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Abstract: Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular
communication, but how the biological information contained in EVs is shared between cells remains
elusive. Several mechanisms have been described to explain their release from donor cells and the
initial step of their uptake by recipient cells, which triggers a cellular response. Yet, the intracellular
routes and subcellular fate of EV content upon internalization remain poorly characterized. This is
particularly true for EV-associated proteins and nucleic acids that shuttle to the nucleus of host cells.
In this review, we will describe and discuss the release of EVs from donor cells, their uptake by recipient
cells, and the fate of their cargoes, focusing on a novel intracellular route wherein small GTPase Rab7+

late endosomes containing endocytosed EVs enter into nuclear envelope invaginations and deliver
their cargo components to the nucleoplasm of recipient cells. A tripartite protein complex composed
of (VAMP)-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3),
and Rab7 is essential for the transfer of EV-derived components to the nuclear compartment by
orchestrating the particular localization of late endosomes in the nucleoplasmic reticulum.

Keywords: exosome; extracellular vesicle; intercellular communication; late endosome;
oxysterol-binding-related protein; nucleoplasmic reticulum; Rab7; VAMP-associated protein A

1. Introduction

Intercellular communication is a fundamental feature for the development and maintenance of
multicellular organisms. Diverse molecular mechanisms for the exchange of biological information
between cells have been documented. The secretion of soluble proteins and their interaction with
membrane receptors located on the target cells or contact-dependent signaling are good examples.
To better understand the mechanism that triggers molecular crosstalk between cells, we came to
the fascinating and poorly explored world of extracellular membrane vesicles (EVs) [1–4]. We will
review here the mechanisms underlying the release of different types of EVs from donor cells into the
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extracellular medium, their uptake by recipient cells, and the fate of their cargoes with a focus on a
new intracellular pathway that led to their transfer into the nuclear compartment [5,6].

2. Extracellular Membrane Vesicles and Intercellular Communication at a Glance

EVs are nanobiological membrane structures usually referred to as exosomes or microvesicles
depending on their biogenesis and size [7,8]. Exosomes (~40–100 nm in diameter) are produced by
inward budding inside an endosome, leading to the formation of a late endosomal multivesicular body
(MVB) that could fuse afterward with the plasma membrane and discharge its internal small vesicles in
the extracellular milieu, whereas microvesicles, also named ectosomes or shed vesicles (~50–1000 nm),
bud directly from the plasma membrane. To complete our non-exhaustive view of the EV catalog, in
addition to apoptotic microvesicles (<1000 nm) and apoptotic bodies (1–5 µm) derived from dying
cells [9], bulky EVs (1–10 µm), often termed large oncosomes [10], are formed upon cleavage of plasma
membrane extensions of tumor cells harboring an amoeboid-like phenotype [11,12]. Nodal vesicular
parcels involved in left–right asymmetry during the organism development can be viewed as atypical
particles or EVs (~300–500 nm) containing lipophilic granules [13]. Lipoprotein particles can also
contribute to exchange materials and promote signaling between cells [14]. Hereafter, we will focus on
exosomes and microvesicles.

EVs carry a restricted set of membrane-protected proteins, lipids, and nucleic acids (e.g., messenger
(m) RNA, micro (mi) RNA, and long non-coding (nc) RNA) that could act as pivotal mediators in the
regulation of neighboring and distant recipient cells [15–20]. The number of bioactive molecules carried
by a given type of EVs, especially small-sized ones such as exosomes, can be extremely little; therefore,
an efficient mechanism must operate to trigger a cellular response. This is particularly true when the
target cells are distant from the donor cells and the amount of EVs is limited [21,22]. The content of EVs
depends on the cell type of origin and their physiological conditions. Thus, EVs represent a heterologous
population in a given biofluid. Specific isolation of their subpopulations is now an emerging challenge
in the field, particularly when the purpose is to use EVs (or their cargo) as potential clinical biofluid
markers [23–29]. We could not exclude that distinct EVs interact with each other, resulting in
their co-purification [30]. All these pitfalls should be considered. Diverse biological functions are
ascribed to EVs in cell-to-cell communication, such as favoring proliferation versus differentiation of
stem cells, inducing epithelial-mesenchymal transition, and modulating immune responses among
others [31–33]. EV-mediated intercellular communication within an organ is also beginning to be
recognized. For instance, neural cells exchange biochemical information upon the release of exosomes
or microvesicles [34]. In addition to inter-neuronal communication, EVs have been suggested to play
a role in crosstalk between neurons and glial cells, notably oligodendrocytes, and hence support
the neuronal physiology [35,36]. In pathological conditions, EVs might participate in intercellular
transfer of prions or the progression of various diseases including Alzheimer’s disease [37–39]. In
cancer, the components carried by transformed cell-derived EVs play a role in the establishment of a
pre-metastatic niche [40–43]. They can also contribute to horizontal propagation of oncogenes among
subsets of cancer cells or surrounding healthy cells [44,45]. Lastly, the EV-mediated crosstalk between
cancer and non-cancerous cells in the bone marrow microenvironment can modulate the biochemistry
and function of stromal cells to stimulate the growth and spreading of cancer cells [46–48].

2.1. Release of Extracellular Membrane Vesicles

In line with a variety of EV subtypes, numerous modes of EV release were described [49]. Our labs
gained insight into mechanisms underlying EV secretion by following the cellular trafficking of the stem
cell marker CD133 (prominin-1), which is associated with plasma membrane protrusions (e.g., microvilli
and cilia) and regulates their organization and function [50–52]. Although the observations with
CD133 are not exclusive to this glycoprotein, they summarized the knowledge about the EV biogenesis.
CD133+ EVs are released into various internal and external body fluids using different mechanisms
that are dependent in part on the cellular type [53]. In non-epithelial cells, CD133+ EVs are discharged
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as exosomes via exocytosis of MVB (Figure 1A, point 1) [54]. The interaction of CD133 with syntenin-1
and its ubiquitination might be two essential steps involved in the internalization and sorting to MVB
en route to exosomes [55,56]. Together with ALIX and syndecan, syntenin-1 regulates the biogenesis of
exosomes [57]. The ubiquitinated CD133 interacts with tumor susceptibility gene 101 protein (TSG
101), a component of endosomal sorting complex required for transport (ESCRT) machinery involved
in MVB formation [56]. We invite the readers to consult the following excellent reviews [3,58–60]
for mechanistic details related to (i) the sorting of proteins to exosomes; (ii) the MVB biogenesis
including ESCRT machinery; and (iii) their fusion with plasma membrane (Figure 1). In epithelial cells,
CD133+ EVs bud as microvesicles/ectosomes from primary cilium and/or microvilli present at the
apical plasma membrane (Figure 1A, points 2 and 3) [61,62]. Nader and colleagues described that actin
polymerization is required for the release of microvesicles from ciliary tips by promoting membrane
scission [63]. CD133 could itself play a role in this process [51,64]. ESCRT complex proteins might
also participate in the release of microvesicles from plasma membrane [65]. The midbody that bridges
nascent daughter cells at the end of cell division is also a source of microvesicles, and the midbody
itself can be released depending on cellular status [61,66].

