
Familial exudative vitreoretinopathy (FEVR) is an inher-
ited vitreoretinal disorder first described in 1969 [1]. As a 
retinal vascular disease, FEVR is characterized by avascular 
zones or incomplete vascularization of the peripheral retina, 
and the clinical presentations of FEVR vary in different 
people from mild peripheral avascularity to severe retinal 
detachment (RD) [2-4]. Generally, FEVR is associated with 
mutations in genes involved in the Wnt/Norrin signaling 
pathway, including genes encoding the low-density lipopro-
tein receptor-related protein 5 (LRP5), Norrie disease protein 
(NDP), tetraspanin-12 (TSPAN12), and the receptor frizzled-4 
(FZD4). Mutations in zinc finger protein 408 (ZNF408) and 
kinesin family member 11 (KIF11) were also identified as 
genetic causes for FEVR via other mechanisms [5-9]. The 
mutations mentioned above can only explain the causation 
in approximately 40% to 50% of FEVR patients, and the 
remaining genetic causes are still unknown [10,11].

Copy number variation (CNV), a form of chromosome 
submicroscopic structural variation, is defined as the deletion 

or duplication of a DNA segment whose size is more than 1 
kb [12,13]. Studies have suggested that CNVs contribute to 
many human disorders [14-16] through several mechanisms: 
altering gene dosage, changing the 3D architecture of the 
genome, forming chimeric genes, and so on [17-19]. Many 
novel CNVs have recently been found in ophthalmic diseases, 
including retinitis pigmentosa [20], inherited retinal degen-
eration [21,22], and esotropia [23]. Previous genetic studies 
on FEVR focused on mutations in nucleic acids known as 
single nucleotide variants (SNV), while the possible role of 
CNV in FEVR has rarely been investigated [24-26]. Here, we 
identified five novel CNV regions in FEVR patients, which 
may contribute to the diagnosis of FEVR.

METHODS

Subjects: This study was approved by the Institutional 
Research Committee of Xinhua Hospital, affiliated to 
Shanghai Jiao Tong University School of Medicine, and 
conducted under the light of the Declaration of Helsinki. We 
collected 824 patients who were clinically diagnosed with 
FEVR in the ophthalmology department of Xinhua Hospital 
between April 2015 and July 2019. Patients with a history of 
premature birth and oxygen inhalation were excluded. Written 
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informed consent was obtained from the parents or guardians 
of the patients before the experiments were conducted.

Diagnosis: The FEVR diagnosis was made based on medical 
recordings and ophthalmic examinations, including slit-
lamp biomicroscopy, B-scan ultrasound, RetCam III (Clarity 
Medical Systems, Pleasanton, CA), Optos 200Tx (Optos Inc., 
Marlborough, MA), and fundus fluorescein angiography 
(FFA). According to the examinations, patients presenting 
with at least one of the following typical clinical features 
were diagnosed as having FEVR: RD, retinal folds, vitreous 
hemorrhage, retinal neovascularization, peripheral avascular 
zones, severe subretinal exudates, or vitreoretinal dragging 
with macular ectopia [27]. All probands and their family 
members were examined and staged for FEVR, as described 
previously (Appendix 1) [28,29].

