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ABSTRACT Biological systems are endowed with two fundamental but seemingly contradic-
tory properties: robustness, the ability to withstand environmental fluctuations and genetic 
variability; and evolvability, the ability to acquire selectable and heritable phenotypic chang-
es. Cell populations with heterogeneous genetic makeup, such as those of infectious micro-
bial organisms or cancer, rely on their inherent robustness to maintain viability and fitness, 
but when encountering environmental insults, such as drug treatment, these populations are 
also poised for rapid adaptation through evolutionary selection. In this study, we develop a 
general mathematical model that allows us to explain and quantify this fundamental relation-
ship between robustness and evolvability of heterogeneous cell populations. Our model 
predicts that robustness is, in fact, essential for evolvability, especially for more adverse 
environments, a trend we observe in aneuploid budding yeast and breast cancer cells. 
Robustness also compensates for the negative impact of the systems’ complexity on their 
evolvability. Our model also provides a mathematical means to estimate the number of inde-
pendent processes underlying a system’s performance and identify the most generally adapt-
ed subpopulation, which may resemble the multi-drug-resistant “persister” cells observed in 
cancer.

INTRODUCTION
Biological systems, even on the cellular level, are complex systems 
whose behaviors are emergent from the interaction of a large num-
ber of components (Kauffman, 1993; Chu, 2008; Mitchell, 2011). 
This complexity is thought to endow biological systems with both 

stability in the face of perturbations (Carlson and Doyle, 2002) and 
the ability to adapt to the changing environment (de Visser et al., 
2003; Gerhart and Kirschner, 2007). Understanding the relationship 
between these seemingly conflicting properties can directly impact 
our ability to interpret the response of cellular systems to experi-
mental manipulation or therapeutic intervention (Wagner, 2008; 
Draghi et al., 2010). Adding to the difficulty is the fact that cellular 
systems are often heterogeneous on the population level due to 
stochasticity in the stoichiometry of many components (Eldar and 
Elowitz, 2010; Stewart-Ornstein et al., 2012) as well as accumulated 
genetic variation (Lujan et al., 2014), making the response of these 
systems to experimental or clinical manipulations difficult to predict 
(Altschuler and Wu, 2010). Cancer is a prime example of how a com-
bination of heterogeneity, robustness, and evolvability makes a bio-
logical system particularly challenging to understand and intervene 
in. Cancer cell populations are notoriously heterogeneous (Alizadeh 
et al., 2015) and carry a slew of genetic and copy number abnor-
malities affecting hundreds to thousands of genes (Giam and 
Rancati, 2015; Alvarez et al., 2016). Unpredictable responses of tu-
mors to targeted treatments and the frequent emergence of drug 
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resistance are major challenges in cancer treatment (Bozic et al., 
2012, 2013; Foo and Michor, 2014; McGranahan et al., 2015; 
Ramirez et al., 2016). While cancer is arguably the most notable ex-
ample, similar challenges due to the interaction of heterogeneity, 
robustness, and evolvability arise in infectious diseases involving 
heterogeneous populations of microorganisms, from bacteria 
(Taubes, 2008; Deris et al., 2013) to HIV (Pennings, 2012).

Rapidly evolving diseases could be better understood and treated 
if we have quantitative models more explicitly showing the interac-
tion between heterogeneity, robustness, and evolvability. Whereas 
the tendency over the past decade has been to use network systems 
biology (Ideker et al., 2001; Barabási and Oltvai, 2004) combined 
with graph theory to explore the interplay between these three fac-
tors (Draghi et al., 2010; Raman and Wagner, 2011; Wagner, 2012), 
we endeavor to derive a model from more fundamental consider-
ations. Cancer genomes carry not only massive gene mutation 
loads but also numerical and structural chromosome abnormalities 
(Gordon et al., 2012; Weinstein et al., 2013). These abnormalities can 
emerge rapidly (Ben-David et al., 2017), and numerical abnormalities, 
referred to as aneuploidy, exert large effects on multiple cellular 
pathways in mitotically proliferating cell populations (Chen et al., 
2012; Gordon et al., 2012; McGranahan et al., 2012; Zhu et al., 2012; 
Merino et al., 2016). In a previous study of aneuploid yeast, we ob-
served that the variance of fitness in a heterogeneous aneuploid co-
hort escalated with increasing stress magnitude regardless of stress 
type, leading to the emergence of adaptive variants even under the 
most toxic conditions (Chen et al., 2015). Simulations based on sim-
ple assumptions linked to systems complexity and aneuploidy’s 
broad effect on gene expression recapitulated this phenomenon; 
however, the model was not general enough to allow exploration of 
functional parameters that affect the adaptive potential of heteroge-
neous populations. Here we establish a general mathematical frame-
work with analytical formulas and demonstrate its usefulness for 
investigating the fundamental principles governing the evolvability of 
complex heterogeneous systems.

