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ABSTRACT

Strong rationale and a growing number of preclinical
and clinical studies support combining radiotherapy and
immunotherapy to improve patient outcomes. However,
several critical questions remain, such as the identification
of patients who will benefit from immunotherapy and
the identification of the best modalities of treatment

to optimize patient response. Imaging biomarkers and
radiomics have recently emerged as promising tools

for the non-invasive assessment of the whole disease
of the patient, allowing comprehensive analysis of the
tumor microenvironment, the spatial heterogeneity

of the disease and its temporal changes. This review
presents the potential applications of medical imaging
and the challenges to address, in order to help clinicians
choose the optimal modalities of both radiotherapy and
immunotherapy, to predict patient’s outcomes and to
assess response to these promising combinations.

INTRODUCTION

Immunotherapy has revolutionized cancer
management in recent years. Most advanced
patients receiving frontline immune check-
point inhibitors (ICIs) will, however, develop
disease progression. In order to improve the
response rates of immunotherapy, a growing
number of studies are evaluating different
treatment combinations or strategies, one of
which is the combination of systemic immu-
notherapy and local radiotherapy.'™ Indeed,
there is substantial evidence that radiotherapy
induces immune stimulation with the release
of tumor antigens and proinflammatory cyto-
kines at the local and systemic levels and thus,
may act synergistically with immunotherapy
in the systemic control of advanced metastatic
cancers.' *'¥ Radiotherapy activates immune
response by triggering immunogenic cell
death (with extracellular release of release
of high-mobility group box 1 protein and
adenosine-5"-triphosphate, and cell surface
translocation of calreticulin) and produc-
tion of type I interferon (IFN) via the acti-
vation of the cGAS-STING pathway, leading
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to dendritic cells and cytotoxic T cells acti-
vation, which may eventually lead to an out-
offield ‘abscopal’ response.”” '* Inversely,
it has been shown that radiotherapy also
promotes immunosuppressive effects, with
notably a PD-L1 upregulation via different
pathway such as IFN-dependent pathway and
IL-6/JAK/STAT pathway,'” or DNA damages
through ATM/ATR/Chkl1 kinase activation,16
along with the attraction of immunosuppres-
sive cells (ie, tumor-associated macrophages,
myeloid-derived suppressor cells, and regula-
tory T cells) and the release of immunosup-
pressive cytokines such as TGF-B and 11-10."
These results support the potential of immu-
notherapy as an adjunct to radiotherapy to
counteract its immunosuppressive effects,
as illustrated by the phase III PACIFIC trial
showing a benefit of a consolidation therapy
with the anti-PD-L1 drug durvalumab in unre-
sectable locally advanced non-small cell lung
cancer (NSCLC) after Chemoradiotherapy.]7

However, only a small number of controlled
randomized trials evaluating the benefit
of adding radiotherapy to immunotherapy
exist with mostly negative results.” * 71820
For instance, in advanced NSCLC patients, a
pooled analysis of two clinical trials evaluating
pembrolizumab (anti-PD1)+radiotherapy
showed that adding radiotherapy to pembroli-
zumab improved outcomes. However, a
randomized phase 2 trial was not able to
identify a benefit of low-dose or high-dose
radiation therapy with durvalumab (anti-
PD-L1)+tremelimumab  (anti-CTLA4) in
advanced immunotherapy-pretreated NSCLC
patients.*

Irradiation modalities to optimize the
achievement of a systemic antitumor immune
response are then subject to numerous
studies.'’ **?

Fine tuning delivered dose and fraction-
ation (dose per session) may be crucial for
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achieving an out-offield abscopal response.?*?" For
example, an abscopal response was obtained in immu-
nocompetent mice bearing syngeneic mammary and
colorectal tumor cell transplants after hypofractionated
radiotherapy (three sessions of 8 Gy delivered 3days in a
row) but was not obtained with a single fraction radio-
therapy of 20 Gy.** Doses above 12 Gy increase the activity
of 3’ repair exonuclease 1, a DNA exonuclease that
degrades DNA accumulating in the cytosol of irradiated
cells, decreasing STING activation and Batf3-dependent
dendritic cell recruitment.”® These studies would suggest
that the optimal dose in radioimmunotherapy may be
lower than the maximum tolerated doses used in radio-
therapy alone.”” However, low dose radiotherapy (1Gy/
fraction) has also been shown to potentially stimulate
immune responses by activating and stimulating helper
T cells, promoting a generation of immune memory and
modulating the tumor stroma with the reduction of TGF-3
induced Tregs in the tumor microenvironment.* %’

Open questions such as the number and choice of
lesions to irradiate remain unanswered.?! % Indeed, the
tumor heterogeneity of extensive disease could limit the
likelihood of a systemic (abscopal) antitumor immune
response induced by radiotherapy, especially in the case
of single-site irradiation.”’ Thus, a wide range of possibili-
ties in the choice of doses and volumes to irradiate makes
possible combinations more complex.