CNV screening and validation: Blood samples of probands 
and their family members were collected and used to extract 
genomic DNA using Gentra PureGene blood kits (Qiagen, 
Valencia, CA). The retinal disease panel used in this study 
involved 463 targeted genes (Appendix 2), and all enrolled 
cases underwent panel-based targeted next generation 
sequencing (NGS) assay. The standard Illumina libraries 
were prepared using a DNA Sample Prep Reagent Set 
(MyGenostics Inc., Beijing, China), and a GenCap capture 
kit (MyGenostics Inc., Beijing, China) was used to capture 
the regions containing the 463 targeted genes. Extracted 
DNA was quantified using Qubit 2.0 (Thermo Fisher 
Scientific, Waltham, MA) and sheared into DNA fragments 
via Diangenode Bioruptor® Plus. Captured fragments 
were removed from the solution using streptavidin-coated 
magnetic beads (Dynabeads® MyOne™ Streptavidin T1, 
Thermo Fisher Scientific) and subsequently eluted. DNA 
fragments were enriched and sequenced on an Illumina 
HiSeq X ten sequencer for paired-reading of 150 bp. After 
interpreting the results of the Illumina HiSeq X ten sequencer 
into reads, a Burrows-Wheeler Aligner (BWA; ver. 0.7.11) was 
used for alignment between the clean reads and the human 
reference genome (hg19) [30]. Raw variants were analyzed 
via the genome analysis toolkit (GATK) Haplotype Caller 
and annotated with ANNOVAR software (http://annovar.
openbioinformatics.org/en/latest/) according to the following 
databases: 1000 Genome Project, Exome Sequencing Project, 
Exome Sequencing Project, and the Human Gene Mutation 
Database (HGMD) [31]. Patients with no definite pathogenic 
mutations in FEVR genes were screened for potential CNVs 
by CapCNV analysis through CNVkit software, and the 
pathogenicity of the CNVs was classified into five categories, 
“pathogenic,” “likely pathogenic,” “uncertain significance,” 
“likely benign,” and “benign,” according to the American 

College of Medical Genetics and Genomics (ACMG) guide-
lines [32,33].

Then, ddPCR was performed to validate the CNV 
regions in the probands according to a previous study [34]. 
The genomic DNA was digested using an enzymatic diges-
tion mixture at 37 °C for 1 h, followed by inactivation at 
65 °C for 15 min. After DNA digestion, template DNA at 
a concentration of 40 ng/µL was used for ddPCR analysis 
performed on a QX100 system (BioRad Laboratories, Inc., 
Shanghai, China). PCR amplifications were conducted three 
times for each sample, with an optimized PCR thermal 
profile. Primers were designed by Primer Premier 5.0, and 
the sequences of primers are displayed below (Appendix 3). 
QuantaSoft v.1.2.10.0 software (BioRad Laboratories, Inc., 
Shanghai, China) was used to analyze the results.

Statistical analysis: The clinical characteristics and ophthal-
mological findings of the probands and affected family 
members were recorded for genotype–phenotype correlation 
analysis. Descriptive statistics were presented as median and 
range, statistical data were analyzed by the statistical analysis 
system (version 9.4), and a p value less than 0.05 was accepted 
as statistically significant.

RESULTS

In this study, 824 unrelated FEVR families were enrolled, 
and 406 families without definite pathogenic mutations in 
FEVR genes were screened for CNVs. Five novel CNV loci 
were confirmed in five probands, one female and four males; 
the median age at diagnosis was 5 years (range: 4 months 
to 7 years of age). The demographic and clinical data are 
summarized in Table 1. The age at diagnosis was significantly 
different between inherited CNV probands and de novo CNV 
probands (p = 0.0056 < 0.05).

Five novel CNVs were detected: Among the 406 probands 
with no definite pathogenic mutations in FEVR genes, eight 
different CNV regions were screened in eight unrelated 
patients by NGS testing, including one duplication and seven 
heterozygous deletions. KIF11 accounted for three CNV loci 
(3/8, 37.5%), followed by TSPAN12 (2/8, 25%), LRP5 (1/8, 
12.5%), FZD4 (1/8, 12.5%) and COL11A1 (1/8, 12.5%). Among 
them, heterozygous deletion of exon 1 of FZD4 and the whole 
gene of TSPAN12 have been reported previously [25,26]. 
There were two CNV regions involved in the whole gene, one 
is TSPAN12 heterozygous deletion, and the other is the dupli-
cation of COL11A1. Detailed information about the testing 
results is listed in Table 2. Notably, mutations were detected 
in two patients. Two heterozygous mutations were detected in 
patient No. 7, which are located at chr10–58232699, involving 
KIF11, and chr17–58232699, involving CA4, both resulting in 
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DNA and protein changes. Both were predicted as mutations 
of uncertain pathogenicity, according to the ACMG. Patient 
No. 3 had a hemizygous mutation located at ChrX-43808330, 
containing the NDP gene, leading to a DNA mutation whose 
pathogenicity is uncertain based on the ACMG.

