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Abstract
The fixation index Fst plays a central role in ecological and evolutionary genetic studies. The

estimators of Wright (F̂ st1
), Weir and Cockerham (F̂ st2

), and Hudson et al. (F̂ st3
) are widely

used to measure genetic differences among different populations, but all have limitations.

We propose a minimum variance estimator F̂ stm
using F̂ st1

and F̂ st2
. We tested F̂ stm

in simula-

tions and applied it to 120 unrelated East African individuals from Ethiopia and 11 subpopu-

lations in HapMap 3 with 464,642 SNPs. Our simulation study showed that F̂ stm
has smaller

bias than F̂ st2
for small sample sizes and smaller bias than F̂ st1

for large sample sizes. Also,

F̂ stm
has smaller variance than F̂ st2

for small Fst values and smaller variance than F̂ st1
for

large Fst values. We demonstrated that approximately 30 subpopulations and 30 individuals

per subpopulation are required in order to accurately estimate Fst.

Introduction
The fixation index Fst is widely used as a measure of population differentiation due to genetic
structure. Wright [1, 2] defined Fst as the ratio of the observed variance of allele frequencies
between subpopulations to the expected variance of allele frequencies assuming panmixis.
Wright’s estimator of Fst is biased, because a priori expected allele frequencies are unknown
and the numerator and denominator terms in the equation are not independent. In practice,
various frameworks have been proposed to improve estimation of Fst. Weir and Cockerham
used an analysis of variance (ANOVA) approach to estimate within- and between-population
variance components [3, 4]. Weir and Cockerham’s estimator is widely used because their esti-
mator can describe the genetic population structure in a single summary statistic, is asymptoti-
cally unbiased with respect to sample size, and can compensate for overestimates particularly
at low levels of genetic differentiation unlike Wright’s estimator [5]. However, it can be
upwardly biased unless adjustment is done for intralocus sampling error, the number of sub-
populations sampled, time of divergence, etc. [6]. In the present study, we propose a method
that improves Fst estimation by combining Wright’s and Weir and Cockerham’s estimators to
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achieve a minimum variance estimate. For comparison, we also include Hudson et al.’s estima-
tor [7], which recently has been recommended by Bhatia et al. [8]. We demonstrate application
of our modified estimator in analysis of real data.

Methods
For a diallelic marker, let p be the true minor allele frequency in the total population. Let the
true subpopulation allele frequencies be p1, . . ., pr in r� 2 subpopulations. Let σ2 be the true
population variance in allele frequencies across subpopulations. Suppose the observed
sample frequencies are p̂1; . . . ; p̂r and the sample sizes are n1, . . ., nr. Let n ¼Pr

j¼1 nj and

�n ¼Pr
j¼1 nj=r. Let ϑ be the difference in allele frequencies, such that for two subpopulations,

Ŵ ¼ p̂1 � p̂2.
Wright’s Fst [2] is defined as

Fst ¼
s2

pð1� pÞ

and is estimated as

F̂ st1
¼
Pr

j¼1 ðp̂j � �pÞ2
r�pð1� �pÞ ;

with

�p ¼
Xr

j¼1

p̂j=r:

For the special case of two subpopulations, Rosenberg et al. [9] showed that by algebraic rear-
rangement

Fst ¼
ðp1 � p2Þ2

ðp1 þ p2Þð2� ðp1 þ p2ÞÞ
:

Thus, Fst is a function of the difference in allele frequencies and is proportional to ϑ2.
Weir and Cockerham’s estimator [4], assuming a random union of gametes or equivalently

no individual-level inbreeding, is based on

�p ¼
Xr

j¼1

njp̂j=n;

S2 ¼ 1

ðr � 1Þ�n
Xr

j¼1

njðp̂j � �pÞ2;