In this context where both disease and treatment are
characterized by heterogeneity, medical imaging may
express its full potential as it allow analysis of the entire
tumor mass and individual lesions, unlike traditional
biopsies.” Indeed, each lesion may have a different
microenvironment and may receive different local and/
or systemic treatment effects, leading to heterogeneous
response profiles.® Imaging-derived biomarkers espe-
cially may help to better understand the relationship
between radiotherapy and immunotherapy and to even-
tually guide the clinician in the choice of treatment and
its modalities.

Here, we will present the potential applications and
challenges of imaging to guide immunotherapeutic
combinations with a particular focus on radiomics. We will
also discuss the particularities to be taken into account
in imaging for the evaluation of response in these new
combinations.

IMAGING TO INCREASE KNOWLEDGE, TO PREDICT RESPONSES,
AND TO GUIDE THERAPEUTICS

A brief introduction to computational medical imaging
principles

Artificial intelligence approaches applied to medical
imaging have been particularly developed in recent
decades with great results for detection tasks, image
reconstruction, and generation of imaging biomarkers
for diagnostic support, prognostic assessment, or treat-
ment response prediction.” ** ** The term ‘radiomics’
was introduced by Gillies et af” in 2010 to define the

process of computational translation of medical imaging
into high-dimensional quantitative data (similar to other
‘omics’) and the use of machine learning for the develop-
ment of imaging biomarkers. A typical pipeline of analysis
is usually constituted by the following steps: (1) defini-
tion of the volumes of interest (VOIs) to be analyzed, (2)
extraction of the quantitative information represented by
the radiomics features, and (3) application of machine
learning approaches and evaluation of the validity and
generalizability of the model.””*® While machine learning
methods may seem complex at first glance to the clini-
cian, we will outline some general and relatively simple
concepts that allow for a better understanding of this
discipline.

Computational translation of the image into numbers
relies either on the calculation of ‘classical’ radiomic
features (in particular from the histogram of the image
intensities, texture matrices, or the shape of the VOI,
defined a priori and which can be extracted by different
software such as LIFEx” or Pyradiomics*), or on deep
learning approaches that allow ‘discovering’ the relevant
information directly from the raw image (‘deep features’)
using neural networks (especially conventional neural
networks).*" While classical radiomic features are mostly
used for biomarker development, neural networks can
also be used for image detection, segmentation and recon-
struction tasks. This data extraction can be performed
in one or more volume of interest to be analyzed (eg, a
tumor lesion), or on the whole image (especially when
using deep learning techniques). It is important to note
that the different acquisition protocols and reconstruc-
tion parameters of the imaging process (CT, MRI, or
positron emission tomography scan (PET-CT)) directly
affect the image and may be a confounding factor. This
can particularly impact the performance of algorithms in
the case of heterogeneous cohorts. Thus, image prepro-
cessing and normalization steps are performed to make
the images of different patients with different acquisition
protocols comparable.** **

Once the quantitative data have been extracted from the
image, machine learning algorithms aim to train a model
for a particular task. Classically, three distinct data sets are
used in machine learning approaches: a training set to
learn a specific task, a validation set to optimize the algo-
rithm and an independent test set for the final validation
and evaluation of the generalizability of the algorithm.
Assessment of the model performance in an indepen-
dent data set is essential to ensure the external validity
of an algorithm. Indeed, overfitting may happen during
the training, especially when the number of features
extracted is higher than the number of patients, leading
to overoptimistic performance estimation and subpar
performance when used in real clinical applications.

A growing number of initiatives and recommendations
are being issued to ensure the quality, the reproducibility
and the methodological validity of artificial intelligence
(AI) approaches applied on medical images.***® Harmo-
nization of imaging data and/or radiomic features a
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posteriori is essential to enable robust development
of generalisable imaging biomarkers in a multicenter
setting."” Although standardization of image acquisition
protocols is a simple way to obtain consistent images
across different Centers,48 it can be difficult to imple-
ment on a large scale and does not take into account
the potential batch effect of acquisitions from multiple
devices from different manufacturers. Image processing
methods, including at least isotropic spatial resampling of
voxels and, for example, skull stripping for image intensity
normalization (using, eg, the Z-score method), and bias
field correction for brain MRI images, have been shown
to be effective for medical imaging normalization.* *°
Adjusting radiomic features after extraction to correct for
batch effect using methods such as the ComBat approach
has also shown interesting results in reducing discrepan-
cies between different imaging protocols and manufac-
turers.”’ Standardization of radiomic feature definitions
have also been proposed by the image biomarker stan-
dardization initiative to increase the reproducibility and
comparability of software used for feature extraction.”
Regarding deep learning studies, some recommendations
to ensure their proper conduct have also recently been
published.”” The Radiomic Quality Score calculated from
a 16-point checklist allows the assessment of the various
technical and statistical aspects and the clinical validity of
the radiomic analysis method.”*