A ddPCR assay was performed in 24 cases from the 
eight families described above. Following the ddPCR assay, 
five of the eight CNV regions harboring FEVR-associated 
genes were validated in seven cases, five probands and two 
of their family members: KIF11 exons 2–4 heterozygous dele-
tion, TSPAN12 exons 1–3 heterozygous deletion, LRP5 exons 
19–21 heterozygous deletion, KIF11 exon 11 heterozygous 
deletion, and KIF11 exons 1–10 heterozygous deletion. The 
results of the ddPCR are shown in Figure 1. According to 
validations of CNVs in family members, TSPAN12 exons 
1–3 heterozygous deletion was confirmed to be maternally 
inherited, and LRP5 exons 19–21 heterozygous deletion was 
paternally inherited, while three CNVs in KIF11 were de 
novo. The results are shown in Figure 2.

Phenotypes of FEVR patients and affected family members: 
The clinical manifestations of the five probands are summa-
rized in Table 1, and fundus photography is shown in Figure 
3. KIF11 exons 2–4 heterozygous deletion was detected in a 
6-year-old boy (patient No. 1). The fundus showed vascular 
and macular dragging from the optic disc to the temporal 
retina in bilateral eyes, and apparent macular ectopia was 
found in the left eye (Figure 3A). A 7-year-old girl (patient 
No. 2) was identified as carrying a KIF11 exons 1–10 hetero-
zygous deletion; fundus photography revealed a retinal fold 
extending to the temporal retina, with little exudates around 
the fold and mild vascular abnormalities in the right eye. 
Her left eye showed mild dragging from the optic disc to 
the temporal retina and was accompanied by retinal pigment 

epithelium atrophy (Figure 3B). One novel CNV of the KIF11 
exon 11 heterozygous deletion was found in a 5-year-old boy 
(patient No. 3). He presented with posterior synechia of the 
iris and a falciform retinal fold in the right eye. In his left 
eye, the fundus was invisible with a flat anterior chamber 
and pupil occlusion; B-scan ultrasound indicated total retinal 
detachment (Figure 3C). The parents of these three probands 
underwent FFA examination, and none of them showed 
FEVR features.

Patient No. 4, a 9-month-old boy with a heterozygous 
deletion of TSPAN12 exons 1–3, presented with vitreoretinal 
traction in both eyes, which resulted in a radial retinal fold 
in the right eye and a dragged disc with ectopic macular in 
the left eye (Figure 3D). His mother was confirmed to carry 
the same CNV but with no clinical phenotypes of FEVR, 
according to fundus examinations. A heterozygous CNV of 
LRP5 exons 19–21 deletion was found in a 4-month-old boy 
(patient No. 5). Corneal opacity, shallow anterior chamber, 
and total retinal detachment were present in his right eye, 
according to RetCam and B-scan ultrasound examinations. 
Compared to the right eye, his left eye was milder, with 
peripheral nonperfusion area and neovascularization in the 
retina (Figure 3E). His father, who carried the same CNV, 
showed no features of FEVR on fundus examinations.

DISCUSSION

FEVR is a genetic ophthalmic disease with various inheri-
tance modes and phenotypes. Up to now, at least eight genes 
have been confirmed as FEVR-associated, disease-causing 
genes: FZD4, TSPAN12, NDP, LRP5, ZNF408, KIF11, 
CTNNB1, and JAG1 [9,35-42]. Most studies focus on the point 
mutations in these genes leading to FEVR, while few studies 
investigate the role of CNV, a pattern of DNA structural 

Table 1. The demographic data and clinical manifestations.

