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Two stages of the creative writing process were characterized through mobile scalp

electroencephalography (EEG) in a 16-week creative writing workshop. Portable dry EEG

systems (four channels: TP09, AF07, AF08, TP10) with synchronized head acceleration,

video recordings, and journal entries, recorded mobile brain-body activity of Spanish

heritage students. Each student’s brain-body activity was recorded as they experienced

spaces in Houston, Texas (“Preparation” stage), and while they worked on their creative

texts (“Generation” stage). We used Generalized Partial Directed Coherence (gPDC) to

compare the functional connectivity among both stages. There was a trend of higher

gPDC in the Preparation stage from right temporo-parietal (TP10) to left anterior-frontal

(AF07) brain scalp areas within 1–50 Hz, not reaching statistical significance. The

opposite directionality was found for the Generation stage, with statistical significant

differences (p < 0.05) restricted to the delta band (1–4 Hz). There was statistically

higher gPDC observed for the inter-hemispheric connections AF07–AF08 in the delta

and theta bands (1–8 Hz), and AF08 to TP09 in the alpha and beta (8–30 Hz) bands.

The left anterior-frontal (AF07) recordings showed higher power localized to the gamma

band (32–50 Hz) for the Generation stage. An ancillary analysis of Sample Entropy

did not show significant difference. The information transfer from anterior-frontal to

temporal-parietal areas of the scalp may reflect multisensory interpretation during the

Preparation stage, while brain signals originating at temporal-parietal toward frontal

locations during the Generation stage may reflect the final decision making process to

translate the multisensory experience into a creative text.

Keywords: creative writing, creativity, EEG, MoBI, generalized partial directed coherence

1. INTRODUCTION

Creative writing involves embodied practices that physically and emotionally connect us with our
surroundings (Rivera Garza, 2013). We investigated creative writing as a bodily experience, in
which the author’s interaction with the world around them (physically, verbally, perceptually, and
emotionally) informs the preparation and elaboration of their written work. In this way, as authors
actively seek and engage in experiences in the world around them through their body and mind,
these experiences affect the aesthetic and semantic components of their creative output.
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Previous studies have used scalp electroencephalography
(EEG) to analyze neural correlates of writing. For example, in
a study using a custom test to evaluate reading and writing
achievement to assess educational grade requirements, Harmony
et al. (1990) found that high correlation in the delta and
theta bands in frontal and temporal electrodes was related to
poor writing performance, while high correlation in the alpha
band in occipital areas is related to high writing performance
in a group of 81 children. The same research group (Marosi
et al., 1995) reported high coherence in delta (1–4 Hz), theta
(4–8 Hz), and beta (12–24 Hz) bands associated with poor
performance in reading and writing in 84 children. Conversely,
high coherence in the alpha (8–12 Hz) band was related to
proficient reading and writing. Coherence metrics between pairs
of EEG electrodes in different scalp areas have been shown to
have a positive correlation with an individual’s creativity level,
in short creative verbal and visual tasks (Petche et al., 1997),
and in the Torrance Test of creative thinking (Jaušovec and
Jaušovec, 2000a). These findings suggest that coherence has a
more intense relationship with creative performance than EEG
frequency-band-power metrics.

Neuroimaging studies with functional magnetic resonance
imaging (fMRI) have been used to measure functional
connectivity (FC) of participants at rest, the resting state
FC (rFC). Lotze et al. (2014) found decreased rFC between
inter-hemispheric areas BA 44, and left area BA 44 with the
left temporal lobe for individuals who scored higher in a verbal
creativity index test. These brain areas are part of Broca’s area,
a region located in the frontal part of the left hemisphere of the
brain that is active in semantic tasks, such as semantic decision
tasks (determination of whether a word represents an abstract
or a concrete entity) and generation tasks (generation of a verb
associated with a noun).

In studies where participants generated original text
compositions, fMRI studies have also analyzed the human
creative process through its distinct stages of preparation,
generation, and revision. Shah et al. (2013) studied the
Preparation and Generation stages, by the implementation of an
actual creative writing paradigm. They found distinct cortical
networks associated with each stage in a fronto-parieto-temporal
network. The Preparation stage, “brainstorming,” was found to
activate the premotor cortex (involved in the cognitive-motor
preparation to write), language processing areas in the bilateral
IFG and left temporal areas, and left lateral orbito-frontal
regions for higher order cognitive processing. Creative writing
activated areas associated with handwriting (primary motor
cortex and somatosensory areas), and cognitive processing
such as episodic memory retrieval and semantic integration in
bilateral hippocampi and temporal poles, with right-lateralized
activation in posterior and anterior lobes. The same research
group found that expert writers had higher activation in medial
prefrontal cortex (mPFC) and basal ganglia areas (Erhard et al.,
2014). Liu et al. (2015) studied the generation and revision
stages and reported that the mPFC was active during both stages
and the responses in dorsolateral prefrontal cortex (DLPFC)
and Intraparietal sulcus (IPS) were deactivated during the
Generation stage.