Lipid-based membrane microdomains (known as lipids rafts) and/or certain lipids (e.g., cholesterol,
and ceramides), lipid-metabolizing enzymes, and lipid-interacting proteins may play a role in
initiating budding processes either at the level of endosomes or plasma membrane (Figure 1A, red
segment) [51,54,67,68]. The enrichment of lipid raft-associated cholesterol and sphingomyelin in EVs
is consistent with such hypothesis [24,69]. Tetraspanin proteins such as CD9, CD81, and CD82 could
be implicated in the sorting of various cargoes to EVs by forming a dynamic platform within the lipid
bilayer membrane with other membrane and cytosolic proteins that would favor the formation of
a specific dynamic network (also known as the tetraspanin web), and hence stimulate the budding
process [70–72]. To conclude, it is important to note that the release of EVs by a given cell type is
not restricted to a particular pathway; however, one mechanism can predominate under specific
physiological or pathological conditions.

2.2. Uptake of Extracellular Membrane Vesicles

Once released in biofluids or the extracellular milieu between cells embedded in a tissue, circulating
EVs can spread the selective information that they carry. All cells that are in direct contact with a given
biofluid containing EVs are potential targets. Although poorly characterized, the diffusion of EVs within
a tissue might be regulated by a source-sink mechanism, as suggested for morphogens [73,74]. Several
barriers can impede the proper delivery of EVs such as their sequestration in the extracellular matrix,
their degradation by proteolytic enzymes, and/or unspecific binding to non-targeted cells. The interaction
of EVs with cell surface-associated extracellular matrix in a given organ/tissue may allow the specific
targeting of EVs, a process mediated by EV-associated specific integrins, and their uptake by resident cells
at the predicted metastatic destination [75,76]. The integrins (e.g., β1) carried by EVs can also promote
anchorage-independent growth of tumor cells [77,78].

To achieve their vehicle-like function, EVs need to interact with recipient cells, which can be done in
certain cases in a specific manner [79]. EVs could bind directly to the cell surface of recipient cells. In
kidney, cellular protrusions such as cilia are the preferential sites for EV binding [80]. Exosomes can also
“surf” on filopodia to enter cells at specific endocytic hot spots [81]. Molecular bases for the selective
cellular targeting of EVs are poorly described [82,83]. The initial cellular binding of EVs can be mediated
by adhesion proteins, and several classes of mediators are known to promote EV-cell interaction such
as tetraspanins, lectins, heparan sulfate proteoglycans, and certain lipids [60,84–86]. A well-established
example is the targeting of EVs (exosomes) to dendritic cells, which is mediated by tetraspanins (CD9,
CD81), milk fat globule-E8/lactadherin, CD11a, and CD54/intercellular adhesion molecule 1 present on
exosomes and αv/β3 integrin, CD11a, CD54 present on dendritic cells [87]. As reported for apoptotic
bodies or certain viruses, phosphatidylserine present at the outer leaflet of EV membrane can play a
role in their cellular entry [88–90]. We showed that monovalent antibody against CD9 can impede the
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entry of EVs into melanoma cells [91]. Further efforts are needed to dissect all mechanisms regulating the
specificity of EV-recipient cell interactions, which is an important step to design new strategies based on
EVs as a bio-vehicle for therapeutic drug delivery [92–94].

Several mechanisms that are not mutually exclusive were proposed to explain the transfer of
bioactive molecules between EVs and recipient cells (Figure 1B) [95,96]. The machinery responsible for
the transmission of information and/or cellular entry of EVs might be determined by composition of
EVs and the plasma membrane of recipient cells, as well as the size of EVs or their aggregation [97].
Receptor-mediated binding of EVs, or of EV-derived soluble ligands, to recipient cells could promote a
downstream signaling cascade and elicit a pleiotropic response [95,98–101]. Fusion of EVs with the plasma
membrane and hence the direct release of their content into cytoplasm might occur [102]. An acidic milieu
as observed in cancerous tissue microenvironment might favor EV-cell fusion [103]. The acidity-mediated
direct fusion of EVs with tumor cells may be similar to the fusion of endocytosed EVs with limiting
late endosomal membranes observed in the low pH endocytic compartment and/or the entry of certain
enveloped viruses [104–106]. Under these extreme conditions, alterations in membrane fluidity and/or
unmasking of fusogenic proteins may account for the fusion ability [103]. Tetraspanin-rich microdomains
and/or lipid rafts present within the EV membrane and/or the plasma membrane of recipient cells may
facilitate their fusion [107,108].