T1 ¼ S2 � 1

2�n � 1
�pð1� �pÞ � r � 1

r
S2

� �
;

nc ¼
1

r � 1

Xr

j¼1

nj �
Pr

j¼1 n
2
jPr

j¼1 nj

 !
;
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and

T2 ¼
2nc � 1

2�n � 1
�pð1� �pÞ þ 1þ 2ðr � 1Þð�n � ncÞ

2�n � 1

� �
S2

r
;

yielding

F̂ st2
¼ T1

T2

:

The definition of Fst of Hudson et al. [7] is

Fst3
¼ 1� HW

HB

; HW ¼ 1

r

Xr

j¼1

2pjð1� pjÞ; HB ¼
1

rðr � 1Þ
Xr

i 6¼j

2pið1� pjÞ:

Given observed sample estimates p̂1; . . . ; p̂r , ĤW ¼ r�1
Pr

j¼1 2p̂jð1� p̂jÞ is a biased estimate of

HW, because

E ðp̂j ð1� p̂jÞÞ ¼ E ðp̂j � p̂2
j Þ ¼ E ðp̂jÞ � E ðp̂2

j Þ

¼ pj � p2j þ
pj ð1� pjÞ

2nj

 !
¼ pj ð1� pjÞ 1� 1

2nj

 !
:

An unbiased estimate of pj(1 − pj) is thus given by ½2nj=ð2nj � 1Þ�p̂jð1� p̂jÞ. However, ĤB ¼
½rðr � 1Þ��1Pr

i 6¼j 2p̂ið1� p̂jÞ is an unbiased estimate ofHB if Covðp̂i; p̂jÞ ¼ 0, i.e., under the

null hypothesis. Therefore, we estimate Fst by

F̂ st3
¼ 1�

ðr � 1ÞPr
j¼1

2nj
2nj�1

p̂jð1� p̂jÞPr
i 6¼j p̂ið1� p̂jÞ

;

which is a ratio of unbiased estimates. This estimator generalizes Bhatia et al.’s [8] version of
Hudson et al.’s [7] estimator for r> 2.

Note that under the null hypothesis of p1 = � � � = pr, both �nF̂ st1
and �nF̂ st2

are asymptotically

zero. Our goal is to construct an estimator based on a linear combination of �nF̂ st1
and �nF̂ st2

such that the new estimator has the smallest variance among all such linear combinations. Let

s2
1 and s

2
2 be the asymptotic variances of �nF̂ st1

and �nF̂ st2
, and σ12 be the asymptotic covariance.

We propose the following weighted version of F̂ st :

F̂ stm
¼ F̂ stðaÞ ¼ aF̂ st1

þ ðb� aÞF̂ st2
; a > 0;

where b> 0 is a fixed number to be chosen later. We choose a = a0 such that VarðF̂ stðaÞÞ is
minimized:

a0 ¼ arg min
a>0

fa2s2
1 þ ðb� aÞ2s2

2 þ 2aðb� aÞs12g: ð1Þ

It is seen that VarðF̂ stða0ÞÞ � minfVarðF̂ st1
Þ;VarðF̂ st2

Þg and hence is more precise in estima-

tion. From the proof of the Proposition we see that Eq (1) is equivalent to,

a0 ¼ arg min
a>0

fa2 þ ðb� aÞ2d2 þ 2aðb� aÞdg; d ¼ lim
n!1

�n=nc: ð2Þ
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which gives, with b = (δ − 1)/(δ + 1),

a0 ¼ arg min
a>0

fa2ðd� 1Þ2 � 2abdðd� 1Þ þ d2g ¼ d
dþ 1

:

At the end of the proof of the following Proposition, we show that δ� 1 with equality if and

only if n1 = � � � = nr. When n1 = � � � = nr, we have �n ¼ nc and F̂ stða0Þ ¼ 1
2
F̂ st1

� 1
2
F̂ st2

. Let!D
denote convergence in distribution.