RESULTS
A general model of adaptation of heterogeneous 
populations to stressful environments
Our modeling approach is based on the notion that the fitness 
of cells in each environment depends on their intermediate 
properties—independent traits representing molecular pathways 
that enable cell populations to maintain fitness in diverse environ-
mental conditions. Biological systems are characterized by a high 
degree of modularity despite the fact that most pathways are con-
nected (Hansen, 2003; Wagner et al., 2007). This modularity allows 
biological systems to vary only in a small subset of traits at a time. 
Each subpopulation with an identical trait combination occupies a 
point in the multidimensional trait space. If the trait combination 
matches the optimal trait combination for a given environment, the 
subpopulation is at maximal fitness. As the mismatch between the 
trait combination and environmental optimum increases, the fitness 
decreases. We assume that all traits are continuous, as well as the 
performance determined by them. This assumption is justified by 
recent findings in genomewide association studies suggesting 
continuous variation of the traits by variants of many genes (Boyle 
et al., 2017) and is consistent with the classical population genetics 
framework with the assumption of a single local optimum and 
highly pleiotropic mutations (Fisher, 1930; Orr, 2005a; Martin and 
Lenormand, 2006; Gros et al., 2009).

Our model makes two additional assumptions of biological im-
portance. First, we assume that the fitness decay is isotropic; that is, 

all traits deviating from the optimal trait combination contribute to 
the fitness decay in the same way. Because the trait space is not 
directly observable, normalization ensures that this assumption is 
true. Our second assumption is that the population is distributed in 
the trait space according to an isotropic multidimensional Gaussian. 
This assumption corresponds to two possible biological realities. 
First, the genetic variation occurs from a founder subpopulation 
selected under an initial environment. If we assume that all traits 
are polygenic and are affected uniformly by the type of genetic 
variation, such as aneuploidy, whereby the expression of hundreds 
to thousands of genes is altered simultaneously, the assumption is 
satisfied on account of the central limit theorem (Feller, 1945). 
Second, the assumption can be satisfied as a result of the environ-
ment’s selective pressure limiting the deviation from some reference 
phenotype, due to the maximum entropy nature of the Gaussian 
distribution for fixed mean and SD, making it the distribution we 
would expect to appear by default (Lisman and van Zuylen, 1972). 
The subpopulation located at the center of the Gaussian distribu-
tion, approximated by the arithmetic mean of the entire population 
in the trait space, would correspond to the founder genome or the 
trait combination selected by the initial environment. Given that all 
subpopulations others than this one correspond to adaptations to 
specific niches, to be consistent with traditional terminology in 
ecology and evolution, we will refer to this central population as 
“generalist.”

Figure 1A shows a representation of fitness and population 
distributions in the trait space, where fitness decreases as the Eu-
clidean distance between the environmental optimum and the 
subpopulation’s position in trait space (d) increases (Figure 1B). We 
use a general class of exponential functions to represent the fitness, 

G d d sexp 2( )( )( ) = −γ
γ , where s is the characteristic fitness decay 

distance in the trait space and γ determines how sensitive the sub-
population’s fitness is to small deviations from the environmental 
optimum. γ is, therefore, a measure of the cell system’s inherent ro-
bustness—the higher it is, the smaller will be the drop in fitness 
before a critical value s is reached. This exponential class of func-
tions is closely related to the Weibull distribution, used in the study 
of failures under mechanical loads. In that context, the parameter γ 
could be increased by introducing redundancy, such as by using a 
bundle cable rather than a bar of identical section (Weibull, 1939). s, 
on the other hand, is merely a scaling factor for d, the distance in the 
trait space, and hence can be set to any value we desired in the 
normalization step if related parameters are normalized as well 
(Martin and Lenormand, 2006).

This formalization separates the organism’s robustness, con-
trolled by the parameter γ, from the population heterogeneity, 
controlled by the parameter σA (Figure 1A). In the context of 
evolutionary selection, fitness relative to an ancestor or founder 
population is a more meaningful measure than absolute fitness. To 
represent this comparison, we introduced the comparative fitness 

( )=H G GIn /int ref , where Gint is the fitness of a subpopulation of 
interest and Gref the fitness of the generalist subpopulation as de-
fined above.