In addition to these two processes that trigger a cellular response, recipient cells can internalize
EVs en route to intracellular targets [109]. The literature about EV uptake by endocytic mechanisms is
growing, but sometimes conflicting [110]. Various mechanisms of endocytosis were described, including
clathrin-dependent, caveolae, and/or cholesterol-rich lipid rafts mechanisms (Figure 1B) [95,111–118].
Clathrin-dependent endocytosis involves the engulfment of receptors associated with their ligands in
clathrin-coated pits on the plasma membrane that invaginate and form clathrin-coated vesicles. Treatments
affecting the formation and/or dynamics of clathrin-coated pits can impede the EV entry [114,119].
Caveolar endocytosis is based on the properties of caveolin proteins to oligomerize, which leads to the
formation of caveolin-rich microdomains within plasma membrane ending to the endocytic pathway,
notably late endosomes [120]. In early days, this specialized caveolin-rich endosomal compartment was
named “caveosome”, which turned out to be “artifactual” endosomes somehow produced by caveolin
overexpression [120–123]. Caveolins are cholesterol-binding integral membrane proteins with unusual
membrane topology where their uniquely long hydrophobic segment does not span the membrane bilayer.
Other players involved in caveola architecture are members of Cavin family, i.e., peripheral membrane
proteins that coat the caveolar surface [124,125]. In addition to caveolins and cavins, caveolae contain
dynamin, a GTPase also involved in the biogenesis of clathrin-coated vesicles which plays a role in
pinching off the caveolar vesicle [123,126]. Similar to lipid raft domains, caveolae are rich in cholesterol
and sphingolipids, and membrane cholesterol is essential for their formation [127]. Cholesterol-rich lipid
rafts can also promote endocytosis independent of the presence of caveolae or clathrin coats [128]. Lipid
raft-associated flotillins and annexins can play a role in such endocytic pathways [129,130]. Ruffling of the
plasma membrane of recipient cells can also lead to the internalization of large volumes of extracellular fluid
containing EVs, a phenomenon referred to as macropinocytosis [131,132]. Cell type-specific phagocytosis
is an alternative way for EV uptake. In these processes, an active remodeling of the actin cytoskeleton and
the participation of phosphatidylinositol 3-kinase are essential (Figure 1B) [114,133].
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Figure 1. Mechanisms of the release of EVs by donor cell and their uptake by recipient cell. (A) The
release of EVs from a healthy donor cell can occur by two major pathways that are not mutually
exclusive. CD133+ EVs can be discharged into extracellular milieu upon fusion of multivesicular body
(MVB) with plasma membrane. They will be referred to as exosomes. The internalization of CD133 and
its transport to the early and late endosomal compartments can be mediated by its ubiquitination and
interaction with syntenin-1. The biogenesis to small intraluminal vesicles within late endosome/MVB
involves an inward invagination and budding of the limiting membrane of the endosome toward its
own lumen (1). MVB could also fuse to lysosomes, leading to proteolytic degradation of CD133 and
other proteins. The endosome movement requires a microtubule network. Alternatively, CD133+ EVs
can bud from plasma membrane, notably protrusions such as primary cilium (2) or microvilli (3). They
will be referred to as microvesicles or ectosomes. Cholesterol-dependent membrane microdomain (red
membrane segment) can play a role in these budding processes. (B) The transfer of EV cargoes to the
neighboring or distant recipient cell can occur by several mechanisms. The receptor-mediated binding
of EVs to recipient cell could promote a signaling cascade, and hence elicit a pleiotropic response in
recipient cells. Fusion of EVs with plasma membrane might occur, and consequently release randomly
their content into cytoplasm of host cells. In addition, recipient cells can internalize EVs en route to
intracellular molecular targets. Various mechanisms of endocytosis were reported. Clathrin-dependent
mechanism required adaptins, which connect membrane cargo to clathrin forming a polyhedral lattice
that surrounds the vesicle. Caveolin-1 (Cav1) plays a role in caveola-mediated uptake. Caveolae have a
flash-shaped structure and are enriched in cholesterol and sphingolipids. Other lipid raft-mediated EV
internalization processes independent of clathrin and caveolin are also proposed models of endocytosis.
Phagocytosis and macropinocytosis are alternative mechanisms implicated in the internalization of
EVs (see main text for details). After endocytosis, the EV content can be transferred to the cytoplasm
of the recipient cells upon fusion of EVs with endosomal membrane and/or transported to nucleus
(Figures 2 and 3). The nucleoplasmic reticulum can be involved in the latter process. Both types (I
and II) of nuclear envelope invaginations (NEI) are depicted. In type I NEI, only the inner nuclear
membrane (INM) penetrates into nucleoplasm, whereas in type II both the INM and outer nuclear
membrane (ONM). The endoplasmic reticulum (ER) is an extension of the ONM, and consequently,
both membranes share certain constituents.



Cells 2020, 9, 1931 6 of 28

2.3. Fate of Extracellular Membrane Vesicles upon Internalization

Despite current knowledge on the biogenesis and uptake of EVs and their relevance in various
medical areas as biomarkers, therapeutic targets, or biological vehicles for drug delivery, information
on the fate of endocytosed EV content remains limited [21,22]. The heterogeneity of EVs and the
mechanism of cellular internalization can determine the fate of EV content. Various pathways can
operate simultaneously, leading to various effects. Upon endocytosis, internalized EVs traffic to the
early endocytic pathway. Little is known about the role or fate there. If a fusion occurs with the early
endosomal membrane, their soluble cargo would reach the cytoplasm, while EV-associated membrane
proteins could potentially travel to the trans-Golgi network, Golgi complex, and endoplasmic reticulum
(ER) via retrograde transport. They can also reach the plasma membrane through recycling endosomes.
To our knowledge, however, such EV-early endosome fusion was never reported. Movement of
endocytosed EVs from early endosomes to the late endosomes/MVB, and again their discharge into
the extracellular milieu upon MVB-plasma membrane fusion, is a potential avenue [134]. Although
this recycling mechanism appears futile in regard to the fate of cargo carried by EVs, it could
nonetheless allow transfer of EV-associated components through a cell en route to the proper recipient.
The transcytosis through a cellular barrier such as an epithelium and/or a blood vessel might allow
EVs and/or their specific content to reach distinct cells. Alternatively, EV-derived components can be
sent to lysosomes for degradation [135]. Such endosomal-lysosomal degradative pathway leading
to EV clearance would need further thought to understand how it could elicit a cellular response.
Nonetheless, the EV loading of such degradation pathway might indirectly influence the fate of other
intracellular routes (e.g., autophagy), and hence the final destination of their components [136,137].