Patient NO. / 
Gender

Age at diagnosis CNV Ocular Manifestations Stage

1/M 6 year KIF11; exon2–4 
Het Del

OD: dragged-disc 
OS: dragged-disc

OD: 3A 
OS: 3A

2/F 7 year KIF11; exon1–10 
Het Del

OD: retinal fold 
OS: dragged-disc, RPE atrophy

OD: 4B 
OS: 3A

3/M 5 year KIF11; exon11 Het 
Del

OD: posterior synechia of the iris, retinal fold 
OS: shallow AC, pupil occlusion, total RD

OD: 4B 
OS: 5B

4/M 9 months TSPAN12; exon1–3 
Het Del

OD: retinal fold 
OS: dragged-disc

OD: 3A 
OS: 4A

5/M 4 months LRP5; exon19–21 
Het Del

OD: corneal opacity, shallow AC, total RD  
OS: peripheral retinal nonperfusion, neovascularization

OD: 5B 
OS: 1B

M=Male; F=Female; CNV=Copy number variation; Het Del=Heterozygous deletion; OD=right eye; OS=left eye; AC=anterior chamber; 
RD=retinal detachment; RPE=retinal pigment epithelium
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variants, in FEVR [24-26]. CNVs are deletions or duplica-
tions of DNA segments that can influence at least five times 
more variable base pairs than SNVs and lead to a greater 
impact on disease phenotypes [43].

Herein, we detected five novel CNV regions in five out 
of 406 FEVR patients without definite pathogenic mutations 

in FEVR genes. Three of them affect the exons of KIF11, 
including exons 2–4, exon 11, and exons 1–10. Previous 
studies demonstrated that patients with mutations in KIF11 
present with microcephaly, mental retardation, lymphedema, 
and retinopathy with lacunar chorioretinal atrophic lesions 
[44], while other studies indicated that whether FEVR is 

Figure 1. Results of ddPCR assay. One-dimensional scatter plot for healthy control (left) and probands (right) of five CNVs. The pink line 
is a manually set threshold, and gray points indicate template DNA negative droplets, while blue points represent template DNA positive 
droplets. A. KIF11 exons 2–4; B. TSPAN12 exons 1–3; C. LRP5 exons 19–21; D. KIF11 exon 11; E. KIF11 exons 1–10.
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associated with the syndrome caused by KIF11 mutations 
remains uncertain [45,46]. In our study, no patients harboring 
CNVs corresponding to KIF11 manifested as microcephaly, 
mental retardation, or lymphedema. A novel heterozygous 
CNV of LRP5 exons 19–21 deletion was detected in patient 
No. 5. Mutations in LRP5 often contribute to orthopedic 
diseases, such as osteoporosis or high bone mass [47,48]. 
However, the proband and his father, who harbored CNV 
in LRP5, showed normal bone mineral density and had no 
orthopedic history. Studies have reported that clinical presen-
tations in patients with large deletions are not more severe 
than those in a patient with point mutation [26]. Therefore, 
we suggest that absent or undiagnosed complications of the 
extraocular system may be partially due to the different 
patterns of mutations.

Ocular manifestations of the ten eyes studied were diver-
sified from peripheral retinal nonperfusion to total retinal 
detachment. All eyes were staged for FEVR. Except for one 
eye that was classified as a stage of 1B, the remaining eyes 
were all staged from 3A to 5B, indicating a severe fundus 
condition. Previous studies have demonstrated that the 
severity of FEVR is associated with the gene loci in patients 
with SNVs [11,49]. In this study, there was no significant 
relationship between the severity of FEVR and gene loci in 
the five probands, which may be due to the different mutation 
types and the limited population in our study. The contralat-
eral eyes of patient No. 5 were staged for 5B and 1B, respec-
tively, and the asymmetric ocular presentation was described 
as a characteristic of FEVR previously [50].