Robustness is an essential precondition for the emergence 
of adaptive subpopulations
On the basis of the formulation of the model, we derive a complete 
expression for the mean fitness (μ) and SD (σ) of relative fitness H 
of all subpopulations in the original heterogeneous population 
(Supplemental Material, Eqs. 3.3 and 3.6). While these expres-
sions are analytical, they involve nontrivial functions (Supplemental 
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Material, Eqs. 3.3 and 3.6), and we therefore provide the following 
approximate expressions for μ and σ:
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Here, σA, population heterogeneity, is the SD of the population 
distribution in the trait space (Figure 1A, white area radius). N is 
the dimensionality of the trait space, corresponding to the num-
ber of independent pathway groups allowing adaptation to a 
stress, and l is the distance between the environmental optimum 
and the generalist subpopulation in the trait space. The com-
plete analytical expressions (see Supplemental Material, Eqs. 3.3 
and 3.6) agree well with direct model simulations (Figure 1, C and 
D, and Supplemental Figures S1 and S2; see the Supplemental 
Material for more details), and approximate expressions, which 
allow much easier computation, are almost identical to the full 
expressions (Supplemental Figure S3) across a wide range of 
parameters.

The results show that the SD of the relative fitness (σ) increases 
monotonically as average relative fitness (μ) decreases for a larger 
departure from the environment optimum (Figure 1, C and D). In 
other words, under conditions close to the optimum, the popula-
tion’s fitness is represented by that of the generalist subpopulation 

FIGURE 1: Model of adaptation of heterogeneous populations to stressful environments. 
(A) Schematic representation of an example trait space (N = 2). Point A represents the fitness 
optimum under a given environment. Color codes for the population density in the trait space. 
Point B is the position of the reference subpopulation. (B) Fitness (black, blue, green) and 
population distance to trait space optimum distribution (red). Gray denotes selection edge. 
γ = 0.5 (black), 1 (blue), 6 (green); s = 1. (C) Simulated (black) and theoretical (red) correlation 
between mean and SD of comparative fitness H computed with parameters N = 40, γ = 2. 
(D) Curse of complexity: simulations (γ = 2) showing that for larger N (N = 80) the number of 
selectable variants (H > 0) decreases. On the left, individual subpopulations (black), with 
mean (red) and SD (pink). On the right, H mean–SD correlation for the population (same colors 
as in C).

and exhibits minimal variation, but as the 
stress level increases (increasing distance 
from the optimum), the fitness of the popu-
lation of systems scatters, so that subpopu-
lations with higher fitness than the general-
ist emerge. This trend is consistent with the 
previous experimental observations (Chen 
et al., 2015). We define evolvability as the 
presence of a subpopulation with a fitness 
significantly higher than that of the other 
subpopulations, allowing its genotype to 
spread through the entire population while 
under selection. This feature is better visible 
on the μ–σ parametric curve—the higher 
the curve slope, the larger SD compared 
with mean relative fitness and the higher is 
the chance of a niche subpopulation to ex-
ceed the generalist fitness. Analysis of the 
effect of various values of the robustness 
parameter γ on the μ–σ parametric curve re-
vealed that evolvability exists if an organism 
is sufficiently robust (γ > 1.5) (Figure 2, A–C; 
Supplemental Figure S1). When γ > 1.5, cell 
fitness displays thresholdlike behavior in 
trait space, in which after an initial plateau 
the fitness falls sharply off at the selection 
edge (s = l; Figure 2A). Such systems are in-
herently robust because the fitness is stably 
maintained within a certain range of random 
perturbations (Ohta, 1992). Only then does 
the fitness difference become large enough 
across the population to overcome random-
ness in survival and reproduction, give rise 
to selection, and drive evolution (Figure 2, B 
and C; Supplemental Figure S1; Ohta, 
2002). In contrast, when γ < 1, fitness falls 

sharply off as soon as the condition deviates from the optimum 
(Figure 1A), and no adaptive subpopulation can be selected (Sup-
plemental Figure S1).