As communication vehicles, the endocytosed EVs can fuse with late endosomes and release their
soluble content directly into the cytoplasm of the host cells [138,139], while their membranous components
would mix with those of endosomal membranes. The acidic pH in the late endosome microenvironment
would favor such fusion, as discussed above. As recently underlined by Mathieu and colleagues,
endocytosed EVs and/or degradation products therefrom can potentially escape the endocytic pathway
upon rupture of endosomal/lysosomal membrane [97]. Further investigations are required to decipher the
spatiotemporal breakdown of late endosomes, and how this potential mechanism can be coordinated with
EV function as a messenger of information. In any case, the subcellular localization of late endosomes
(e.g., peripheral areas versus perinuclear) can indirectly regulate the interaction of EV cargo molecules
with cellular targets [140]. In this regard, we recently described a new intracellular pathway that led to the
transfer of the EV content, notably transmembrane proteins and nucleic acids, to the nuclear compartment
of host cells. Nuclear transfer of EV cargo was monitored using engineered EVs expressing CD9-green
fluorescent protein (GFP) fusion protein [5]. In a separate study, Read and colleagues reported nuclear
transportation of exogenous epidermal growth factor receptor (EGFR) and androgen receptor via EVs [6].
Hereafter, we will present this novel intracellular path, the key organelles involved, i.e., nucleoplasmic
reticulum and late endosomes, and the molecular players involved. The perspectives that this alternative
intracellular route could bring to the medical field will be highlighted.

3. Nucleoplasmic Reticulum-Associated Late Endosomes: A New Gate to
Intercellular Communication

3.1. Nuclear Envelope Invaginations

To grasp the novel intracellular pathway involved in the nuclear transfer of endocytosed EV-related
cargoes, we need to introduce the nucleoplasmic reticulum, which is a complex branched network of tubular
membrane-bound invaginations of the nuclear envelope that allows deep nuclear structures to be in the
proximity of cytoplasmic components, thus increasing the interface between cytoplasmic and nucleoplasmic
compartments. Although not all aspects of its biological function are fully understood, nucleoplasmic
reticulum plays a role in calcium signaling in the nuclear compartment [141,142], and consequently in
all features linked to it such as gene expression [143]. Two phospholipid bilayers, the inner nuclear
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membrane (INM) and outer nuclear membrane (ONM), form the nuclear envelope [144]. The narrow
space between them is called perinuclear space. ONM is continuous with ER membrane and may
share certain constituents (Figure 1B). At the nucleoplasmic side, a lamin-rich proteinaceous meshwork
underlies the INM. Nuclear envelope invaginations (NEI) of type I are formed solely by INM penetrating
in the nucleoplasm, while type II are formed by both INM and ONM (Figure 1B) [145]. The latter can
form channels throughout the nucleus and contain nuclear pores [146,147]. Often, they are in close
contact with nucleoli. Type II NEI are enfolded around intermediate filaments, microtubules, and possibly
actin cables that are connected to the ONM, and hence link the nuclear compartment to the cellular
microenvironment [145,146,148]. The presence of cytoskeleton elements within NEI might be regulated
by the cellular status, just like NEI themselves [149]. In certain type II NEI, such as those detected in
stressed or polyploid cells, ribosomes and mRNA translation machinery were observed therein [150],
which is consistent with the continuity between ONM and ER.

The biogenesis and dynamics of NEI are observed in interphase nuclei [151]. Recently, Vaux and
colleagues demonstrated that the formation of the nucleoplasmic reticulum requires the de novo assembly
of new components, i.e., nascent membrane phospholipids and lamins, rather than a simple reorganization
of the pre-existing nuclear envelope [152]. The protein players involved in the membrane shaping of
tubular invaginations during their biogenesis, and possibly their remodeling, remain to be identified.
Enzymes involved in membrane lipid metabolism and components of nuclear pores deserve particular
attention in this respect [153–155]. Other potential mechanisms explaining the formation of tubular
invaginations of the nuclear envelope cannot be ignored [156]. Thus, they can be created by dynamic
chromatin movements resulting from the interaction of chromatin-INM-associated proteins by pulling the
nuclear envelope into the nucleoplasm [157]. Alternatively, the pressure created by cytoplasmic-associated
cytoskeleton elements on nuclear membrane can create type II, but not type I NEI (see below). The
abundance of NEI seems linked to the status of cellular differentiation; thus, Johnson and colleagues
suggested that NEI indicate the degree of cellular de-differentiation [149]. In cancers, the number of
NEI is significantly elevated and can be used for their classification [158,159]. Given that NEI are widely
distributed among cells under normal and pathological conditions, they deserve further attention.

