts (or t tests) with independent samples, and yuendv2, 

rmmcp, and rmmismcp for contrasts (or t tests) for dependent samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Sleep deprivation improves memory in old mice but worsens it in young ones

• Sleep deprivation decreases hippocampal flexibility and spindle counts in 

young mice

• Increased spindle counts are associated with improved memory in old mice

• Sleep deprivation improves the quality of hippocampal representations in old 

mice
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Figure 1. OPR behavioral performance
(A) Schematic of behavioral paradigm.

(B) Percent change in preference for displaced object (young control [YC]: n = 16; young 

SD [YSD]: n = 15; old control [OC]: n = 13; old SD [OSD]: n = 15).

(C) Total object exploration time during training and testing.

(D) Percent change in preference for displaced object in young (n = 6) and old (n = 7) mice 

receiving delayed SD (5 h after training).

(E) Levels of plasma corticosterone (YC: n = 5; OC: n = 5; YSD: n = 5; OSD: n = 6).

In all figures, data are graphed using boxplots where the inner line corresponds to the 

median, the lower box the first quartile, the upper box the third quartile, the extending 

lines (whiskers) the minimum and maximum, and the diamond the trimmed mean used for 

analysis. The trimmed mean was set at 0.2 for all age groups and sleep conditions. T1–T3, 
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training trials. Asterisks (*) represent significance using alpha = 0.05. Statistical details are 

in Data S1.
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Figure 2. Rate and global remapping and percentage of different cell types during OPR 
performance
(A) Performance comparing animals implanted with tetrodes or EEG/EMG.

(B) Cluster isolation distance.

(C) Average rate remapping for all groups across trials.

(D) Average global remapping (map similarity) for all groups across trials.

(E and F) Percentage of context, object configuration, and unstable cells recorded in young 

(E) and old (F) mice.

YC: 6 mice, 60 cells, range of cells per animal: 6–16; YSD: 4 mice, 50 cells, range of cells 

per animal: 8–18; OC: 5 mice, 36 cells, range of cells per animal: 5–13; OSD: 5 mice, 41 

cells: range of cells per animal: 4–13. Hab, habituation. Asterisks (*) represent significance 

using alpha = 0.05. Statistical details are in Data S1.
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Figure 3. Cell type remapping across sessions during OPR performance
(A) Schematic of correlation design.

(B–D) Average global remapping of context (B), object configuration (C), and unstable (D) 

cells across trials and corresponding examples of color-coded place cell rate maps, trajectory 

spike maps, and waveforms. In all place cell maps, blue indicates that the animal has visited 

a region, but the cell has not fired; vivid colors indicate high neuronal activity (as shown in 

the color bar at the upper right corner).The number on top of each map indicates the peak 

firing rate (Hz) used to normalize the map colors. In all trajectory maps, red dots represent 

location of action potentials and gray lines the path of the animal. Waveform similarity 

indicates recording stability during the 24-h period of training and testing.

Context cells: YC = 23 cells; YSD = 20 cells; OC = 8 cells; OSD = 9 cells. Object cells: YC: 

15 cells; YSD: 13 cells; OC: 17 cells; OSD: 14 cells. Unstable cells: YC = 22 cells; YSD = 
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17 cells; OC = 11 cells; OSD = 18 cells. Asterisks (*) represent significance using alpha = 

0.05. Statistical details are in Data S1.
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Figure 4. Place cell stability during unmoved object control task
(A) Schematics of the task.

(B) Isolation distance.

(C–E) Examples of context (C), object configuration (D), and unstable (E) rate maps, 

trajectory spike maps, and waveforms recorded from young and old control mice trained in 

the unmoved object control task. Color code is the same as Figure 3. Waveform similarity 

indicates recording stability during the 24-h period of training and testing.

YC: 3 mice, 30 cells; OC: 4 mice, 24 cells. Asterisks (*) represent significance using alpha = 

0.05. Statistical details are in Data S1.
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Figure 5. Sleep patterns, average power spectra, and relative delta (RDP) and theta (RTP) 
during post-training and recovery sleep in young and old mice
(A–C) Percentage of total time (A), number of bouts (B), and bout length (C) in wake, 

NREM, and REM during post-training sleep in young and old control mice.

(D–F) Percentage of total time (D), number of bouts (E), and bout length (F) in wake, 

NREM, and REM during recovery sleep in control and SD groups.

(G–J) Average NREM/REM power spectra during post-learning (G and H) and recovery (I 

and J).

(K–N) Average NREM/REM RDP and RTP during post-learning (K and L) and recovery (M 

and N).

RDP: 0.25–4 Hz; RTP: 4–10 Hz. YC: n = 11; YSD: n = 11; old control (n = 8); old SD (n = 

10). Asterisks (*) represent significance using alpha = 0.05. Statistical details are in Data S1.
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Figure 6. Spindle characteristics
(A) Representation of the automated spindle-detection method. Top panel shows cubed 

root-mean-square (RMS) of the filtered EEG. The second, third, and fourth panels show 

the band-pass filtered EEG, the unfiltered EEG, and the results of the spindle detection, 

respectively. The bottom panel depicts the corresponding EMG signal. Red marks the 

regions of the signal where spindles are detected; 1 indicates the presence and 0 the absence 

of spindles.

(B–D) Spindle counts (B), duration (C), and frequency (D) during the post-learning sleep.

(E–G) Spindle numbers (E), duration (F), and frequency (G) during recovery.

YC: n = 11; YSD: n = 11; OC: n = 8; OSD: n = 10. Asterisks (*) represent significance 

using alpha = 0.05. Statistical details are in Data S1.
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Figure 7. Spindle counts during NREM/REM sigma transitions and memory performance
(A–F) Plots showing NREM/REM sigma transitions for controls during post-learning (A 

and B) and control and SD groups during recovery (C–F).

(G and H) Spindle counts during post-learning (G) and recovery (H) NREM/REM sigma 

transitions.

(I) Correlations between OPR memory performance and spindle counts during NREM/REM 

sigma transitions.

(J–L) Scatted plots showing significant correlations between performance and spindle counts 

during sigma transitions in YC post-learning (J), and YSD (K) and OSD (L) during 

recovery.

YC: n = 11; YSD: n = 11; OC: n = 8; OSD: n = 10. Asterisks (*) represent significance 

using alpha = 0.05. Statistical details are in Data S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data This paper https://data.mendeley.com/datasets/yy3kbv3v8n/1

Experimental models: organisms/strains

C57BL/6J The Jackson Laboratory 000664 Aged 000664

Software and algorithms

MATLAB custom code for place cells 
analysis

This paper https://github.com/marcnormandin/
muzziolab_sleep_tetrodes_objecttask

Custom GNU R code This paper (R Development 
Core Team, 2020)

https://github.com/ManuMi68/MuLaNA

EEG custom code This paper https://github.com/marcnormandin/muzziolab_eeg_2021

Cluster cutting program MClust http://redishlab.neuroscience.umn.edu/mclust/MClust.html
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