Radiomics to predict response to immunotherapy and
radiotherapy combinations: toward a selective destruction of
predicted immune refractory lesions and immunogenic low-
dose radiotherapy for abscopal effect friendly lesions?

Since the first studies evaluating radiomics to predict
the immune microenvironment in 2017, an increasing
number of radiomic studies have confirmed the poten-
tial of imaging biomarkers for use in immuno-oncology
(table 1). Promising results have been obtained using
a wide variety of approaches on many different tumors
types, such as lung cancers,”> ! head and neck cancers,”
melanoma,56 361 yrothelial® " and renal cancers,” with
either CT scams,56'58 69 PET—CTS,60  or MRIs"! 7 (figure 1).

One of the major considerations for implementation of
imaging biomarkers in radiotherapy and immunotherapy
combinations in a metastatic context is whether they can
be used to assess the spatial heterogeneity of the disease
and more specifically the heterogeneity between lesions
of a same patient to potentially guide radiotherapy on
specific lesions (figure 2).

To the best of our knowledge, only two studies have
evaluated radiomics to predict response of metastatic
cancer patients treated with immunotherapy combined
with radiotherapy.73 ™ Interestingly, each of these inde-
pendently evaluated the previously published radiomics
signature predicting CD8-T cells (CD8-Rscore) devel-
oped by our team.” This CD8-Rscore was initially devel-
oped using contrast enhanced CT scans of 135 patients
for whom RNA sequencing data of a biopsied lesion were
available and allowed estimation of the abundance of CD8

T cells. This signature, based on eight variables including
five radiomics features extracted from the lesion analyzed
and a peripheral ring around the lesion, two variables of
VOI location and one technical variable (the kiloVoltage
Peak), was validated using a Cancer Genome Atlas dataset
of 119 patients (area under the curve (AUC)=0.67;
95% CI 0.57 to 0.77; p=0.0019)" and was also associated
with clinical response and overall survival of 137 patients
treated with immunotherapy (HR=0.58, 95% CI 0.39 to
0.87; p=0.0081). However, in the primary study, only one
lesion per patient was analyzed for predicting outcomes.”
In ref 73, we applied the CD8-Rscore on multiple lesions
on the baseline CT scan of 94 solid cancer patients
treated with immunotherapy and radiotherapy. Almost all
patients underwent hypofractionated radiotherapy (n=91
(96.9%)). The main radiotherapy dose-fractionation
schedule was 3x8 Gy delivered on a single lesion. Seven
patients (7.4%) had more than one irradiated lesion. The
CD8-Rscore was applied on a total of 100 irradiated lesions
and 189 non-irradiated lesions. At a lesion level, the CD8-
Rscore at baseline of responding lesions was higher than
those of stable or progressive lesions (AUC=0.63, 95% CI
0.56 to 0.71), p=0.0020). To assess whether the CDS8-
Rscore of multiple lesions may be aggregated to predict
outcomes at a patient level, several metrics consisting of
the mean value of the CD8-Rscores, its maximal and the
minimal values, the SD, and the entropy of the distri-
bution of the CD8-Rscores have been evaluated, using
median value to dichotomize two groups of patients. In
this study, the entropy of the distribution of the CDS8-
Rscores was associated with patient progression-free
survival (PFS) (HR=1.67, p=0.040), out-of-field abscopal
response (AUC=0.70, p=0.014) and overall survival
(HR=2.08, p=0.023). The minimal value of the CDS8-
Rscores, representing the lesion considered to be the
least infiltrated by CD8 T cells by the radiomics signature,
was also interesting with a statistical trend identified with
PFS (p=0.07). Significance was reached when looking at
the extreme values (first vs third quartile, HR=0.34,95%
CI0.17 to 0.68, p=0.0021). This last metric has the advan-
tage to allow direct designation of the most pejorative
lesion in a non-invasive manner, which are more likely to
be non-responsive to immunotherapy and eventually may
benefit from ablative targeted radiotherapy (high dose
radiotherapy).