Differences in brain activity for the distinct stages of the
creative process however, remain mostly unexplored in the
EEG domain; particularly for creative writing tasks. As fMRI
studies represent indirect evidence about cortical dynamics in
cognitive-motor tasks such as creative writing, it is important to
use time-resolved, direct methods that assess brain dynamics in
action and in context in natural settings. In this regard, mobile
EEG allows for the collection of brain activity data in more
natural settings, where the users have freedom of motion and can
freely walk around their surroundings (Cruz-Garza et al., 2019).

To better understand the brain dynamics of writers working
’in action and in context’ in both preparatory and generative
stages of creative writing, we integrated wearable MoBI
technology into a creative writing course in Spanish at the
University of Houston. The course was designed and led by
Prof. Cristina Rivera Garza at the University of Houston. The
experiment was designed together with the aims of the course
to provide an equal consideration in the experimental design
and evaluation process to best assess the creative process in an
authentic creative writing experience.

Specifically, we studied the process of creative writing with
eighteen Spanish heritage speakers, as they engaged in the
Preparation and Generation stages of their writing. The students
were asked to walk through different areas of the City of
Houston to experience a variety of pre-selected contextual
environmental settings (we called them “prompts”) chosen by
the instructor, and use the experience to provide aesthetic and
semantic content in their narratives. This study aimed to use
scalp electroencephalography (EEG) to identify brain features or
neural markers related to the different stages of creative writing
where free behaving participants were able to move, explore their
surroundings to inform their creative texts (Preparation stage),
and write at their own time (Generation stage).

This study investigates the neural features associated with
creative writing using quantitative and mobile EEG, through
the characterization of the Preparation and Generation of
creative texts in students that participated in a creative writing
workshop. The students developed their writing skills throughout
the workshop, and physically interacted with space and their
communities during the Preparation stage. The Generation stage
consisted of creating a first draft for each of their assignments.

2. METHODS

2.1. Human Participants
Eighteen heritage Spanish speaking undergraduate students
participated in a Spanish language creative writing upper-
division undergraduate workshop (SPAN 3308 YOUR BRAIN
ON WRITING: Writing, Body, and Neuroaesthetics) at the
University of Houston. The participants provided Anonymous
Informed Consent, approved by the University of Houston
Institutional Review Board, at the beginning of the workshop.
The students received training to set up their own EEG headsets
and body-mounted video cameras for the experiment. The
students were responsible for the collection of EEG data, video,
and to keep a diary with notes on each recording session.
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FIGURE 1 | Creative writing workshop 1. Pilot study. Timeline for the EEG

recording sessions in the creative writing workshop: Talleres de escrituras.

2.2. Experimental Task
Through readings and writing prompts, participants were
asked to experience and acknowledge the physicality of the
writing process and to relate it to the materiality of language.
Prompts, designed by the instructor, encouraged students to
develop and record a series of specific writing preparation
tasks that emphasized the physicality of the participants’
bodily experience (e.g., walking, running, climbing in different
locations of Houston) as part of the required assignments
for the workshop. The writing prompts are provided in the
Supplementary Materials.

The participants were then asked to utilize these prompted
experiences to generate their creative texts in a 3–5 page
suggested draft length (double space, 11 point font). The students
were instructed to use the EEG and video cameras during both
their prompted physical activities and writing time. There could
be more than one session of walking and writing EEG recording
sessions per prompt.

A timeline schematic of the creative writing workshop is
represented in Figure 1. The workshop was 16 weeks long, with
six creative writing exercises distributed in weeks 2, 4, 6, 8, 11,
and 12. In the weeks in between the creative writing sessions, the
students would discuss their peers’ texts and improve their own
previous drafts. At the end of the workshop, there was a public
reading of the finalized creative texts.

This experimental setup produced data in two stages of the
creative process: the Preparation stage and the Generation stage.
The Preparation stage involved tasks such as walking, active
observation of their environment, taking notes, and ideation.
For the Generation stage, the task involved reviewing their
notes and creating a creative narrative, with iterative revisions
and modifications.