The previous theoretical analysis suggested that robustness 
contributes to evolvability by allowing the accumulation of het-
erogeneity (Wagner, 2008). Our model is able to recapitulate that 
observation by adjusting the population heterogeneity parame-
ter σA (Supplemental Figure S2, A–C), but also predicts that the 
effect of robustness on evolvability might be independent of 
population heterogeneity (σA) or population size (Supplemental 
Figure S2). Our model also suggests a solution to the well-known 
“cost of complexity” paradox in population genetics (Orr, 2000). 
This paradox suggests that an increase in complexity, repre-
sented in our model as the number of dimensions of the trait 
space (N), results in a smaller chance of a random step in the 
traits space leading to adaptation (Figures 1D and 2, E and F). 
Until now it was thought that biological systems’ modularity al-
lows only a few dimensions to be affected by mutations, leading 
to a restriction on the number of trait space dimensions along 
which a mutation could move an organism (Martin and Lenor-
mand, 2006; Wagner et al., 2008). However, if the gain in com-
plexity coincides with increased robustness, the higher γ can 
positively influence the emergence of selectable variance even 
with high trait-space complexity (Figure 2G). Our model also pre-
dicts that for a sufficiently robust organism (γ > 1.5), the slope of 
the σ–μ curve strongly depends on N, while a change in γ leads 
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only to a curvature change (Figure 2D). This means that both the 
organism robustness γ and the complexity N can be estimated 
from the experimentally observed values of H, which to our 
knowledge is the first experimentally feasible method for per-
forming such measurement (Orr, 2002).

FIGURE 2: Robustness is an essential for the emergence of adaptive subpopulations. (A) Shape 
of the fitness function G for different values of the robustness parameter γ; s = 0.5. (B) Different 
modes of the mean–SD relationship of the comparative fitness function H with varying γ; N = 40. 
Color keys for E and F are shown on the right. (C) A selectable fitness difference occurs only for 
a high value of the robustness parameter γ; γ > 1.5. Bars are raw fitness values for 10 randomly 
sampled subpopulations at the selection edge (d = s). (D) Slope of σ(μ) depends on N, while the 
curvature depends on γ. Simulated (points) and theoretical curve (continuous). (E) At low trait 
space complexity, intermediate robustness generates a sufficient difference in fitness in a new 
environment to lead to selection. (F) At high trait space complexity, intermediate robustness is 
unable to generate a sufficient difference in fitness in a new environment to lead to selection. 
(G) At high trait space complexity, high robustness is able to generate a large difference in 
fitness in a new environment to lead to selection of the fittest members of the population. 
(H) At high trait space complexity, low robustness generates an even lower difference in fitness 
between population members than intermediate robustness.

A method for identifying the 
generalist subpopulation from 
experimental data
To make the model useful for the analysis of 
experimental data, there needs to be a way 
to accurately identify the generalist subpop-
ulation. Because the trait space is not ex-
perimentally accessible, this method needs 
to rely on the distribution of fitness across 
subpopulations under different conditions. 
The central positioning within the heteroge-
neous population dictates that the core 
property of the generalist population is its 
relatively stable fitness in varied environ-
ments: regardless of the direction of shift of 
the environmental optimum, the generalist 
subpopulation always remains among the 
fittest ones, whereas the peripheral subpop-
ulations would have much more contrasting 
fitness between different environments 
(Figure 3, A and B). There is, therefore, an 
inherent architecture of general adaptive 
potential within the heterogeneous popula-
tion. To quantify how much of a generalist a 
subpopulation is, we developed the envi-
ronment-specificity index (ESI), whose math-
ematical formulation is closely related to 
the Gini index (Gini, 1921), a highly robust 
measure of inequality and preference for a 
specific condition (Hurley and Rickard, 
2009). For a subpopulation p with fitness 
Gp,i in the environment i and a set m of total 
environments,

p
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Subpopulations whose fitness in a single 
environment or a few environments is sig-
nificantly higher than in most others would 
exhibit high fitness inequality across the en-
vironments and hence high ESI, whereas 
those with a more even fitness distribution 
across environments would have low ESI 
(Figure 3C). Our model predicts that ESI is 
correlated to average fitness: the generalist 
subpopulation has the lowest ESI and the 
highest average fitness across various stress-
ful environments, while subpopulations fur-
ther away from it have higher ESI and lower 
average fitness (Figure 3D). These noncen-
tral subpopulations fare well only in a small 
set of environments, and poorly in almost all 
others, behaving similarly to specialist spe-
cies in an ecosystem.

Application of the model to aneuploid budding yeast and 
breast cancer cell lines
We tested our model on two types of cells—a cohort of 38 different 
aneuploid Saccharomyces cerevisiae yeast strains submitted to a 
panel of stressful environments (Pavelka et al., 2010; Supplemental 
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Figure S4A) and a panel of 70 different breast cancer cell lines 
treated with a large number of drugs with diverse modes of action 
at their effective concentrations (Daemen et al., 2013; Supplemental 
Figure S4B; see Materials and Methods). Aneuploid yeast cells have 
different chromosome copy number combinations, which result in 
large-scale perturbations to gene dosage stoichiometry, leading to 
distributed and highly pleiotropic phenotypic effects. Cancer cell 
lines, in addition to widespread aneuploidy, also possess numerous 
mutations.