Korpics e al’* also evaluated the CD8-Rscore in a cohort
of 68 patients with advanced solid cancer patients treated
with multisite stereotactic body radiation therapy (SBRT)
and pembrolizumab. Two to four metastases per patient
were irradiated, with a prescription dose of 30-50 Gy in
3-b fractions. A total of 139 metastases were treated with
SBRT and evaluated using the CD8-Rscore. Low pretreat-
ment CD8-Rscore was defined as a CD8-Rscore lower
than the 25% percentile in their study. The average of
the CD8-Rscores of irradiated lesions of each patient
was used to evaluate the clinical outcomes at a patient-
level. High CD8-Rscore was associated with improved
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lesion control (HR=0.18; 95% CI 0.04 to 0.74; p=0.018).
At a patient-level, high scores were correlated with better
PFS (HR 0.47; 95%CI 0.26 to 0.85; p=0.013) and OS
(HR=0.39; 95% CI 0.20 to 0.75; p=0.005). As a continuous
variable, higher scores were also associated with improved
PFS (HR=0.12; 95%CI 0.03 to 0.51; p=0.004) but did
not reach significance for overall survival and local
control.”* Overall, although these two studies evaluating
the CD8-Rscore were retrospective and need prospective
validation, they illustrate the potential of radiomics for
lesion response and patient outcomes prediction in the
context of radiotherapy and immunotherapy combina-
tions. However, it remains unclear whether this type of
signature, developed in pan-cancer cohorts, can be as
effective in the case of homogeneous cohort of patients
with specific tumor type. Indeed, tumor type might be a
confounding factor since tumor immune infiltrate may
vary according to tumor types.” The development of
tumor-specific signatures could therefore improve the
performance of these models.

Regarding the prediction of outoffield ‘abscopal’
response, a preclinical study evaluated CT and MRI radio-
mics on Lewis Lung Carcinoma in a syngeneic, subcuta-
neous murine model.”® Tumors were implanted on both
flanks of 19 mice. Fifteen mice received radiotherapy on
the right flank (3x8 Gy) followed by immunotherapy (anti
PD-1), and four mice presented abscopal response on
the left flank. A total of 92 CT and 92 MRI pretreatment
radiomics features were extracted from each lesion (right
and left flanks). Using six mice (12 tumors) for training
and nine mice (18 tumors for validation), the authors
identified some pretreatment CT and MRI features and
a biological variable, the neutrophil-to-lymphocyte ratio,
that were associated with abscopal response. This proof-
of-concept study, although very promising, must be inter-
preted with caution due to the low number of mice and
events (occurrence of abscopal response).”® However,
it suggests that radiomics may help to identify lesions
favorable to the occurrence of an abscopal response.
Such biomarkers would be of particular interest to guide
potential low-dose immunogenic radiotherapy to improve
systemic responses.*’ *

It is interesting to note that, vice versa, these imaging
tools may help to indicate lesions—and patients—with
a high chance of response under immunotherapy and
not requiring radiotherapy. This is of particular interest
in order to optimize and limit radiotherapy as parsimo-
niously as possible. Indeed, side effects of radiotherapy
have to be taken into account, in particular lymphopenia,
which may decrease the response to immunotherapy.’
In the same spirit, analyses of intratumor heterogeneity
could also be of interest for the partial irradiation of
tumors, which is also an approach being explored in the
combination of radiotherapy and immunotherapy. More-
over, computational imaging approaches have also shown
promising results for intratumor heterogeneity assess-
ment.”® ™ This could be key for guiding partial tumor
irradiation, which is also an approach being explored

Sun R, et al. J Immunother Cancer 2022;10:e004848. doi:10.1136/jitc-2022-004848
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Figure 1 Overview of the different methodologies and strategies applicable for developing imaging biomarkers. Adapted from
Sun et al Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations.
Cancer/Radiothérapie 2021; Volume 25 (Issues 6-7): 630-637. Copyright 2021 Elsevier Masson SAS. All rights reserved.

in radioimmunotherapy with the concept of ‘adscopal
effect’, the immune mediated effect of radiotherapy close
to the irradiated field.*

Spatial heterogeneity assessment: the key to allow
characterization and targeting of lesions

Aggregating spatial heterogeneity from predictions made
at a lesion level to perform predictions at a patient level
is particularly challenging, and no consensual method
is clearly defined (figure 3). Indeed, such models need
to take into account the possibility for each patient to
have different numbers of lesions and to be robust to
variation in lesion selection if exhaustive delineation is
not performed. This may explain why the majority of
radiomics studies only analyzed a single lesion to predict

\

o)