3.2. Nucleoplasmic Reticulum-Associated Late Endosomes

In search for the mechanism regulating the transfer of biomaterials from EVs to their molecular
targets in recipient cells, notably in the nuclear compartment, we observed that a fraction of EV-associated
proteins, upon EV endocytosis, ends in type II NEI, suggesting that the endocytic system can be involved
in nuclear transfer [5,160]. The literature has documented the presence of membrane-bound vesicles
or organelles in NEI in addition to cytoskeleton elements [145,146]. For instance, Lui and colleagues
described the presence of autophagosome-like multi-lamellar bodies in NEI [141,161]. From our side,
we have recently demonstrated by immunogold electron microscopy and confocal microscopy [5,160]
that a subpopulation of late endosomes labeled with small GTPase Rab7 was associated with type II
NEI (Figure 2A–C). As observed on longitudinal cross-sections of NEI, the frequently pseudo-elongated
morphology of late endosomes therein resembles a sword in its scabbard [5], which led to propose the name
of “spathasome” (from “spathi/spatha” (Greek/Latin) for sword) for this dual membrane-bound structure.
The configuration of the double-membrane invaginations can be observed by immunofluorescence using
the ER-associated vesicle associated membrane protein (VAMP)-associated protein A (VAP-A; see below),
which also labeled ONM (Figure 2C, green), and INM-associated SUN domain-containing protein 2
(SUN2, Figure 2C magenta). Of note, the appearance of these nuclear membranes along the Rab7+ late
endosomal membrane, one inside the other, has some similarity to stacking dolls (known as Matryoshka
dolls; Figure 2C). Such resemblance becomes striking considering that the endocytosed EVs are present in
late endosomes (Figure 2D) [5,160]. Since solely a minute fraction of EV-loaded late endosomes ended up
in NEI in a steady-state condition, it remains to be determined whether they are derived from StAR-related
lipid transfer domain containing 3 (STARD3)+ “early” or OSBP-related protein 1L (ORP1L)+ “late” late
endosomes, as defined by the fluid-phase cargo transport [162]. STARD3 (also known as metastatic
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lymph node 64 (MLN64)) and ORP1L are two cholesterol-binding proteins. The former is a molecular
tether transporting membrane cholesterol within ER–endosome contact and is involved in the egress
of cholesterol from late endosomes/lysosomes to mitochondria [163–165], while the latter is part of a
protein complex that includes Rab7 and regulates the minus-end transport of late endosomes [166].
Notably, neither STARD3 nor ORP1L proteins were present in NEI of melanoma cells, suggesting that late
endosomes located there might represent a third subpopulation [5,160]. Additional markers are needed for
their complete characterization. Given that the movement of late endosomes in nucleoplasmic reticulum
is a dynamic process as observed by time-lapse video, we cannot exclude that a larger proportion of
endosomes are moving there [5,160]. All the factors that govern this transfer are waiting to be discovered,
as well as the limiting step it involves (see below).
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Figure 2. Entry of late endosomes into type II nuclear envelope invagination. (A,B) The presence
of membrane-bound organelles (red arrowheads) in the nucleoplasmic reticulum (arrows) and
cytoplasm of melanoma FEMX-I cells are observed by Rab7 immunogold labeling (black arrowheads)
as described [160]. [Anti-Rab7 rabbit monoclonal antibody D95F2, goat-anti-rabbit Nanogold (1 nm),
and silver enhancement were applied]. (C) HeLa cells expressing Rab7-red fluorescent protein were
double immunolabeled for VAP-A (outer nuclear membrane (ONM) marker, green) and SUN2 (inner
nuclear membrane (INM) marker, magenta) [160]. A cross-section of nuclear envelope invagination
(NEI) containing Rab7+ late endosomes is displayed. Note the presence of various membranous
structures, e.g., the double-layered membrane of the nucleus and the membrane of Rab7+ late
endosomes—the latter might contain intact endocytosed EVs. Their arrangement one inside another
(M, merge) has some similarity to Matryoshka dolls. (D) Representation of type II NEI that contain
late endosomes. Some late endosomes are depicted with endocytosed EVs, which themselves contain
cargo molecules. An intact microtubule network is essential for the translocation of late endosomes
in a NEI that often lies close to nucleolus. A lamin-rich proteinaceous meshwork underlies the INM.
Cross-sections (Cs) and longitudinal (Ls) sections of NEI. Nu, nucleoplasm. [Fluorescence images were
originally published in the Journal of Biological Chemistry: Santos MF, Rappa G, Karbanová J, et al.
VAMP-associated protein-A and oxysterol-binding protein-related protein 3 promote the entry of late
endosomes into the nucleoplasmic reticulum. 2018; 293:13834–13848 [160]. ©The American Society for
Biochemistry and Molecular Biology].
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Figure 3. VOR complex is involved in the translocation of late endosomes into the nucleoplasmic
reticulum and nuclear transfer of EV-derived components. (A) ORP3, a member of the VOR
complex, is associated with nuclear envelope invagination (NEI). Melanoma FEMX-I cells expressing
Rab7-red fluorescent protein were double immunolabeled for ORP3 and SUN2 as described [160]. 3D
reconstruction of three optical sections (green slice) of a given cell is shown. The protein of interest
within NEI is indicated (arrowhead). Nu, nucleoplasm. (B) Schema summarizing the players of VOR
complex and their interactions within NEI. In this model, a late endosome containing endocytosed EVs
(EV) is transported to NEI and tethered to outer nuclear membrane (ONM) (i). The latter process is
mediated by the type II transmembrane, endoplasmic reticulum (ER)/ONM-associated VAP-A protein
(yellow), cholesterol-sensor ORP3 protein (green) that binds to VAP-A via its FFAT motif, and late
endosome-associated Rab7 (gray). The pleckstrin homology (PH) domain of ORP3 might mediate its
binding to late endosomal membrane. The inhibition of transfer of EV-derived components (soluble
and membranous) into the nucleoplasm of host cells after importazole treatment suggests that importin
α1/β1 (may be those associated with EV; black spot) and nuclear pores play a role in these processes (ii).
The potential interaction of nuclear pore components with VOR complex should be addressed in a near
future (green question mark). Other urgent questions remain open, notably the mechanism(s) allowing
the extraction of EV-derived membrane proteins (red) from endosomal membrane and their transfer
into nucleoplasm through the nuclear pores, which are size restricted (iii, black question mark). The low
pH milieu in late endosome might favor the fusion of endocytosed EVs with its membrane (i–iii).
[Fluorescence images were originally published in the Journal of Biological Chemistry: Santos MF,
Rappa G, Karbanová J, et al. VAMP-associated protein-A and oxysterol-binding protein-related protein
3 promote the entry of late endosomes into the nucleoplasmic reticulum. 2018; 293:13834–13848 [160].
©The American Society for Biochemistry and Molecular Biology].

In contrast to late endosomes, early Rab5+ endosomes were barely detectable in the NEI, as was
the Golgi apparatus [5]. Mitochondria remained in most cases at the entrance of the NEI [5,145,146,167].
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Under particular situations, mitochondria might shuttle in NEI and influence Ca2+ signaling [141,168].
It will be important to further dissect the types of membrane-bound structures that navigate in NEI,
particularly in those making tunnels throughout the nucleus. Similarly, it would be of general interest
to decipher whether subtypes of type II NEI with specific function(s) exist. The presence of inositol
1,4,5-trisphosphate (IP3) receptors in certain NEI suggests it [141,161].