2.3. Equipment
EEG and head acceleration data were captured using Muse
headsets (Interaxon, Toronto, Ontario, Canada). The headset
has seven sensors, two out of these seven sensors are positioned
at the frontal region (AF07 and AF08), two at temporal-
parietal region (TP09 and TP10), and the remaining three
sensors served as electrical reference located at the center
of the forehead (Fpz). The 61 g headset has a built-in
accelerometer that was used to measure the head acceleration.
EEG data for each channel are measured in microvolts
(µV) with a sampling rate of 220 Hz at 10-bit resolution.

The acceleration data was recorded at 50 Hz. Additionally,
the data recordings contain a vector indicating contact
quality (sampled at 10 Hz) for each electrode, rating contact
quality as “indicator = 1: good,” “indicator = 2: acceptable,”
“indicator ≥ 3: bad.” (see http://developer.choosemuse.com/
hardware-firmware/hardware-specifications for full technical
specifications). Previous experiments have shown the capacity of
the Muse headsets for the collection of mobile EEG data outside
a laboratory setting (Ravindran et al., 2019).

The participants set up their own headset with a custom
application given to them in a personal tablet, which recorded
EEG and head acceleration data and labeled the participant
identification number and date/time for the recording session
automatically. The data recording setup is illustrated in Figure 2.
Additionally, the participants set up body-cameras (Conbrov,
ShenZhen, China) to record their exploration (Preparation) and
writing (Generation) sessions. The camera recorded 720 HD
video on a 75◦ wide-angle ens.

2.4. Data Collection
The students were asked to make five writing exercises and
collect their brain activity as they walked and observed
their environment (Preparation stage), and created their
texts (Generation stage). Only writing assignments that were
submitted and accompanied by both video and EEG data were
considered for the analysis. From the 18 participants, data
from eleven students was discarded due to incomplete data
(video or EEG missing) or assignments not submitted on time.
This represents a yield of 39% of the total data collected for
further analysis.

The Preparation and Generation stages for each writing
exercise were done in several distinct recording sessions as each
stage could take several recording sessions to complete during the
semester. We kept each data recording as a separate session to
analyze. Recording sessions were considered for analysis when
all four electrodes had a “good” contact indicator for at least one
continuous minute of data.

2.5. Pre-processing
Data recordings with both video (providing contextual cues)
and EEG were considered for this analysis. An online notch
filter was applied on the EEG data to remove the 60 Hz power
line noise (available as a user preset for the headband). We
applied an offline 4th order, zero-stage Butterworth band-pass
filter from 1 to 100 Hz. Artifact Subspace Reconstruction (ASR)
(Mullen et al., 2013) was used for the removal of short-time high-
amplitude artifacts in the continuous data as in Ravindran et al.
(2019). Calibration data for ASR for each student was computed
from the entire length of the trial using automated methods. A
cut off threshold of ten standard deviations was used for the
identification of corrupted subspaces, and a window length of
500 ms with a step size of 250 ms was used for the ASR. Among
the segments, channels having corrupt PC loading to be >0.75
were removed. The remaining segments were then inspected
automatically to remove data from any electrode disconnections
from the scalp (tracked by the headband status data), any abrupt
change of voltage >100 µV, or EEG data collected while there
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FIGURE 2 | Equipment setup and EEG data pre-processing. (A) Raw (black) and pre-processed (orange) EEG data. Shaded areas indicate rejected intervals. (B) A

student wearing the EEG headset during the Generation stage.

was an absolute acceleration magnitude larger than 1 ms−2

(Ravindran et al., 2019). After removing noisy segments of data
with our pre-processing methods, 77% of the data was kept
for analysis.

2.6. Feature Extraction
2.6.1. Functional Connectivity, FC
Functional Connectivity is defined as the statistical association
among two or more anatomically distinct time-series and can be
assessed with EEG coherence measures or fMRI (Friston et al.,
1993). FC analysis was performed upon the EEG channels by
computing the generalized partial directed coherence (gPDC)
measure (Baccala et al., 2007) over 6 s time segments with 50%
overlap, a short-time based stationary approach (Omidvarnia
et al., 2011). Partial coherence measures have been found to
perform well with low-density EEG (Barzegaran and Knyazeva,
2017), making it a useful tool for our EEG dataset of four
channels. PDC is a frequency-domain metric that provides
information about directionality in the interaction between
two signals among a larger number of signals (Baccalá and
Sameshima, 2001), but it is dependent on the scale of the
individual inputs (Blinowska, 2011). To account for this, Baccala
et al. (2007) introduced a normalization term based on the
variance of the signals and denoted this modified measure
as gPDC, which was used in this study with the FieldTrip
implementation [ft_connecitivityanalysis()] (Oostenveld, 2020);
with the BSMART toolbox (Cui et al., 2008). We chose a 6 s
epoch due to observed stability at epoch lengths of 6 s or more
for FC measures (Fraschini et al., 2016). gPDC was estimated
using a multivariate autoregressive model (MVAR) using all four
electrodes. We used an MVAR model order of 12 (54 ms), which
was obtained by using the ARFIT algorithm (Schneider and
Neumaier, 2001) and evaluating the SBC criterion, which is least
affected by noise (Porcaro et al., 2009). The observed gPDC