Lesion-level +

| patient-levelanalysis | Guiding therapeutics

Q — > Low-risk lesions

outcomes of patients (table 2). Some relatively simple
ways to analyze several lesions are the aggregation of
either all the lesions delineated into one volume corre-
sponding to the tumor burden before the extraction of
features,” or the aggregation of the features extracted
from several lesions using metrics such as the average
value, the minimal or the maximal value of the features,
irrespective of the lesion from which the value was
extracted.” ® However, although they have shown very
interesting results to predict response or survival of
patients treated with immunotherapy, these methods do
not allow evaluation of the aggressiveness or the immu-
nogenicity of a particular lesion, which is determinant
in order to identify a possible target for destruction in

Immunotherapy
responsive lesions:

(no RT)

Ablative SBRT

High-risk lesions (high-dose RT]

//,,, Immunogenic lesion

Immunogenic RT Response
(low-dose RT) evaluation
Toxicity
Risk of relapse assessment
I&-
Monitoring
N
QOutcomes prediction Follow-up

Figure 2 Potential clinical interest of imaging biomarkers for radiotherapy-immunotherapy combinations. Lesion-level analyses
may help to identify potential immune-refractory lesions (high-risk lesions) needing focal destruction with ablative SBRT (high
dose RT) or immunogenic lesions for which low dose RT may improve systemic response. Patient-level analyses allow overall
response prediction. RT, radiotherapy; SBRT, stereotactic body radiation therapy.
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(F).

radiotherapy (cooperative effect of radiotherapy) or
to promote an abscopal response (synergistic effect of
radiotherapy). Similarly, some authors have trained a
lesion-wise radiomics model to predict patient response
by assigning the same patient response to each different
lesions.® This, however, does not take into account the
possibility of dissociated response, with presence of both
responding and progressive lesions.

Trebeschi e af’® have applied a very interesting method
to address these challenges. In a study analyzing 1055
primary and metastatic lesions from 203 patients with
advanced melanoma and NSCLC treated with anti-
PD1, they trained a lesion-wide model predicting lesion
progression. Best performances were obtained with
NSCLC pulmonary and nodal metastases (0.83 AUC,
Mann-Whitney U test p<0.001and 0.78 AUC, p<0.001,
respectively). By combining predictions made on indi-
vidual lesions, this method allowed identification of
patients with at least one predicted progressive lesion.
The patients experiencing either a uniform progres-
sive disease or a dissociated response had lower overall
survival than patients with a uniform response (0.76 AUC
for all patients).”® This study highlighted the potential

of imaging to identify high-risk lesions for predicting
survival of patient treated with immunotherapy.

Only few studies have compared the performance of
different aggregation methods for multiple lesions.” %28
Liu et alcompared the predictive value of radiomic features
extracted from the largest lesion (LL model) with the
average of features extracted from several target lesions
defined according to RECIST V.1.1% (TL model) with a
maximum of five lesions analyzed, at baseline (pretreat-
ment), aswell as the relative change of these features on the
follow-up CT (delta-radiomics), in a cohort of 197 NSCLC
patients (and 322 target lesions) treated with anti-PD1
immunotherapy. LL and TL models seemed comparable
in their study, with good performance when using delta-
radiomics to predict responders at 6 months; however,
none of the methods showed significant predictive value
when using only the baseline features.*® Chang et al eval-
uated six different aggregating methods of radiomics
features extracted from brain metastases: ‘Unweighted
average’ of radiomic features (except for the size and
shape features which were summed), ‘Weighted average’
of radiomic features according to the total volume of all
metastases, ‘Weighted average of largest three metastases’,
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‘Largest+number of metastases’, and ‘Largest metas-
tasis and Smallest metastasis’.*> The ‘volume-weighted
average of the largest three tumors’ model had the best
performance for predicting patient survival with C-index
of 0.627 (0.595-0.661), 0.628 (0.591-0.666), and 0.652
(0.565-0.727) for Cox proportional hazards model,
LASSO and random forest models, respectively. In our
study evaluating the CD8-Rscores in patients treated with
radiotherapy and immunotherapy, we have shown that
entropy of the distribution of the score and the least score
were metrics to assess patient outcomes, while average or
maximal score were not.”” Interestingly, Van den Eynde
et al have shown similar results with an immunohisto-
chemistry and digital pathology-based scoring system of
lymphocyte populations (CD3 and CD8), the Immuno-
score, in metastatic colorectal cancer patients.*” ** They
evaluated the Immunoscore in 603 resected metastases
from 222 patients. The value of the least infiltrated lesion
had a stronger association with patient outcomes than
the most infiltrated lesion or the average value of the
different lesions of a patient.