Proposition. Assume that 0< p0 < 1 and that the nj’s are not all equal (so that δ> 1). If p1
= � � � = pr, with

d ¼ lim
n!1

�n=nc

and

gj ¼ lim
n!1

nj=n;

we have

�nF̂ stðaÞ þ dð1� aÞ!D aþ dð1� aÞ
ðr � 1Þp0ð1� p0Þ

Xr

j¼1

ljw
2
j ;

where λ1, . . .,λr are the eigenvalues of O01/2 BO1/2, O = (ωij)r × r with ωij = p0(1 − p0) if i = j and

ωij = 0 if i 6¼ j, O−1/2 is the square root of O: O = O01/2O1/2, andB ¼Pr
j¼1 gjbjb

0
j , bj = (−γ1, . . .,

−γj−1, (1 − γj), −γj+1, . . ., −γr)0.
In the above Proposition, take a = a0, then a0+δ(1 − a0) = 0 and δ (1 − a0) = −δ/(δ − 1), and

we get
Corollary 1. Under conditions of the Proposition,

i.

�nF̂ stða0Þ þ
d

dþ 1
!D 2d

ðr � 1Þðdþ 1Þp0ð1� p0Þ
Xr

j¼1

ljw
2
j :

ii. If a = 1, then

�nF̂ st1
¼ �nF̂ stð1Þ!

D 1

ðr � 1Þp0ð1� p0Þ
Xr

j¼1

ljw
2
j :

iii. If a = 0, then

�nF̂ st2
¼ �nF̂ stð0Þ þ d!D d

ðr � 1Þp0ð1� p0Þ
Xr

j¼1

ljw
2
j :

Simulations Under the Balding-Nichols model [10], the allele frequency in each of r
subpopulations conditional on p and Fst is a random deviate from the beta distribution β

ð1�Fst
Fst

p; 1�Fst
Fst

ð1� pÞÞ, which has mean p and variance p(1 − p)Fst = σ2.
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Simulation 1. This simulation was designed to estimate bias in the worst case scenario of

two subpopulations. We evaluated the relationships between F̂ st and Fst and between F̂ st and Ŵ.
First, given the true average allele frequency p for r = 2, Fst reaches its maximum value for pj
values of 0 and 2p. The estimator F̂ st ¼ S2

�pð1��pÞþS2
r

[4] yields a constrained range for F̂ st from 0 to

2p. Therefore, we first assigned the true value for p by drawing a random uniform deviate from
the interval (0, 0.5) and the true value for Fst by independently drawing a random uniform
deviate from the interval (0, 2p). Conditional on the true values of p and Fst, we randomly
generated pj from the beta distribution. We next assigned the number of individuals per sub-
population nj = [5, 10, 20, 50, 100, 110]. We then randomly drew alleles from the binomial dis-
tribution Bin(2nj, pj). We generated 10,000 independent replicate data sets. Based on the above

formulae, the four estimators F̂ st1
, F̂ st2

, F̂ st3
, and F̂ stm

were calculated. Linear regression models

were used to evaluate the relationship between Fst and F̂ st and between F̂ st and Ŵ
2. We assessed

the fit in a linear regression model with the F-test, r2, and the root mean squared error (RMSE),
which is the square root of the sum of the variance and the squared bias.

Simulation 2. This simulation was designed to evaluate variance under sampling conditions
approaching unbiasedness, i.e., large numbers of subpopulations and individuals per subpopu-

lation. We evaluated the relationships between F̂st and the number of subpopulations (r) and

between F̂st and the number of individuals per subpopulations (nj). Conditional on the average
allele frequency p, Fst, the number of subpopulations r = [5, 10, 20, 50, 100, 250], and the num-
ber of individuals per subpopulation nj = [5, 10, 20, 50, 100, 250, 1000], we randomly generated

r allele frequencies as in Simulation 1 and calculated F̂ st1
, F̂ st2

, F̂ stm
, and F̂ st3

.