For the heterogeneous cohort of aneuploid yeast strains ex-
posed to stressful environments (Pavelka et al., 2010; Chen et al., 
2015; Supplemental Table S1), ESI analysis based on the experimen-
tal data shows that the haploid population represents the generalist 
subpopulation (Figure 4A). This was expected, as the euploid strain 
was the ancestor population that had adapted well to the rich 
growth media and from which all aneuploid strains were derived 
and hence in this context can be considered as a founder. Using the 
haploid as the generalist subpopulation, the regression of our 
model fits well (r2 = 0.756, p < 5 × 10–10) with the analytical prediction 
of the model with a complexity equivalent to the trait space 

dimensionality (N) of 55 and inherent robustness equivalent to γ = 
2.2 (Figure 4B).

We next applied the ESI analysis to the published data on 70 
breast cancer cell lines treated with 90 drugs representing a variety 
of adverse environments (Heiser and Sadanandam, 2012; Daemen 
et al., 2013) (Supplemental Table S2). Interestingly, the BT-483 can-
cer cell line, but not nontransformed human breast epithelial cells, 
was closest to being the generalist, with the lowest ESI and highest 
mean fitness across drug treatments (Figure 4C). This may be ex-
plained by the fact that nontransformed cells require specific growth 
signals in their environment to survive and proliferate, due to their 
role in a multicellular organism, whereas cancer cells were selected 
due to their clonal single-state fitness under suboptimal conditions 
and are often able to divide independent of growth-promoting fac-
tors. Using BT-483 as the generalist subpopulation, the data fit well 
(r2 = 0.61, p < 1 × 10–10), with the model yielding a trait space dimen-
sionality (N) of 90 and a robustness parameter γ = 3 (Figure 4D). In-
terestingly, even the looser fit for low μ and σ can be explained by 
our model—this pattern is expected when the population distribu-
tion in the trait space is wider among some traits than others 

FIGURE 3: ESI and average fitness are correlated and allow identification of the reference subpopulation. (A) Variation 
in optimal fitness zone (green) in trait space around initial value leaves the reference subpopulation (red dot) in the 
acceptable zone (yellow) as other subpopulations (black and purple) switch between optimal (green) and unacceptable 
(orange) zones. (B) Fitness for the population above. The X axis has the subpopulation identification number for each 
dot. Fitness is somewhat stable for the reference subpopulation, whereas it varies more widely for other 
subpopulations. Subpopulations are more likely to reach deadly fitness (∼0) if they are further from the reference 
(compare black dots withs purple dots). (C) Sorted fitness values (left) and fitness Lorenz curve (right) for the reference 
subpopulation (red), subpopulations close to it in the trait space (purple), and a subpopulation at a significant distance 
from it (black). (D) The simulation shows a correlation between ESI and average fitness across environments for a 
population of 40 subpopulations in 20 environments.
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(Supplemental Figure S5; see Materials and Methods). This result 
shows that our model applies well to heterogeneous cell popula-
tions of different origins and that the trait space of human breast 
cancer cells is significantly more complex than that of yeast cells.

DISCUSSION
In this work, we introduced and formalized a mathematical model 
describing the adaptability of heterogeneous cell populations. The 
model was built to recapitulate several basic attributes of cellular 
systems—complexity, modularity, and robustness—without relying 
on details about specific molecular pathways. This model helps 
achieve a threefold conclusion. First, it predicts an essential role for 
robustness in the evolvability of cellular systems. When robustness 
increases with the complexity of organisms, evolvability on the cel-
lular level increases accordingly, explaining why complex systems 
can be both robust and evolvable. Second, it implies the presence 
of an adaptive structure in a heterogeneous population and pro-
vides a means of finding a “generalist” subpopulation with the larg-
est capacity to survive diverse stress conditions. Finally, by applying 
it to the drug response data for breast cancer cell lines, not only 
have we validated its prediction about the correlation between 
growth repression and phenotypic variation, but also we have iden-
tified a cell line that may be used as an experimental model for 
multidrug resistance in cancer.