Evaluating spatial heterogeneity also raises questions of
the effect of the number of lesions chosen for analysis,
as well as the minimal number of lesions to analyze, in
order to obtain maximum information regarding disease
heterogeneity, and whether a comprehensive analysis of all
lesions is mandatory. These questions have been studied
particularly for the number of lesions to be measured in
radiology®” but remains pending for radiomic analyses.

Finally, advanced machine learning approaches such as
deep learning and multiple instance learning (MIL) may
be key for spatial heterogeneity assessment.**™ Unlike
the methods described previously where one class label is
assigned to each observation or ‘instance’, in MIL, class
labels are assigned to a ‘bag of instance’, which is a collec-
tion of observations. Here, the bag of instance could be
the patient global response, where the instances would be
the different lesions. The challenge of the MIL approach
is to determine which instance(s) influence the overall
bag label. This approach is particularly interesting since
obtaining the annotation and labels of each lesion is diffi-
cult and time-consuming, while patient response label is
easier to obtain.

Other promising immunotherapy radiomics biomarker
Radiomics biomarkers have shown promising results to
predict several biological and histological features that
can be used as a rationale for characterizing the patient’s
disease and developing radiomic scores predictive of
response to high or low doses of radiotherapy. A study
used a deep learning method in a cohort of 327 patients
with NSCLC to predict tumor mutational burden (TMB)
(AUC=0.81, 95% CI 0.77 to 0.85) in the test cohort).”
This radiomic signature of TMB was associated with
overall survival, in an independent cohort of NSCLC
patients treated with immunotherapy (OS: HR=0.54;
95% CI 0.31 to 0.95; p=0.030, and PFS: HR=1.78; 95% CI
1.07 to 2.95; p=0.023).”"

Tunali et af® have developed a radiomic signature
predicting overall survival of NSCLC patients treated with
immunotherapy using a large cohort of 180 patients for
training, and two cohorts of 90 and 62 patients for valida-
tion. Interestingly, the signature they identified, allowing
discrimination of four risk groups was based on one
radiomic feature: gray level co-occurrence matrix inverse
difference, which has been associated with the expression
of CAIX, an hypoxia-related gene in their analyses.”

Other radiomic studies, although conducted without
immunotherapy, have also shown interesting results in
large cohorts for the prediction of lymphocyte infiltra-
tion according to the Immunoscore on MRI images,”" **
PD-L1 on either CT*** or PET images,” or of microsat-
ellite instability on CT or MRI images” * and may also
show promise for the prediction of response to immu-
notherapy. The diversity of biological mechanisms that
can be assessed by radiomics is of definite interest for the
development of new immunotherapy combinations such
as myeloid-derived suppressor cells (MDSC)-targeting
immunotherapy.™

While both biologically driven radiomic signatures (ie,
predicting TILs,” PD-L1" or TMB®") and radiomic signa-
tures directly designed to predict patient outcomes from
images seem to achieve good performance to predict
response to immunotherapy (table 1), both strategies
have their advantages and disadvantages. Using radiomics
to estimate a biological intermediate biomarker allows
to bring a rational to the interpretation of the patient’s
outcomes predictions, which makes the signature
appearing less like a ‘black box’. However, the final perfor-
mance on the output of clinical interest, for example, OS
or PFS, may be limited by this two-step process and the
associated accumulation of errors. Radiomic signatures
trained without any biological assumptions are less inter-
pretable but may help to discover new mechanisms and to
generate new hypotheses. Thus, some radiomic signatures
have shown to be independent from known biological
biomarkers, which paves the way for potential multi-
modal signatures integrating genomics and TMB, path-
omics, biology and/or metabolomics.” % 1! Trebeschi
et al'” have developed an Al-derived score predicting
l-year survival of advanced NSCLC patients treated with
nivolumab from morphological changes on chest CT
acquired during patient’s follow-up (73 patients in the
training set, 79 in the test set). This showed that their tool
outperformed PD-L1 expression (>1%) and volumetric
changes of tumor burden in a multivariate analysis;
however, it was only evaluable for 22 patients. Khorrami
et aP® have shown in a similar population that a delta-
radiomic feature combined with PD-L1 was better than
PD-L1 alone to predict patient overall survival. Finally,
Luo et al have shown in a cohort of 247 NSCLC patients
treated with immunotherapy that a multimodal signature
integrating radiology, pathology and genomic data was
able to predict response to anti-PD-1 (AUC=0.80, 95% CI
0.74 to 0.86) and outperformed unimodal radiomic
model (0.65, 95% CI [0.57 to 0.73), PD-L1 (AUC=0.73,
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95% CI 0.65 to 0.81), and TMB (AUC=0.61, 95% CI 0.52
to 0.70).1%

Despite this, a low level of evidence for radiomic
studies remains, with many studies often performed in
small numbers and some without independent testing
cohorts.”” ® 1% T4 date, only one study has a prospec-
tive testing cohort,” and only the CD8-Rscore has had
testing by an external team.” Thus, further research still
remains, prior to implementing strategies based on radio-
mics into clinical practice. Standardization of imaging
protocols and prospective clinical trials will be key.