Application to data
We included genotype data from a total of 120 unrelated individuals from the Wolaita
(WETH) ethnic group from southern Ethiopia who served as controls in a genome-wide asso-
ciation study of podoconiosis [11]. The Wolaita ethnic group speaks an Omotic language, and
comparison with HapMap African populations has shown that it has the closest genetic simi-
larity with the Maasai from Kenya and the lowest genetic similarity with the Yoruba in Nigeria
[12]. Genotyping was performed by deCODE Genetics using the Illumina HumanHap 610
Bead Chip, which assays> 620,000 single-nucleotide polymorphisms (SNPs). Of the 551,840
autosomal SNPs in the raw genotype data, we excluded 39,249 SNPs that had a minor allele fre-
quency of< 0.05, 378 that were missing in> 0.05 of individuals, and 321 that had a Hardy-
Weinberg p-value< 0.001. The remaining 511,892 SNPs were merged with genotype data for
ASW (n = 49), CEU (n = 112), CHB (n = 84), CHD (n = 85), GIH (n = 88), JPT (n = 86), LWK
(n = 90), MKK (n = 143), MXL (n = 50), TSI (n = 88), and YRI (n = 113) in HapMap phase 3,
release 2, which contained 1,440,616 SNPs. A total of 464,642 SNPs were common to both of

WETH and HapMap data sets. F̂ st1
F̂ st2

, F̂ stm
, and F̂ st3

were calculated per marker.

Results

Simulation 1: We first compared F̂ st with the true Fst for the worst-case scenario of r = 2. For

small sample sizes, F̂ st1
was the least biased estimator, followed by F̂ stm

, F̂ st2
, and F̂ st3

(Table 1).

For large sample sizes, F̂ stm
and F̂ st1

were comparably good, and F̂ st2
and F̂ st3

were identically

worse (Table 1). None of the four estimators was strongly sensitive to equal vs. unequal sample

sizes (Fig 1). When Ŵ was close to 0, F̂ st3
yielded the most negative estimates, followed by F̂ st2

and F̂ stm
. As expected, all four estimators showed a quadratic relationship with Ŵ (Fig 1). With

Improved Fst Estimator
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respect to Ŵ2, by all four measures F̂ st1
was the best estimator whereas F̂ st2

was the worst estima-

tor (Table 1).

An assessment of bias by the total sample size (n1 and n2) for r = 2 is presented in Fig 2. F̂ st1

was biased and this bias was constant across total sample size, as expected given that this esti-

mator does not account for nj. In contrast, F̂ st2
, F̂ stm

, and F̂ st3
were less biased as the total sample

size increased. When the total sample size exceeded 30, F̂ st3
was the least biased estimator; oth-

erwise, F̂ st1
was the least biased estimator. For r = 2, the magnitude of bias for all four estima-

tors was constant when the total sample size was at least 60.
Simulation 2: Given p = 0.2, Fst = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], n = 1000 individu-

als, and r = 200 subpopulations, mean F̂ st values are presented in Table 2. The means for F̂ st1
,

F̂ st2
, F̂ st3

, and F̂ stm
equaled the expected values, consistent with all four estimators being asymp-

totically unbiased. First, we investigated the relationship between Fst and the variance of the

four estimators. Given p = 0.2 and Fst < 0.5, F̂ st1
had the smallest variance, followed by F̂ stm

and

F̂ st2
(Fig 3). Given p = 0.2 and Fst > 0.5, F̂ st2

had the smallest variance, followed by F̂ stm
and F̂ st1

.

Similar results were obtained for p = 0.1, 0.3, 0.4, and 0.5 (S1 Table).
Second, we investigated how the number of subpopulations and the number of individuals

per subpopulation affected bias. When the number of subpopulations was approximately 30,
no matter the number of individuals per subpopulation, bias was stable (Fig 3). For r> 30 and

Table 1. F̂ st vs. Fst and
^W2 for two subpopulations.