3.3. Transport of EV-Loaded Late Endosomes in Nucleoplasmic Reticulum

The mechanism regulating the translocation of late endosomes in type II NEI is an interesting
topic that requires further exploration. The movement of late endosomes within the cytoplasmic
compartment and their interactions with the ER membrane might be instructive. For instance, the
integral ER-anchored protein protrudin contacts late endosomes via Rab7 binding and mediates their
plus end-directed translocation along microtubules toward the cell periphery by the intermediate of
the motor protein kinesin-1 and motor adaptor protein called FYCO1 (FYVE and coiled-coil domain
containing 1) located on late endosomes [169,170]. The repeated contacts between late endosomes
and ER membrane promote their translocation in a microtubule-dependent manner. Does a similar
interplay mechanism occur in NEI? The presence of tubulin in type II NEI and the negative impact of
nocodazole treatment on late endosome translocation to NEI support this hypothesis (Figure 2D) [160].
It might be more than a coincidence that protrudin binds via its FFAT motif (FFAT being an acronym for
two phenylalanines (FF) in an Acidic Tract) to type II membrane protein VAP-A, and the knockdown of
the latter impeded the subcellular localization of Rab7+ late endosomes in NEI of melanoma cells [160].
Although protrudin is not detected in all cell types including melanoma cells [160], the interaction
of Rab7, Rab7 effector FYCO1 protein, and motor protein kinesin-1 could nevertheless mediate
the nuclear translocation of late endosomes towards microtubules, as reported for the transport of
autophagic vesicles [171]. As described for the positioning of late endosomes, an alternative mechanism
involving the interactions of Rab7, ORP1L, Rab-interacting lysosomal protein (RILP), and dynactin
subunit p150Glued, which binds to dynein heavy chain, could also explain the movement of late
endosomes into NEI [140,172]. Although the cholesterol-sensor protein ORP1L, which interacts with
VAP-A, is absent from NEI as mentioned above [160], other OSBP-related proteins of this large family
could be involved [173]. Indeed, the OSBP-related protein-3 (ORP3), in contrast to STARD3 and
ORP1L, was found in NEI and co-localized with Rab7+ late endosomes (Figure 3A) [160]. ORP3
knockdown, just like VAP-A, abolished the presence of Rab7+ late endosomes in NEI, indicating that
this cholesterol-sensor protein could play a certain role in the late endosomes transport process and/or
their tether to nuclear membrane within the NEI [160]. The next step will be to determine whether RILP
and p150Glued protein are associated with NEI and participate to the selective microtubule minus-end
dynein-dynactin-dependent movement of late endosomes. A competition between FYCO1-kinesin and
RILP-dynein-dynactin complexes for Rab7 binding and recruitment to late endosomes is conceivable.

The observation that, upon exposure to EVs, the proportion of cells harboring nucleoplasmic
reticulum-associated late endosomes increased, and the proportion of cells without NEI decreased [5],
suggests that the EV loading of the endosomal compartment regulates NEI biogenesis and consequently
represents a new “pushing in” mechanism of their formation [5]. Thus, the translocation of late
endosomes into NEI and the biogenesis of nuclear membrane folds can be two linked events involving
microtubules. In addition to the presence of microtubules in NEI, microtubules running parallel to
the nuclear envelope and contacting the cytoplasmic filaments of a nuclear pore complex have been
observed by electron microscopy [174]. Nucleoporin proteins are indeed present in NEI containing
EV-loaded Rab7+ late endosomes [5]. Nuclear pore proteins such as nucleoporin 358 (Nup358/RANBP2)
and/or nuclear proteins such as SUN1/2 together with member(s) of the ONM-associated Nesprin
protein family could anchor microtubules and somehow regulate NEI dynamics [175,176]. It is
documented that SUN1/2 and Nesprin proteins play an important role in the nuclear envelope
organization and nuclear positioning relative to the cell body [177–180]. By interacting with motor
proteins (e.g., kinesin proteins such as KIF5B and KIF5C), they could anchor the microtubules within
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NEI, leading to a highway for the late endosome translocation [181]. These exciting issues await
further investigation.

4. The VOR Complex: Interaction of VAP-A, ORP3, and Rab7

4.1. Inter-Organelle Contacts

The regulated interaction between membrane-bound organelles is an exciting and emerging field
of cell biology [182,183]. The organelle crosstalk in eukaryotic cells plays an underestimated role
in cell signaling and/or membrane dynamics. Exchange of biocomponents such as ions and lipids
between connected organelles were described [184,185]. As a general controller of inter-compartmental
activities, the ER, the largest organelle that forms a tubular network, appears to be determinant in
numerous processes [186,187]. Contact sites between ER and Golgi apparatus, mitochondria, plasma
membrane, peroxisomes, lysosomes, lipid droplets, and endosomes were documented [188–190].
Usually, the ER makes multiple contacts with a given organelle, bridging it in close proximity
(i.e., less than 30 nm distance). As demonstrated by electron tomography, the distance between ER and
late endosomes at the contact site is approximately 8 nm [191]. This short distance between connected
organelles facilitates the non-vesicular membrane lipid transport, which requires specific proteins
that can extract them from donor membrane, shield in a hydrophobic pocket, and transfer to opposite
acceptor membrane. For mechanistic details about lipid transfer between opposite membranes and the
involved lipid-transfer proteins, see the following reviews [173,187,192]. The repeated contact between
organelles can also regulate the movement of one of them as discussed above, where late endosomes
are translocated toward the cell periphery using ER and microtubules as support.

A certain number of molecular players involved in the contact zones between ER and
various organelles were identified [186,193]. For instance, integral ER membrane-localized
VAP-A and VAP-B (also known as ALS8) have been implicated in tethering and maintenance
of structural and functional properties of the Golgi complex by regulating the proper levels of
key lipids (e.g., phosphatidylinositol-4-phosphate, sphingomyelin, and diacylglycerol) in the Golgi
membrane [194]. The knockdown of VAPs exerts various lipid-mediated effects on Golgi-mediated
transport events. These actions are regulated by the interaction of VAPs with lipid-transfer/binding
proteins, including PYK2 N-terminal domain-interacting receptor 2 (Nir2), OSBP, and ceramide-transfer
protein (CERT). Their FFAT motif mediates the VAP interaction [195–197], while pleckstrin homology
(PH) domain of VAP-interacting proteins promotes their binding to Golgi membrane [198,199].
FFAT-binding site in VAPs is associated with the major sperm protein (MSP) homology domain
located at the cytoplasmic N-terminal part [200]. In addition to OSBP, the interaction of full-length
ORP9 with VAPs also occurs and regulates trans-Golgi/trans-Golgi network structure and function by
modifying its membrane environment by means of cholesterol delivery [201]. The contact between
VAP-B and outer mitochondrial membrane protein, such as protein tyrosine phosphatase-interacting
protein 51 (PTP1P51), regulates the ER-mitochondria association [202,203]. Direct contact between
ER and plasma membrane was also described and implicated in various cellular processes such
as regulation of intracellular calcium, lipid traffic, and signaling [204,205]. Among the scaffolding
proteins involved, VAP-A and ORP3 were described [206]. Interestingly, ORP3 forms a physical
complex with the small GTPase R-Ras [207]. The plasma membrane-targeting PH domain as well
as VAP-A-interacting FFAT motif found in ORP3 were essential for the activation of R-Ras and its
downstream signaling pathway, indicating that ER-plasma membrane contact creates a R-Ras activation
platform [208]. Moreover, ORP3 interacts with IQSec1 (IQ motif and Sec7 domain-containing protein 1)
protein, and the ORP3/VAP-A/IQSec1 complex plays a role in focal adhesion turnover [209]. Like other
OSBP homologs, ORP3 was shown to bind to membrane cholesterol, as demonstrated using live cell
photo-crosslinking with [3H] photo-cholesterol [210]. The endosomes are other organelles physically
involved in the contact with ER. Indeed, ER participates actively in endosome maturation, transport,
and fission [211–213]. The literature has documented various molecules implicated in the ER–endosome
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tethering, including paired proteins: VAP-A and STARD3 or STARDNL (STARD3 N-terminal like);
VAP-A and ORP1L; protrudin/VAP-A and Rab7; and protein tyrosine phosphatase 1B (PTP1B) and
endocytosed phosphorylated EGFR [193,214,215]. In the latter case, such inter-organelle contact
(i.e., ER–endosomes) can regulate spatially and temporally EGFR signaling [216]. The interaction
between VAP-A and endosomal proteins STARD3 and STARDNL could regulate endosome positioning
and dynamics. In contrast to STARD3, STARDNL does not contain a START protein domain that
allows cholesterol binding and can potentially transfer cholesterol between connected and adjacent
membranes [217,218].