According to ddPCR verification results, three CNVs 
corresponding to KIF11 are de novo variations, and the 

Figure 2. The ddPCR results of affected family members and pedigrees of families with inherited CNVs. Squares represent men, circles 
indicate women; black and white symbols represent affected and unaffected individuals, respectively; arrows refer to probands. The left 
column shows the ddPCR results of the mother carrying CNV of TSPAN12 exons 1–3 heterozygous deletion and the pedigree of the family. 
The right column reveals the ddPCR result of the father harboring LRP5 exons 19–21 heterozygous deletion and the pedigree.

http://www.molvis.org/molvis/v27/632


Molecular Vision 2021; 27:632-642 <http://www.molvis.org/molvis/v27/632> © 2021 Molecular Vision 

638

heterozygous deletion of TSPAN12 exons 1–3 detected in 
patient No. 4 originated from the mother; the heterozygous 
deletion of LRP5 exons 19–21 identified in patient No. 5 is 
inherited from the father. Notably, among the inherited-CNV 
families, neither the mother harboring a TSPAN12 exons 1–3 
heterozygous deletion nor the father carrying an LRP5 exons 
19–21 heterozygous deletion had typical clinical manifesta-
tions of FEVR, according to fundus photography results, 
which may be consistent with the fact that the severity of 
FEVR varies among family members [51]. A previous study 
suggested that, except for the pathogenic variant, additional 
disease modifiers can influence penetrance [52]. DNA meth-
ylation may act as an epigenetic modification that contributes 
to incomplete penetrance in patients with known mutations 
[53,54]. Herein, the phenomenon of inconsistency between 
genotype and phenotype may be explained as incomplete 
penetrance, which is associated with many other mecha-
nisms, such as DNA methylation. Further studies should be 
conducted to confirm this detailed mechanism. In addition, 

the significant difference (p = 0.0056 < 0.05) between the 
diagnostic age of the probands with inherited CNVs and that 
of the probands with de novo CNVs implied that the inher-
ited CNVs may predispose patients to earlier occurrences of 
FEVR.

In our study, patient No. 3, who harbored a de novo CNV 
of KIF11 exon 11 deletion, was found to have a hemizygous 
mutation corresponding to the NDP gene, which the ACMG 
predicted to have unknown pathogenicity. Whether the CNV 
or the SNV is the causal variation of FEVR is inconclusive. 
This mutation was detected in patient No. 3’s mother, who 
showed no FEVR clinical features, contradicting the hypoth-
esis that SNV causes the FEVR phenotype. A study demon-
strated that the impact on the phenotype triggered by CNV 
is generally considered stronger than SNV [26]. Additionally, 
all five CNVs detected in this study were classified as “patho-
genic,” according to ACMG guidelines. Taken together, our 
results support the idea that the deletion of KIF11 exon 11 is 

Figure 3. Ocular manifestations of five FEVR patients with CNVs. OD: right eye; OS: left eye. A. Dragged disc in bilateral eyes (patient No. 
1); B. retinal fold in the right eye and dragged disc in the left eye (patient No. 2); C. deformed pupil and falciform retinal fold in the right eye, 
and pupil occlusion of the left eye (patient No. 3); D. bilateral retinal fold (patient No. 4); E. corneal opacity and shallow anterior chamber 
in the right eye, peripheral nonperfusion area and neovascularization of the retina in the left eye (patient No. 5).
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likely to be a causal variation in the clinical manifestations 
of FEVR.

Our study has several limitations. First, we did not vali-
date the expression quantity of these novel CNVs in normal 
controls, which reduced our ability to evaluate the signifi-
cance of the novel CNVs. Second, the fact that the cases were 
diagnosed and referred to the ophthalmology department of a 
tertiary health care center may represent referral bias. Never-
theless, we collected a population of 824 FEVR families and 
detected five novel CNVs.

In conclusion, CNV is known to be a genetic risk factor 
for many diseases. Herein, we uncovered five novel CNVs 
in FEVR patients and hypothesized that they are genetic 
risk factors for the occurrence of FEVR. To investigate their 
determined significance, more experiments are warranted.

APPENDIX 1. STAGE DEFINITION OF FEVR.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. 463 TARGETED GENES TESTED BY 
NGS.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. SEQUENCES OF PRIMERS AND 
PROBES USED FOR DDPCR ASSAY, GAPDH IS 
SERVED AS INTERNAL REFERENCE.

To access the data, click or select the words “Appendix 3.”
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