F̂ st1
F̂ st2

F̂ stm
F̂ st3

n = 5

F̂ st vs. Fst
Root MSE 0.2213 0.2241 0.2228 0.2241

Squared bias 0.0465 0.0481 0.0473 0.0484

r2 0.1096 0.0869 0.0979 0.0869

F-test 12310 9522 10848 9522

F̂ st vs. Ŵ
2

Root MSE 0.0340 0.1002 0.0657 0.1127

Squared bias 0.0008 0.0089 0.0036 0.0114

r2 0.9855 0.9129 0.9549 0.9129

F-test 6.808 × 106 1.048 × 106 2.116 × 106 1.048 × 106

n = 1000

F̂ st vs. Fst
Root MSE 0.2102 0.2105 0.2101 0.2105

Squared bias 0.0415 0.0419 0.0416 0.0419

r2 0.1981 0.1958 0.1986 0.1958

F-test 24701 24344 24778 24344

F̂ st vs. Ŵ
2

Root MSE 0.0233 0.0706 0.0455 0.0706

Squared bias 0.0002 0.0041 0.0015 0.0041

r2 0.9913 0.9355 0.9700 0.9355

F-test 1.140 × 107 1.450 × 106 3.236 × 106 1.450 × 106

doi:10.1371/journal.pone.0135368.t001
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Fig 1. The relationship between F̂ st and
^W for simulated data. The x-axis shows the difference of allele frequencies between two subpopulations ^W (left

plots) and ^W2 (right plots); the y-axis shows ^Fst values for Wright’s (top row), Weir and Cockerham’s (second row), the modified (third row), and Hudson et al.’s
estimators (bottom row), and the legend indicates the sample sizes n1 (before hyphen) and n2 (after hyphen).

doi:10.1371/journal.pone.0135368.g001
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small nj, all four estimators were biased, with the order of F̂ st1
< F̂ st3

< F̂ stm
< F̂ st2

. For r> 30

and large nj, all four estimators were unbiased. For nj > 30, all four estimators were stable and

bias decreased as r increased, with F̂ st3
the best estimator and F̂ st1

the worst estimator (Fig 4).

Application to Data: The means and variances of F̂ st values between theWETH and 11 sam-
ples in HapMap 3 are presented in Table 3. TheWETH sample was closest to the MKK sample,

consistent with shared Cushitic and Nilo-Saharan ancestry [13]. F̂ st2
and F̂ stm

yielded the same

order for all pairs of relationships and all four estimators yielded the same order of relationships

Fig 2. Bias as a function of total sample size. The x-axis shows the total sample size (n1 + n2). The y-axis shows Fst � F̂ st1
(red), Fst � F̂ st2

(blue), Fst � F̂ stm

(green), and Fst � F̂ st3
(orange) for r = 2.

doi:10.1371/journal.pone.0135368.g002
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for the five HapMap samples closest to the WETH sample. The order of the means was

F̂ st1
< F̂ stm

< F̂ st2
< F̂ st3

. F̂ stm
was approximately 30% larger than F̂ st1

and approximately 20%

smaller than F̂ st2
, which has corresponding effects on divergence time estimates. Given that

F̂ st2
and F̂ stm

are less downward biased than F̂ st1
for these sample sizes (Fig 2), the larger values

are more likely to be correct.

Discussion
Fst is directly related to the variance in allele frequencies among subpopulations. The depen-
dence of Fst on allele frequencies and genetic diversity has been observed [14]. In our study, an

approximately linear relationship between F̂ st1
, F̂ st2

, F̂ stm
, and F̂ st3

with the squared difference of

allele frequencies (Ŵ2) was observed, as expected. By simulation, we found that all four estima-
tors were unbiased for large numbers of subpopulations and individuals per subpopulation

but that no one estimator was uniformly better than the others. For Fst < 0.5, F̂ st1
had smaller

Table 2. Means, Variances, and MSEs of F̂ st in simulation 2.