Our theoretical approach shares a formalization close to Fisher’s 
geometrical model (FGM) in population genetics (Fisher, 1930; Orr, 
2005a). FGM also links biological systems’ fitness to their position in 

the phenotypic space relative to the optimum. After accounting for 
genetic drift (Kimura, 1989; Ohta, 1992), FGM allows analysis of the 
accumulation of both beneficial genome alterations (Gillespie, 
1983, 1984) and deleterious ones (Charlesworth et al., 1993). His-
torically, FGM was built to describe the accumulation of small-effect 
mutations from ancestor to descendants (Tenaillon, 2014) and thus 
reconcile Mendelian and biometric genetics, but more recently it 
has grown beyond that scope (Matuszewski et al., 2014). In its clas-
sical formulation, it conflates the complexity of total phenotypic 
space and the average pleiotropy of mutations (Peck et al., 1997; 
Martin and Lenormand, 2006) and focuses on a single environment 
(Orr, 2005b). The robustness degree γ within our model is closely 
related to the fitness norm of reaction shape (Simms, 2000) and is 
classically interpreted in FGM as factor characterizing the degree of 
interloci epistatic interaction (Martin and Lenormand, 2006; Gros 
et al., 2009; Wagner and Zhang, 2011; Fraisse et al., 2016). This in-
terpretation is consistent with our view—if fitness decay due to a 
trait deviation from the optimum requires the simultaneous failure of 
several genes, the robustness would be higher and the falloff more 
abrupt (Weibull, 1939). By applying the values of parameters de-
rived by our model for yeast into a previously derived formula for 
epistasis (Gros et al., 2009), our model predicts an average epistasis 
of ∼2% in yeast (see Materials and Methods), consistent with the 
observed 1.6% prevalence of synthetic–lethal interactions (Costanzo 
et al., 2016).

Unlike the classical FGM models, our approach provides a 
direct solution to the “cost of complexity” paradox (Orr, 2002). An 

FIGURE 4: Application of the model to S. cerevisiae aneuploids and breast cancer cell lines. (A) The average fitness and 
ESI analysis of the data for aneuploid yeast responding to diverse stress conditions identify the haploid yeast strain (red 
dots, biological replicates) as the reference subpopulation. (B) Regressions of the growth data of aneuploid S. cerevisiae 
under diverse growth conditions suggest that for the trait space representing yeast fitness, N ∼ 55, γ ∼ 2.2 (r2 = 0.756, 
30 samples, p < 10–10). (C) The average fitness and ESI analysis of the data of breast cancer cell lines responding to 
diverse drug treatments identified BT483 (red), rather than unaltered mammary duct epithelial cell lines (green), as the 
reference subpopulation. (D) Regressions of the data of breast cancer cell lines in response to diverse drugs predict 
N ∼ 90, γ ∼ 3 (r2 = 0.61, 48 samples, p = 5.81 × 10–11), suggesting that cancer cell lines are more complex and more 
robust than yeast cells.
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extension of FGM suggested that this needs to be resolved by mod-
ularization of organism’s traits (Martin and Lenormand, 2006; 
Wagner et al., 2008). Our model suggests that the increased robust-
ness of the organism could help restore the evolvability of systems 
affected by a high degree of complexity (large number of traits), 
consistent with the previous suggestion that selection may over-
come the random drift in populations that are sufficiently large 
(Ohta, 1992) in a range of trait complexity (Gros et al., 2009). Within 
the family of the FGMs, our model’s ability to detect the generalist 
and to perform regression of the trait space complexity based on 
relatively small datasets is unique and could open up an avenue for 
the validation of FGM predictions, such as the link between robust-
ness and trait space complexity in different organisms (Gros et al., 
2009).

In a more general context, our results on the role of robustness 
in evolvability are unique. Previous approaches that studied the role 
of robustness in evolvability approached it from the point of view of 
the diversity in the “state graph,” where different graph nodes 
represented different phenotypes and were connected through 
mutation edges (Draghi et al., 2010; Raman and Wagner, 2011; 
Wagner, 2012). In those models, robustness reduced the impact of 
phenotype on the fitness in a given environment, allowing a larger 
variety of nodes to be viable in several environments at the same 
time. In other words, the graph-based model suggested that 
robustness improves evolvability through increasing population 
diversity. Our model treats robustness and population diversity as 
features controlled by different, unrelated parameters and shows 
that robustness can enhance evolvability independent of population 
diversity.

The generalist subpopulation occupies a central role in our 
model. Whereas we expect that, in the case of a heterogeneous 
population derived by random variation from a single founding 
subpopulation, the generalist subpopulation will coincide with the 
founding subpopulation, this may not be the case in general. More 
generally, the generalist subpopulation is defined by its central posi-
tion in the trait space. As the arithmetic mean of the population, it is 
maximally representative of the whole population, and unlike other 
subpopulations, it is not specialized toward a specific environment. 
From the evolutionary point of view, this distinction between the 
generalist subpopulation that is slowly evolving at long timescales 
and niche subpopulations that can rapidly take over the population 
in response to a particular stress could potentially explain the time-
scale-dependent evolution speed paradox (Cavunis et al., 2015). 
Accordingly, genomes of organisms that are observed to adapt on 
short timescales, such as during experimental evolution, are chang-
ing much faster than genomes of organisms on historical timescales, 
such as changes occurring during speciation. With respect to the 
breast cancer cell lines, the multidrug resistance of BT483 cells did 
not seem to be dependent on drug efflux pumps (Christgen et al., 
2007), which may be consistent with our model, which explains gen-
eral resistance to stress (drugs) due to a generalist-like position in 
the trait space and not due to a specific feature. BT-483 may there-
fore be a useful model for understanding the origin and mechanism 
of multi-drug-resistant “cancer initiating cells” (Sharma et al., 2010; 
Greaves, 2015; Laughney et al., 2015; Ramirez et al., 2016)