Contribution of functional imaging
Many functional and molecular imaging techniques have
been developed in recent years with promising applica-
tions for radiotherapy and immunotherapy combina-
tions, 105 106

Functional images have the advantage of directly eval-
uating cellular functions or metabolic pathways, while
machine learning approaches can only seek statistical
associations of these processes with imaging patterns.

Immuno-PET is the combination of ultrasensitive func-
tional imaging, PET imaging and the high affinity and
specificity of monoclonal antibodies or ligands based on
monoclonal antibodies. This approach allows detection,
quantification and longitudinal monitoring of specific
immune receptors or cells. Several studies have shown
promising PET-imaging tracers allowing detection of
PD1 expression such as the %'Cu-DOTA-PD-1,"” or PD-L1
expression such as the *Zr-C4."” Combined with radio-
therapy, these approaches have helped increase knowl-
edge by allowing evaluation of changes induced after
radiation.'” 12 For instance, several immune-PET studies
have illustrated radiotherapy-induced PD-L1 upregula-
tion on tumor cells."'*""* Christensen et al evaluated an
897r radiolabeled anti-PD-L1 immuno-PET tracer, the
$7r-DFO-6E11, in tumor-bearing mice treated with radio-
therapy with and without antimouse PD-L1 immuno-
therapy or with antimouse PD-L1 immunotherapy alone.
The PET-CT imaging was performed in all mice and
72hours after the selective irradiation of the tumor (2 Gy
x 3) for irradiated mice. In their study, radiotherapy+anti-
PD-L1 and ant-PD-L1 alone resulted in significant tumor
control compared with the control group and RT alone.
They reported that the ¥Zr-DFO-6E11 allowed objective
quantification of PD-LI in tumors and spleens of irra-
diated mice. Moreover, the maximum 89Zr-DFO-6E11
tumor-to-muscle ratio was associated with treatment
response (p=0.025). Several early-phase clinical trials
have confirmed the potential of immuno-PET targeting
PD-L1 approaches for immunotherapy with different
promising tracers'"*": the *Zr-atezolizumab,” the *Zr-
CX-072, which is a PD-L1 targeting probody therapeutic,
which is engineered to be activated in the tumor micro-
environment by tumor-associated proteases,''* and the
¥Zr-durvalumab.'”

Immuno-PET approaches have also shown interestin
results to monitor tumor-infiltrating CD8 T cells."'® !

Farwell et al''” evaluated an anti-CD8 radiolabeled mini-
body, 89Zr-Df-IAB22M2C, in a phase 1 trial including
15 patients with metastatic solid tumors treated with
immunotherapy (n=8), targeted therapy (n=2) and 5
treatment-naive patients. Radiotracer uptake in tumors
occurred in 10 patients, seven of whom were receiving
immunotherapy. A post-treatment increase of the *Zr-Df-
IAB22M2C uptake in tumor lesions occurred in three
patients treated with immunotherapy and was correlated
with response, which is very promising for immuno-
therapy early response prediction. Whether the *Zr-Df-
IAB22M2C may characterize the impact of radiotherapy
on CD8 T cell infiltration within irradiated and non-
irradiated tumor lesions in patients with polymetastatic
solid cancers is evaluated in an ongoing clinical trial
(ABSCOTEP trial, EudraCT: 2016-000665-23).

Overall, these functional imaging approaches are very
promising for immunotherapy-radiotherapy combina-
tions and will surely help to better understand determi-
nant of abscopal response and to identify the best targets
for radiotherapy. However, these approaches do have
limitations such as the difficult access to the tracers that
may impact the repeatability of these exams, the need for
standardization to allow reproducibility, and the need to
take into account the tracer biological distribution, espe-
cially in certain normal lymphoid tissues such as spleen
and nodes."""'"?

Imaging to assess response to radioimmunotherapy
Addition of radiotherapy to immunotherapy has raised
specific questions for response assessment.