True Fst F̂ �
st1

F̂ st2
F̂ stm

F̂ st3

0.1 Means 9.95E-02 9.95E-02 9.95E-02 9.99E-02

Variances 9.40E-05 9.49E-05 9.44E-05 9.48E-05

MSE 9.43E-05 9.51E-05 9.47E-05 9.48E-05

0.2 Means 1.99E-01 1.99E-01 1.99E-01 2.00E-01

Variances 3.36E-04 3.38E-04 3.37E-04 3.38E-04

MSE 3.37E-04 3.39E-04 3.38E-04 3.38E-04

0.3 Means 2.99E-01 2.99E-01 2.99E-01 3.00E-01

Variances 6.27E-04 6.30E-04 6.28E-04 6.29E-04

MSE 6.29E-04 6.30E-04 6.29E-04 6.29E-04

0.4 Means 3.98E-01 3.99E-01 3.99E-01 3.99E-01

Variances 9.12E-04 9.15E-04 9.14E-04 9.14E-04

MSE 9.15E-04 9.16E-04 9.15E-04 9.14E-04

0.5 Means 4.98E-01 4.99E-01 4.98E-01 4.99E-01

Variances 1.11E-03 1.11E-03 1.11E-03 1.11E-03

MSE 1.11E-03 1.11E-03 1.11E-03 1.11E-03

0.6 Means 5.98E-01 5.99E-01 5.99E-01 6.00E-01

Variances 1.18E-03 1.18E-03 1.18E-03 1.18E-03

MSE 1.18E-03 1.18E-03 1.18E-03 1.18E-03

0.7 Means 6.98E-01 6.99E-01 6.99E-01 6.99E-01

Variances 1.12E-03 1.12E-03 1.12E-03 1.11E-03

MSE 1.12E-03 1.12E-03 1.12E-03 1.11E-03

0.8 Means 7.98E-01 7.99E-01 7.99E-01 7.99E-01

Variances 8.67E-04 8.63E-04 8.65E-04 8.62E-04

MSE 8.69E-04 8.64E-04 8.66E-04 8.63E-04

0.9 Means 8.99E-01 8.99E-01 8.99E-01 8.99E-01

Variances 4.81E-04 4.77E-04 4.79E-04 4.77E-04

MSE 4.81E-04 4.78E-04 4.79E-04 4.77E-04

* Means, variances, and Mean Squared Errors (MSEs) from 200 subpopulations with 1000 individuals per subpopulation, given p = 0.2.

doi:10.1371/journal.pone.0135368.t002
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variances and MSE values. For Fst > 0.5, F̂ st2
had smaller variances and MSE values. For Fst �

0.5, F̂ st1
, F̂ st2

, and F̂ stm
had similar variance and MSE values.

The numbers of individuals and markers have been reported to affect Fst estimation [5]. We
found that the number of subpopulations was more important than the number of individuals
per subpopulation. Estimation of Fst, both in terms of means and variances, stabilized with
approximately 30 subpopulations, regardless of the number of individuals per subpopulation.

Fig 3. Effect of the number of subpopulations on bias. The x-axis shows the number of subpopulations. The y-axis shows the mean (left) and variance
(right) of Fst � F̂ st1

(red), Fst � F̂ st2
(blue), Fst � F̂ stm

(green), and Fst � F̂ st3
(orange) values, given Fst = 0.5 and average allele frequency p = 0.2. The top plot

represents 5 individuals per subpopulation and the bottom plot represents 1000 individuals per subpopulation.

doi:10.1371/journal.pone.0135368.g003
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This behavior occurs because there are r estimates of p̂j with which to estimate p and σ2. Esti-

mation was biased for r = 2 and improved as r increased, according to the Central Limit Theo-
rem. Estimation was biased for nj < 30 and improved as nj increased (except for Wright’s
estimator), also according to the Central Limit Theorem. Our proposed estimator is a mini-
mum variance combination of Wright’s and Weir and Cockerham’s estimators and is less

Fig 4. Effect of the number of individuals per subpopulation on bias. The x-axis shows the number of individuals per subpopulation. The y-axis shows
the mean (left) and variance (right) of Fst � F̂ st1

(red), Fst � F̂ st2
(blue), Fst � F̂ stm

(green), and Fst � F̂ st3
(orange) values, given Fst = 0.5 and an average allele

frequency p = 0.2. From top to bottom, the plots represent the number of subpopulations r = 10, 20, and 40, respectively.

doi:10.1371/journal.pone.0135368.g004
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biased than Weir and Cockerham’s estimator for small samples sizes and less biased than
Wright’s estimator for large sample sizes.