MATERIALS AND METHODS
Isotropy of trait space
A potential limitation of our model stems from the assumption that 
the distribution of population in trait space remains isotropic Gauss-
ian following the normalization of the trait space to have equal 
effects on performance. Although multidimensional Gaussianity of 

the distribution is reasonable, variances along all dimensions may 
not be equal. Analytical consideration of this problem is closely 
related to Wishart matrix trace calculation (Graczyk et al., 2003) and 
to our knowledge is intractable, although tail behavior analysis 
(Jaschke et al., 2004; Martin and Lenormand, 2008) suggests that 
the fitness distribution would be similar to the distribution described 
here, except with a lower apparent complexity of the trait space. 
This is consistent with our simulations (see Supplemental Figure S5). 
The excellent fitting between model predictions and regression of 
biological data suggests that our assumption above is unlikely to be 
far off. It is interesting to note that for anisotropic distribution of the 
population in trait space, we would expect the trait-space dimen-
sion to be underestimated, with dimensions with smaller variation 
being hidden by ones with larger. Also, due to a larger number of 
dimensions available for exploration at a small distance away from 
the optimum, the parametric μ–σ plot fit, such as those in Supple-
mental Figure S5, A and C, has σ higher than predicted by our 
model for low μ. This was indeed observed (Figure 2K).

ESI index
The ESI index is closely related to the Gini index, which was intro-
duced in economics as a measure of income inequality in popula-
tions (Gini, 1921). More recently, its usage has been expanded to 
account for the degree of heterogeneity in a population and to 
measure how specific a variable is for a given environment (Hurley 
and Rickard, 2009). The Gini index is defined as the difference 
between the fraction of total wealth owned by every individual and 
the fraction he or she would own if wealth were distributed equally 
among all. Formalizing this, in a population of size n, where wi is 
wealth owned by the individual i, the Gini index is expressed as 
follows:
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Because we are interested in the specificity of the fitness to a 
particular environment for a given system, we need to use the frac-
tion of total fitness in a given environment as opposed to the case 
where the fitness is distributed equally across all environments. For-
malizing this, if we take a member of a population p, with fitness in 
an environment i denoted as Gp,i,
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Phenotypic profiling of aneuploid yeast strains
Phenotypic profiling was performed as described in (Pavelka et al., 
2010). Briefly, 4 μl of the normalized (OD600 = 0.1) aneuploid and eu-
ploid cultures was spotted onto various Nunc OmniTray agar plates 
with a Biomek FX liquid handler. A list of chemicals and conditions 
used can be found in Supplemental Table S1. After 3–10 d of growth, 
the plates were scanned and the images were processed with a cus-
tom R script (Shah et al., 2007) to obtain the mean spot intensity.

Data processing of aneuploid Saccharomyces cerevisiae 
response to stress conditions
The initial raw data for S. cerevisiae aneuploid growth was obtained 
from in-lab archives resulting from experiments performed for 
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Pavelka et al. (2010). The image analysis and the assembly pipeline 
were kept intact. Consistent with Pavelka et al. (2010), the density 
of the colony on the plate following 7 d of growth was used as a 
proxy for the fitness. The raw data are available in Supplemental 
Table S2 (final_growth_values.csv), with strain names and stress 
names consistent with the original publication. This data extraction 
was performed using custom Python 2.7 code located at https://
github.com/chiffa/Screening_analysis, commit ebe0eb8. First the 
spot intensity values were retrieved by running growth_assay_
fitting.py.

The resulting data, summarized in lastvalues.csv, were ana-
lyzed with custom Python 2.7 and Wolfram Mathematica code, lo-
cated at https://github.com/chiffa/General_Adaptability_Model, 
commit 624f1f7. Figure 2E and Supplemental Figure 4A were gen-
erated directly by running Jin_data_re_analysis.py, whereas Figure 
2F was generated directly by running Jin_Data_Regression.nb on 
Jin_out_haploid-gen.csv data output by Jin_data_re_analysis.py.

p values for Figure 2F were calculated from the r2 correlation 

coefficient and sample number. The formula t r n
r

2
1 2

= −
−

 was used to 

find the t-statistic value and the p value corresponding to a two-
tailed Student’s test was used to determine the p value from the t 
value (Miles and Banyard, 2007). The same procedure was applied 
to retrieve the p value from the r2 correlation coefficient in the breast 
cancer cell lines analysis.