The term ‘abscopal effect’” has been introduced to
describe an immune-mediated response of lesions occur-
ring after radiotherapy outside the radiation field.'"
While rare abscopal responses have been described with
radiotherapy alone, immunotherapy has been used to try
to enhance the systemic effect of radiotherapy. However,
the proper systemic benefit of radiotherapy added to
the direct effect of immunotherapy is difficult to eval-
uate outside of a controlled trial. Moreover, definition of
abscopal effect varies between studies. Some have consid-
ered as abscopal response, a reduction in the size of one
non-irradiated metastasis by >30%,""""*' while others
have considered out-of-field response using aggregate
diameter of non-irradiated target lesions, in accordance
with RECIST 1.1 criteria (‘best out-of-field (abscopal)
response rate’).’ **1% To the best of our knowledge, only
few data comparing both definitions are published. In
our cohort of 94 patients treated with immunotherapy
and radiotherapy, 15 patients (16.0%) presented an out-
of-field response according to RECIST 1.1 criteria, while
nine patients had at least one non-irradiated responding
lesion but the aggregated change in diameter of all the
non-rradiated lesions did not reach the 30% threshold.
Overall survival of patients with ‘RECIST-negative’ out-of-
field response was not significantly different than survival
of patients with no responding out-of-field lesion, while
‘RECIST-compliant’ out-of-field patients had significantly
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better overall survival (p=0.039).73 This result therefore
encourages staying with the RECIST 1.1 criterion for out-
of-field response assessment, which considers the eval-
uation of patient response on non-irradiated targets.'**
To note, immunotherapy has also brought new patterns
of response, such as pseudoprogression, dissociated
response, and hyperprogression,'® '*® which led to the
introduction of additional response assessment criteria
such as Immune related Response Criteria,'”’” immune
RECIST,128 immune modified RECIST,129 and immune-
related RECIST."

Interestingly, the concern of evaluating treated and
untreated lesions has also been raised with intratu-
moral immunotherapy injections. The itRECIST criteria
proposed to assess injected and non-injected lesions
response separately, with the possible definition of target
and non-target lesions in both injected and non-injected
lesions.”® Sum of diameters (SOD) is performed on
target-injected lesions and target non-injected lesions
separately, then a combined SOD includes all target
lesions (injected and non-injected).”” The relevance
of such strategies for radiotherapy and immunotherapy
combination does not seem clear yet might be worth
investigating.

Use of machine learning and functional imaging for
early response assessment might also be useful to predict
patient outcomes and discrimination of progression and
pseudoprogression.® # 117 52 Deltaradiomics, which
considers the relative changes of radiomic features
between two time points, might help to improve the
assessment of treatment response. Dercle et al’' have
shown in a study analyzing 575 melanoma patients from
the KEYNOTE-002 and KEYNOTE-006 studies that a
radiomics signature taking into account changes in tumor
imaging phenotype at month 3, performed better than
RECIST 1.1 criteria for discriminating patients overall
survival (AUC=0.92, 95% CI 0.89 to 0.95 vs 0.80, 95% CI
0.75 to 0.84).%

Radiomics analysis of follow-up images have also shown
interesting results for the assessment of radiotherapy-
immunotherapy toxicity.'* Cheng et al'® have developed
a radiomics signature to differentiate immune check-
point inhibitor-related pneumonitis (CIP) and radiation
pneumonitis (RP) on CT scan images. They trained their
model using CT images of patients with pneumonitis
while treated with ICI (n=28) or radiotherapy only (n=31)
and tested their model in a cohort of 14 patients treated
with ICI+radiotherapy. Performance of the best-trained
model in the test set was promising with an AUC=0.896,
although further prospective validation is needed.

Finally, another challenge will be to assess whether
imaging biomarkers may help to monitor patients under-
going treatment. Indeed, the development of imaging
biomarkers has particularly focused on the prediction of
response using pretreatment scans, with or without the
use of first evaluation images (ie, with delta-radiomics).
However, no study has assessed whether these tools are
still effective in predicting patient responses or variations

in the tumor microenvironment during treatment over
time. Development of automatic segmentation tools and
deep learning will probably be key to automate such
analyses.

Conclusion

While radioimmunotherapy combinations seem very
promising for improving patients’ outcomes, novel perfor-
mant biomarkers are needed to identify patients who are
most likely to benefit from these treatments and to help
clinicians choose the optimal modalities of both radio-
therapy and immunotherapy. Imaging biomarkers have
shown promising results to characterize the whole disease
with its spatial heterogeneity, which eventually may guide
different radioimmunotherapy strategies such as a syner-
gistic immunogenic low-dose radiotherapy to improve
systemic effects, or a complementary preemptive abla-
tive high-dose radiotherapy to destroy selective lesions at
high risk of progression under immunotherapy. Further
efforts and randomized prospective studies are needed
to validate such strategies, but imaging biomarkers will
surely be key for development of precision medicine in
immunotherapy and radioimmunotherapy combinations
and monitoring of patients.
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