Conclusion
Amodified Fst estimator is proposed, which combines Wright’s and Weir and Cockerham’s
estimators. It splits the difference in biases present in Wright’s and Weir and Cockerham’s
estimators. We propose the routine use of this new and improved estimator of Fst as a way to
reduce the biases and limitations of the classical estimators. We demonstrated that, in order to
estimate Fst accurately, at least 30 subpopulations and 30 individuals per subpopulations are
required.

Appendix

Proof of the Proposition

As �n ! 1, �nF̂ st1
is asymptotically a chi-squared random variable, S2!P 0,

�nT1 	 �nS2 � �pð1� �pÞ ¼ �pð1� �pÞ �nF̂ st1
� 1

� �
, and

1þ ðr � 1Þð�n � ncÞ
�n � 1

¼
Xr

j¼1
n2
j =ðr�nÞ � 1

�n � 1
¼ Oð1Þ:

Thus

T2 ¼ ½ðnc � 1Þ=ð�n � 1Þ��pð1� �pÞ þ Opð1Þ

and

�nF̂ st2
¼ �n � 1

nc � 1
ð�nF̂ st1

� 1Þ þ Opð1Þ:

Let

d ¼ lim
n!1

�n=nc

Table 3. F̂ st betweenWETH and HapMap 3 samples.

F̂ �
st1

F̂ �
st2

F̂ �
stm

F̂ �
st3

ASW 0.0155 (0.0005) 0.0222 (0.0016) 0.0185 (0.0008) 0.0226 (0.0016)

CEU 0.0368 (0.0023) 0.0630 (0.0067) 0.0499 (0.0042) 0.0632 (0.0067)

CHB 0.0624 (0.0059) 0.1012 (0.0139) 0.0815 (0.0094) 0.1044 (0.0146)

CHD 0.0629 (0.0059) 0.1021 (0.0141) 0.0822 (0.0095) 0.1052 (0.0147)

GIH 0.0359 (0.0022) 0.0603 (0.0063) 0.0479 (0.0039) 0.0611 (0.0064)

JPT 0.0634 (0.0060) 0.1029 (0.0142) 0.0828 (0.0096) 0.1060 (0.0149)

LWK 0.0210 (0.0008) 0.0343 (0.0023) 0.0276 (0.0014) 0.0351 (0.0024)

MKK 0.0081 (0.0002) 0.0121 (0.0005) 0.0101 (0.0003) 0.0122 (0.0005)

MXL 0.0371 (0.0023) 0.0601 (0.0067) 0.0474 (0.0039) 0.0612 (0.0067)

TSI 0.0344 (0.0020) 0.0578 (0.0058) 0.0459 (0.0036) 0.0586 (0.0060)

YRI 0.0264 (0.0011) 0.0451 (0.0035) 0.0358 (0.0021) 0.0454 (0.0036)

* Shown are means (variances) of F̂ st.

doi:10.1371/journal.pone.0135368.t003
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and s2
1 be the asymptotic variance of �nF̂ st1

, then the asymptotic variance of �nF̂ st2
is d2s2

1, and

the asymptotic covariance of ð�nF̂ st1
; �nF̂ st2

Þ is ds2
1. Now we have

�nF̂ stðaÞ ¼ ½aþ dð1� aÞ��nF̂ st1
� dð1� aÞ þ Opð1Þ:

If p1 = � � � = p2, �pð1� �pÞ!P p0ð1� p0Þ. Note the p̂j’s are independent, and

�nF̂ st1
¼ 1

ðr � 1Þp0ð1� p0Þ
Xr

j¼1

njðp̂j � �pÞ2 þ Opð1Þ:

Let p̂ ¼ ðp̂1; . . . ; p̂rÞ0, p0 = (p0, . . ., p0)’, γj = nj/n, and bj = (−γ1, . . ., −γj−1, (1 − γj), −γj+1, . . .,

−γr)0, then b
0
jp0 ¼ ½ð1� gjÞ þ

Xr

i 6¼j
gi�p0 ¼ 0 for j = 1, . . ., r, and so by the Central Limit The-

orem,

ffiffiffi
n

p ðp̂j � �pÞ ¼ ffiffiffi
n

p
b

0
jp̂ ¼ ffiffiffi

n
p

b
0
jðp̂ � p0Þ!