4.2. Late Endosome–Nuclear Membrane Contact: Role of VAP-A–ORP3–Rab7 Interactions

Applying a triple fluorescence analysis, fluorescence resonance energy transfer, and para-magnetic
immune-isolation techniques, we demonstrated that VAP-A, ORP3, and Rab7 co-localize in discrete
areas within NEI and interact with each other [160]. This tripartite complex, named VOR complex
(an acronym for VAP-A, ORP3 and Rab7), is essential for the localization and docking of late
endosomes in NEI (Figure 3B) [160]. Moreover, ORP3 needs VAP-A to be present in NEI, suggesting
that VAP-A is orchestrating these interactions [160]. Surprisingly, the VAP-A homolog, VAP-B, is
not involved in these events although it is also localized in nucleoplasmic reticulum [160]. Thus,
VAP-A silencing cannot be rescued by VAP-B [160]. These findings highlight the most hidden part
of molecular mechanisms controlling these sequential interactions (VAP-A/ORP3/Rab7) and their
regulation. The hyperphosphorylation of ORP3 might promote the interaction with VAP-A via the
FFAT motif as described for its role in ER-plasma membrane contact zone, while its PH domain could
promote its interaction with late endosomal lipids [208,209,219]. In contrast to ORP1L, ORP3 does
not contain an ankyrin repeat region, which could mediate Rab7 interaction [220]. It remains to be
evaluated whether the R-Ras binding site in ORP3 can be involved [208]. Although the presence
of Rab7+ late endosomes in NEI is fully abrogated after ORP3 silencing in melanoma cells [160],
it will be of interest to evaluate whether other ORPs are engaged in the nucleus—late endosome
contact in particular types of cells and/or under peculiar physiological and pathological conditions.
A potential candidate is the ER-associated transmembrane protein ORP5, which has been suggested
to interact with the late endosome cholesterol transporter Niemann-Pick C1 protein [221] (reviewed
in [215]). The co-existence of multiple bridging complexes driven by distinct protein pairs cannot be
excluded [204], and it remains to be identified whether other proteins participate in the tether of late
endosomes with ONM within nuclear folds.

4.3. Implication of Nuclear Pores in EV-Derived Cargo Nuclear Shuttling

How can EV-associated components within late endosomes reach the nucleoplasm? After the
docking of late endosomes to ONM, the fusion of EVs with the endosomal membrane might expose EV
content in the proximity of nuclear pores, allowing their nuclear transfer. The presence of the nuclear
transport receptor karyopherin (importin α and β1 subunits) in EVs [5,222–225] suggests that it may
somehow participate in the nuclear translocation of soluble and perhaps membranous EV components
(Figure 3B). The nuclear localization signal (NLS) present on a protein cargo is recognized by importin
α1 subunit, which in turn interacts with β1. The resulting protein complex passes through the nuclear
pore by binding key nucleoporins [226]. Once translocated into nucleoplasm, small regulatory nuclear
GTPase Ran-GTP binds to importin β1 and dissociates the imported protein complex. Consistent
with the role of nuclear pores in these processes, nucleoporins were detected in NEI containing late
endosomes [5], and the incubation of cells with cell-permeable 2,4-diaminoquinazoline (importazole),
a small molecule that inhibits the function of importin β1 by altering its interaction with Ran-GTP [227],
impaired the nuclear translocation of EV-derived protein cargo [5]. The intriguing interaction of
another ER-located OSBP-related protein, i.e., ORP8, with nucleoporin Nup62 might be relevant in
this context [228]. A direct interaction between ORP3, together with VAP-A/Rab7, and nuclear pore
constituents should be investigated (Figure 3B, question mark). Further, it remains to be determined
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how a protein complex notably those containing EV-derived membrane glycoproteins (e.g., full-length
CD9 and CD133) are extracted from EV-endosomal membrane after the fusion of the former with the
endocytic organelle [5]. Are tetraspanin-rich microdomains or lipid rafts present in the membrane
bilayer of EVs involved in forming a phase separation with surrounding, more fluid membrane
lipids (Figure 3B, double question marks)? Thus, tetraspanin/lipid raft-associated proteins might
create a membranous platform, and NLS-containing transmembrane cargo/importin proteins could be
extracted and drag the entire complex through the nuclear pore. Considering that nuclear pores are
size restricted [229], we cannot expect that an entire endocytosed EV (>40 nm in diameter) reaches the
nucleoplasm, although it was recently suggested that very small (nano)vesicles (<30 nm) other than
high-density lipoprotein particles may exist [230]. The high degree of membrane curvature in NEI,
particularly at their tip may alter the properties of nuclear pores and hence allow larger complexes to
pass through. It remains to be investigated whether other pathways independent of nuclear pores are
implicated in the nuclear translocation of EV-derived cargoes [231,232].