Breast cancer cell lines collection response to the drug 
treatments
The initial data used for breast cancer cell lines analysis were ob-
tained from Daemen et al. (2013). The additional file 9 – “gb-2013-
14-10-r110-s9.tsv” was downloaded, renamed “gb-breast_cancer.
tsv,” and analyzed with a custom Python 2.7 pipeline located at 
https://github.com/chiffa/Pharmacosensitivity_growth_assays, 
commit b31eaa1. The first run with the “readers.py” script extracted 
the dilution series for every drug–cell line combination pair. The sec-
ond run with “post_processing.py” used the data structures created 
by the first run to generate Figure 2G and Supplemental Figure 4B. 
Once BT483 was identified as a generalist, normalization to it was 
performed and the mean and SD of normalized log-fitness were 
computed and stored in “BC_analysis.csv” file (Supplemental Table 
S3). This file was fed into the same Jin_Data_Regression.nb script as 
in the case of Saccharomyces cerevisiae, which generated Figure 
2H. p values were generated in the same way as for aneuploid S. 
cerevisiae data.

Conceptually, the “readers.py” script performed the following 
steps:

Read the OD readings for blank wells on each plate, use it to 
calculate the instrument noise for a given plate, and discard 
plates that had too high an instrument noise. Pooled noise from 
the plates was used to estimate the instrument-based error mar-
gin of the measurements.

Read the ODs for wells without drugs. Based on them, the nor-
malized maximum is calculated. To determine the fitness, we 
used the total decrease in OD compared with the no-drug condi-
tions.

Due to the large size of the confidence interval for the cell line 
fitness in response to a drug at a given concentration, as well a 
strong batch effect, ODs from wells that contained the same cell 
lines submitted to the same drug at the same concentration 
were pooled together. Plates where the difference on a cell line 

between no drug and maximum drug concentration had a dy-
namic range of less than 10 were omitted from the pooling.

To be able to compare cell line response across several environ-
ments, all cell lines that were tested on fewer than 10 drugs were 
dropped.

To preserve the additional information beyond the IC50 (Fallahi-
Sichani et al., 2013), we calculated the cell line–drug effective-
ness score based on the cell line fitness at the discriminatory 
drug concentration. A discriminatory drug concentration was 
defined as a concentration of the drug for which at least 75% of 
cell lines tested were at relative fitness below 0.9 and at most 
25% were at relative fitness below 0.1.

Every drug at effective concentration was considered a separate 
environment, and the OD at that concentration after the growth 
period, relative to the no-drug condition, was considered as the 
fitness for a given cancer cell line in that environment.

Simulation
The simulations were performed with a custom Mathematica script, 
available at https://github.com/chiffa/General_Adaptability_Model, 
commit d66c8e0, Supporting_Simulations.nb file. The simulations 
consisted of a sampling of positions in the heterogeneous popula-
tion in the N-dimensional trait space, based on a multinormal 
distribution. For the simulations of anisotropic space, the covariance 
matrix was constructed by sampling from a lognormal distribution 
with a mean of 0 and a dispersion of 1. After the positions were 
computed and saved, a set of random new optimum values were 
generated, with a fixed distance from the center of the population. 
The distance between the positions of subpopulations and opti-
mums were computed and fed into the fitness function G. Direct 
output results were used in Figure 1G. For all the other functions, 
the transformation through the relative log fitness with the function 
H was performed, and then mean relative log fitness and SD were 
calculated and plotted.

Average epistasis prediction
Because our model bears a formal resemblance to the model devel-
oped by Gros et al. (2009), we are using the formula for epistasis 
provided in that paper: e 2 2s s/2( )≈ −

σ
. In our model, we use the 

parameterization γ = σ/2, leading to the formula e 2 2y y( )≈ −
σ

. As-
suming that σ, the average mutation effect, is of the order of mag-
nitude of σA/3, consistent with the observation of an average aneu-
ploidy deficit of ∼0.75% in aneuploid yeast (Pavelka et al., 2010) and 
∼0.93% for nonessential genes deletion (Costanzo et al., 2016), for 
ϒ = 2.2 and σ = 1/3, the estimated e value is –0.01975, correspond-
ing to ∼2% negative epistasis.
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