D
Nð0; t2j Þ;

where t2j ¼ b
0
jObj, O = (ωij)r×r with ωij = p0(1 − p0) if i = j and ωij = 0 if i 6¼ j.

Now we have, withB ¼
Xr

j¼1
gjbjb

0
j,

�nF̂ stðaÞ þ dð1� aÞ ¼ aþ að1� aÞ
ðr � 1Þp0ð1� p0Þ

Xr

j¼1

njðp̂j � �pÞ2 þ Opð1Þ

¼ aþ að1� aÞ
ðr � 1Þp0ð1� p0Þ

Xr

j¼1

gjnb
0
jðp̂ � p0Þðp̂ � p0Þ

0
bj þ Opð1Þ

¼ aþ að1� aÞ
ðr � 1Þp0ð1� p0Þ

nðp̂ � p0Þ
0
Bðp̂ � p0Þ þ Opð1Þ:

Let O−1/2 be the square root of O: O = O01/2O1/2, λ1, . . ., λr be all the eigenvalues of O01/2

BO1/2, and Λ = diag(λ1, . . ., λr), then there is an orthogonal normal matrix Q such that O01/2

BO1/2 =Q0ΛQ, and so

nðp̂ � p0Þ
0
Bðp̂ � p0Þ!

D Xr

j¼1

ljw
2
j ;

where the w2j ’s are independent chi-squared random variables with one degree of freedom. This

gives the desired result.
Lastly, we prove

d ¼ lim
n!1

�n
nc

� 1; with“ ¼ ” if and only if n1 ¼ � � � ¼ nr:

In fact,

ðr � 1Þð�n � ncÞ ¼
Xr

j¼1
n2
jX

j¼1
nj

� 1

r

Xr

j¼1

nj ¼
r
Xr

j¼1
n2
j � ð

Xr

j¼1
njÞ2

r
Xr

j¼1
nj

:

It is known that for r = 1 or 2, r
Pr

j¼1 n
2
j � ðPr

j¼1 njÞ2 � 0 with “=” if and only if n1 = � � � = nr.

Now we use induction to prove this is true for all integer r. In fact, suppose the above
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conclusion is true for some integer r> 2, then for integer r + 1,

An :¼ ðr þ 1Þ
Xrþ1

j¼1

n2
j ¼ r

Xr

j¼1

n2
j þ

Xr

j¼1

n2
j þ ðr þ 1Þn2

rþ1;

and

Bn :¼
Xrþ1

j¼1

nj

 !2

¼ ð
Xr

j¼1

njÞ2 þ 2nrþ1

Xr

j¼1

nj þ n2
rþ1:

Since by assumption r
Pr

j¼1 n
2
j � ðPr

j¼1 njÞ2,

An � Bn �
Xr

j¼1

n2
j þ ðr þ 1Þn2

rþ1 � 2nrþ1

Xr

j¼1

nj � n2
rþ1

¼
Xr

j¼1

n2
j þ rn2

rþ1 � 2nrþ1

Xr

j¼1

nj ¼
Xr

j¼1

ðn2
j þ n2

rþ1 � 2njnrþ1Þ � 0

with “=” if and only if n1 = � � �nr+1, since n2
j þ n2

rþ1 � 2njnrþ1 ¼ ðnj � nrþ1Þ2 � 0, with “=” if

and only if nj = nr+1.
This gives δ� 1 with “=” if and only if n1 = � � � = nr.
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