estimates were plotted for all pairs of electrodes in the frequency
bands: delta [1–4 Hz], theta [4–8 Hz], alpha [8–12 Hz], beta
[12–30 Hz], gamma [30–50 Hz].

2.6.2. Power Spectral Density, PSD
The power spectral density (PSD) was computed for each data
window using Thomson’s multitaper PSD estimate, with 4,096
frequency bins [1–50 Hz] and half-bandwidth product nw =
4. The mean PSD was obtained for each recorded session.
Those recorded sessions corresponding to the Preparation and
the Generation stage were compared for each of the four
electrodes separately.

2.6.3. Sample Entropy, SampEn
Complexity measures has been used in different studies to
measure levels of creativity before (Jaušovec and Jaušovec, 2000b;
Shourie et al., 2014). Approximate Entropy is a measure of signal
regularity which that explores the time ordering of data points by
calculating the log likelihood that runs of pattern which are close
remain close for incremental comparison (Pincus, 1995). Lower
value of Approximate Entropy indicates that the signal is more
regular or predictable. However, many studies have reported
reliability issues using Approximate Entropy due to the self-
match involved in Approximate Entropy computation leading
to a bias (Richman and Moorman, 2000; Chen et al., 2006).
A new metric called Sample Entropy (SampEn) (Richman and
Moorman, 2000) was proposed aimed at reducing the bias of
Approximate Entropy. The parameters remained the same for
both Approximate Entropy and SampEn: the “filter factor” r,
length of sequences being compared m and the signal length N.
SampEn has shown to be relatively less dependent on the signal
length and shows better stability for wider range of parameters
(Richman and Moorman, 2000; Chen et al., 2006; Boskovic et al.,
2012). Earlier studies showed that SampEn gives better statistical
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FIGURE 3 | gPDC for the Preparation and Generation Stages, displaying the mean and 95% confidence intervals. The scalp map at the center displays the

connections highlighted in the bar graphs; where the color of the arrow corresponds to the condition (creative writing Preparation or Generation) where gPDC

was higher.

validity for m = 2 and the r in the range of 0.1–0.25 standard
deviations (Richman and Moorman, 2000; Bruce et al., 2009;
Zarjam et al., 2012). In this study, we used m = 2 and r = 0.2
standard deviations of the signal window, and N = 1, 320 (6 s of
data sampled at 220 Hz). As with the PSD analysis, the SampEn
means were computed for each recorded data collection session,
and those corresponding to the Preparation and Generation
Stages were compared for the four electrodes separately.

2.6.4. Statistical Analyses
Statistical significance comparing the Preparation and
Generation Stages was obtained using a two-tailed unpaired
T-test with a significance level of p <0.05. All comparisons
show the mean, confidence intervals at the p <0.05 significance
level, and an indication for when the difference was statistically
significant at that statistical level. The Fisher-Snedecor F-test
was performed to assess if the variances were equal. When
the variances were different (Cardillo, 2020), the Satterthwaite
approximate T-test was performed (Satterthwaite, 1946).

3. RESULTS

The main finding of this study is that the Preparation
and Generation stages of creative writing were characterized
differentially in terms of the functional connectivity among
the scalp locations examined. Specifically, the gPDC between
the Preparation and Generation stages showed the opposite
directionality between right temporal and left anterior frontal
areas. Figure 3 shows significant differences in FC between
electrode pairs, using gPDC, during the two stages of the creative
writing process analyzed.

Preparation stage: There was higher gPDC in the Preparation
stage originating from anterior-frontal electrodes toward
temporal-parietal electrodes. The gPDC difference between
the Preparation and the Generation stages showed statistically
broadband significance, at a confidence level of p <0.05,
for three connections. AF07 to TP10 showed significant
differences in the delta (1–4 Hz) frequency range. There was
statistically higher gPDC observed for the connections AF07
to AF08 in the delta and theta (1–8 Hz) frequency bands,
and AF08 to TP09 from alpha (8–12 Hz) to beta (12–30 Hz).
Figure 3 shows the gPDC values, bounded between 0 and 1,
for those connections where statistical differences were found
between conditions.