5. Biological Functions

The localization of late endosomes in the nucleoplasmic reticulum could have a significant
impact on the mechanism of intercellular communication mediated by EVs. This novel endosomal
pathway adds an alternative route to the soluble and membranous components derived from EVs
(e.g., nucleic acids and proteins) to reach and interact with their molecular targets, including those
associated with nucleoli [5,6]. This biological issue is particularly important given the limited amount
of bioactive molecules carried by EVs. In addition to EV cargo, this pathway might play a role in
the nuclear translocation of plasma membrane receptors upon ligand interaction. Similar to integral
membrane proteins CD9 and CD133 [5,52,233–235], numerous plasma membrane receptors including
EGFR, platelet-derived growth factor (PDGF), insulin growth factor receptor 1 (IGF-1R), and several
G-protein coupled receptors that are potential drug targets were surprisingly found in the nuclear
compartment [236–239]. Therein, they could be involved in transcriptional regulation and cellular
proliferation, and confer chemo- and radio-resistance among other biochemical processes. In this
context, it might be more than a coincidence that the nuclear translocation of the cell surface IGF-1R is
dependent on the dynactin subunit p150Glued and importin β1 as discussed above for the late endosome
movement and nuclear transfer of EV cargo, respectively [238]. To date, the retrograde transport
through Golgi and ER was considered the main intracellular route for full-length membrane-anchored
proteins to the nucleus [240,241] (Table 1). Our observation with nucleoplasmic reticulum-associated
late endosomes is in line with a recent pathway described by Chaumet and colleagues where the
bacterial protein Pseudomonas exotoxin A upon binding to the cell surface LDL receptor related
protein 1 (LRP1) can reach the nuclear compartment through docking and membrane fusion of early
endosomes with the nuclear envelope [232] (reviewed in [242]). In the latter case, SUN1 and SUN2
proteins and Sec61 translocon complex were involved in this novel pathway (Table 1). Sec61 complex
mediated the egress of proteins from INM to the nucleoplasm [232,242]. Although the mechanisms
regulating these novel intracellular trafficking routes appear distinct, they nonetheless address the
question of how cell surface and extracellular proteins reach the nucleoplasm. Potential mechanisms
underlying the nuclear transports of membrane proteins present at the plasma membrane and/or EVs
are summarized in Table 1.

In addition to the nuclear transfer of EV cargo, nucleoplasmic reticulum-associated late
endosomes may create a privileged intracytoplasmic compartment that would favor protein–protein,
protein–nucleic acid, and nucleic acid–nucleic acid interactions. The cytoplasmic release of soluble EV
constituents upon a tardive fusion of intact endocytosed EVs with late endosomal membrane might
facilitate their binding, given a local high concentration, to the molecular targets exported out of the
nucleus such as RNA transcripts, and hence exert a function independent of their nuclear import [150].
This issue requires further attention.
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Table 1. Potential pathways of nuclear transport of cell surface proteins present at plasma membrane
and/or extracellular membrane vesicles.

Retrograde Transport Nuclear Envelope-Associated
Early Endosomes

Nuclear Envelope
Invagination-Associated Late Endosomes
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6. Perspectives and Future Directions

Interference with the new intracellular route used by endocytosed EVs can find applications in
the cancer field, for instance by preventing the delivery of cancer cell-derived EV cargo to host cell
nucleoplasm. The identification of the VOR complex and its inhibition may be clinically relevant. Thus,
disruption of the intercellular communication between cancer cells and stromal components within the
metastatic niche may be a novel approach to intercept the mechanisms underlying tumor growth and
metastasis formation. A drug screening should be undertaken and the knowledge about the interaction
of VAP-A with FFAT motif-containing protein partners, including sterol-binding proteins, would be
useful to design such chemical compounds. In addition to cancers, this new pathway may be involved
in the delivery of biomaterials (e.g., cell surface receptors) to the nuclear compartment as explained
above, and hence other applications can be envisaged.

Although EVs do not have the ability to promote their own replication in host cells unlike enveloped
viruses, numerous facets are nonetheless shared between these small phospholipid membrane-enclosed
entities, including certain aspects of their biogenesis and release into the extracellular milieu (reviewed
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in Refs [247–249]). The similarity between them is further supported by discoveries revealing that
virus-infected cells release modified EVs (i.e., exosomes) containing viral proteins and nucleic acids
such as non-coding regulatory miRNAs [250], which could enhance or interfere with infection and/or
provoke immune dysregulation [251]. These observations among others have highlighted that
the exosomal and/or microvesicle pathways can be hijacked by viruses, notably retroviruses [252].
Moreover, EVs can provide an “envelope” to non-enveloped viruses such as hepatitis, which promotes
their spreading without lysis of infected cells [253,254]. The latter observation might also question a
“dogmatic” issue that categorizes viruses into enveloped and non-enveloped ones. The internalization
of EVs and enveloped viruses might also share some similarity [255]. Direct fusion with the host
cell plasma membrane or receptor-mediated endocytosis can explain the entry mechanisms of both
particle types (reviewed in [256]). Once internalized into the endocytic pathway, viral components can
reach the nuclear compartment, which raises the possibility that they might use the nucleoplasmic
reticulum-associated late endosomes to transfer their nucleic acids to the nucleoplasm of host cells.
It might be more than a coincidence that the infection of certain viruses (e.g., herpesvirus) could
promote morphological alterations of the nuclear membrane of host cells and a redistribution of nuclear
pore proteins, notably in NEI-like structures [257]. The interaction of viral proteins with nucleoporins
might be significant in these processes [258]. Such nuclear membrane re-organization of infected cells is
in line with the impact of EVs on the number of NEI [5], hence the spatial configuration of the nucleus
of EV-exposed cells. Therefore, it will be of interest to revisit the cellular entry of enveloped viruses
and the delivery of their viral genome into nucleus in light of the shuttling of EV cargo described here.

Lastly, the discovery of nucleoplasmic reticulum-associated late endosomes might open new
avenues to deliver and target specific drugs to nuclei of cancer cells or other pathologic cells. Altogether,
deciphering at a molecular level all spatiotemporal multi-steps of this new intracellular pathway would
benefit the field of nanobiological technology towards new medical therapeutic approaches [91].
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