Generation stage: There was higher Partial Directed
Coherence in the Generation stage originating from TP10
toward AF07. Although there was no significant differences
in the TP10 to AF07 comparison (Figure 3) it was the only
connection that showed higher gPDC for the Generation stage
in a clear trend across frequency bands.

The statistical difference in gPDC and its opposite
directionality when comparing the Preparation and the
Generation Stages indicates that there was a strong functional
relation between the left anterior frontal with the right
temporal-parietal areas when the students engaged in
the tasks.

Frequency band-power analysis showed a statistically
significant difference across writing stages within the gamma
(32–40 Hz) frequency range for the AF07 electrode only
(Figure 4A).

The SampEn was higher during Generation stage compared
to Preparation stage, although this difference did not reach
statistical significance (Figure 4B).
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FIGURE 4 | EEG feature characterization. (A) Power spectrum density for each EEG channel, displaying the mean and 95% confidence intervals. Vertical bars

indicate selected frequency-band limits. Horizontal marks indicate statistical significant differences: AF07, 32–40 Hz. The numbers following the “Preparation” and

“Generation” labels indicate the number of unique students’ data contributed to the PSDs. (B) SampEn for the Preparation and Generation Stages, displaying the

mean and 95% confidence intervals. No significant differences were found (p < 0.05). Electrode TP09 contained data from 30 EEG recordings, AF08 from 21

recordings, AF08 from 22 recordings, and TP10 from 18 recordings.

4. DISCUSSION

The higher functional connectivity from anterior frontal scalp

areas toward temporal-parietal areas during the Preparation stage

suggests a functional relationship between areas involved in the
processing of multisensory inputs (Perrodin et al., 2014; Schapiro

et al., 2014) and episodic emotional memory integration (Dolcos
et al., 2004, 2005; Lech and Suchan, 2013) in the temporal
lobe as participants explore their surroundings actively engaging
the frontal cortex in integrating the experience. The opposite
directionality between the same electrodes (Figure 3) at the
Generation stage reinforces this hypothesis in which sensory
input are reprocessed in the frontal areas to produce a draft of
a creative text based on those experiences.

Our results, although constrained to frontal and temporal
recording locations, relate to previous findings in EEG and fMRI
studies analyzing the different stages of the creative process. It
furthers the suggestions from Petche et al. (1997) and Jaušovec
and Jaušovec (2000a) that EEG correlates of creative performance
are more pronounced in functional connections between brain
areas than localized frequency-band power. In the last decade,
distinct cortical networks have been associated with each stage of
the human creative writing process. Shah et al. (2013) identified
ventrolateral prefrontal cortex activation during the Preparation
stage, and central-parietal areas involved in the Generation
stage. “Brainstorming” engaged cognitive, linguistic, and creative
functions represented in a parieto-frontal-temporal network,
while “Creative writing” activated motor, visual, a cognitive
and linguistic areas mainly over central and parietal networks
(Shah et al., 2013). Liu et al. (2015) found that the mPFC was

active during the generation and revision stages. They observed
deactivation of the dorsolateral prefrontal cortex (DLPFC) and
inferior parietal sulcus (IPS) during the Generation stage.

Our results show a trend of higher gPDC values from
the right temporal toward the left anterior frontal electrode
during the Generation stage of creative writing, for all
frequency bands analyzed (1–50 Hz), albeit without reaching
statistical significance; and the opposite directionality for the
Preparation stage with statistical significance at 1–4 Hz. The
Preparation stage also showed higher connectivity compared
to the Generation stage with connections originating from
anterior-frontal electrodes: AF07 to AF08 (significance at 1–
8 Hz), and AF08 to TP09 (significance at 8–30 Hz). We did
not find statistical differences between the Preparation and the
Generation Stages for Sample Entropy; and frequency band-
power showed differences only in the left anterior frontal
electrode in the gamma band. In future studies, Entropy analysis
could benefit from multi-scale (Gao et al., 2015) and multi-
variate (Ahmed and Mandic, 2011) entropy models to account
for the varying and complex nature of physiological signals
(Costa et al., 2002).

Overall, these findings suggest that ideation, exploration, and
observation during the Preparation stage of a creative writing
task can be characterized by a state of long-range cortico-
cortical communication between multisensory integration brain
areas (temporal regions) and high-order execution and planning
areas of the brain (prefrontal regions), perhaps leading to
selective storage of ideas, concepts or observations candidate for
creating writing during the Generation stage. We hypothesize
this focal activity may be related to working memory, sequence
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production, and processing of filtered information from the
Preparation stage.
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