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ABSTRACT
Strong rationale and a growing number of preclinical 
and clinical studies support combining radiotherapy and 
immunotherapy to improve patient outcomes. However, 
several critical questions remain, such as the identification 
of patients who will benefit from immunotherapy and 
the identification of the best modalities of treatment 
to optimize patient response. Imaging biomarkers and 
radiomics have recently emerged as promising tools 
for the non-invasive assessment of the whole disease 
of the patient, allowing comprehensive analysis of the 
tumor microenvironment, the spatial heterogeneity 
of the disease and its temporal changes. This review 
presents the potential applications of medical imaging 
and the challenges to address, in order to help clinicians 
choose the optimal modalities of both radiotherapy and 
immunotherapy, to predict patient’s outcomes and to 
assess response to these promising combinations.

INTRODUCTION
Immunotherapy has revolutionized cancer 
management in recent years. Most advanced 
patients receiving frontline immune check-
point inhibitors (ICIs) will, however, develop 
disease progression. In order to improve the 
response rates of immunotherapy, a growing 
number of studies are evaluating different 
treatment combinations or strategies, one of 
which is the combination of systemic immu-
notherapy and local radiotherapy.1–7 Indeed, 
there is substantial evidence that radiotherapy 
induces immune stimulation with the release 
of tumor antigens and proinflammatory cyto-
kines at the local and systemic levels and thus, 
may act synergistically with immunotherapy 
in the systemic control of advanced metastatic 
cancers.1 8–12 Radiotherapy activates immune 
response by triggering immunogenic cell 
death (with extracellular release of release 
of high-mobility group box 1 protein and 
adenosine-5′-triphosphate, and cell surface 
translocation of calreticulin) and produc-
tion of type I interferon (IFN) via the acti-
vation of the cGAS-STING pathway, leading 

to dendritic cells and cytotoxic T cells acti-
vation, which may eventually lead to an out-
of-field ‘abscopal’ response.13 14 Inversely, 
it has been shown that radiotherapy also 
promotes immunosuppressive effects, with 
notably a PD-L1 upregulation via different 
pathway such as IFN-dependent pathway and 
IL-6/JAK/STAT pathway,15 or DNA damages 
through ATM/ATR/Chk1 kinase activation,16 
along with the attraction of immunosuppres-
sive cells (ie, tumor-associated macrophages, 
myeloid-derived suppressor cells, and regula-
tory T cells) and the release of immunosup-
pressive cytokines such as TGF-β and IL-10.13 
These results support the potential of immu-
notherapy as an adjunct to radiotherapy to 
counteract its immunosuppressive effects, 
as illustrated by the phase III PACIFIC trial 
showing a benefit of a consolidation therapy 
with the anti-PD-L1 drug durvalumab in unre-
sectable locally advanced non-small cell lung 
cancer (NSCLC) after chemoradiotherapy.17

However, only a small number of controlled 
randomized trials evaluating the benefit 
of adding radiotherapy to immunotherapy 
exist with mostly negative results.3 4 7 18–20 
For instance, in advanced NSCLC patients, a 
pooled analysis of two clinical trials evaluating 
pembrolizumab (anti-PD1)±radiotherapy 
showed that adding radiotherapy to pembroli-
zumab improved outcomes. However, a 
randomized phase 2 trial was not able to 
identify a benefit of low-dose or high-dose 
radiation therapy with durvalumab (anti-
PD-L1)+tremelimumab (anti-CTLA4) in 
advanced immunotherapy-pretreated NSCLC 
patients.4

Irradiation modalities to optimize the 
achievement of a systemic antitumor immune 
response are then subject to numerous 
studies.10 21–23

Fine tuning delivered dose and fraction-
ation (dose per session) may be crucial for 

http://bmjopen.bmj.com/
http://orcid.org/0000-0001-9866-6449
http://orcid.org/0000-0003-0672-415X
http://orcid.org/0000-0001-8838-1343
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2022-004848&domain=pdf&date_stamp=2022-07-06


2 Sun R, et al. J Immunother Cancer 2022;10:e004848. doi:10.1136/jitc-2022-004848

Open access�

achieving an out-of-field abscopal response.24–27 For 
example, an abscopal response was obtained in immu-
nocompetent mice bearing syngeneic mammary and 
colorectal tumor cell transplants after hypofractionated 
radiotherapy (three sessions of 8 Gy delivered 3 days in a 
row) but was not obtained with a single fraction radio-
therapy of 20 Gy.24 Doses above 12 Gy increase the activity 
of 3′ repair exonuclease 1, a DNA exonuclease that 
degrades DNA accumulating in the cytosol of irradiated 
cells, decreasing STING activation and Batf3-dependent 
dendritic cell recruitment.28 These studies would suggest 
that the optimal dose in radioimmunotherapy may be 
lower than the maximum tolerated doses used in radio-
therapy alone.22 However, low dose radiotherapy (1 Gy/
fraction) has also been shown to potentially stimulate 
immune responses by activating and stimulating helper 
T cells, promoting a generation of immune memory and 
modulating the tumor stroma with the reduction of TGF-β 
induced Tregs in the tumor microenvironment.29 30

Open questions such as the number and choice of 
lesions to irradiate remain unanswered.31 32 Indeed, the 
tumor heterogeneity of extensive disease could limit the 
likelihood of a systemic (abscopal) antitumor immune 
response induced by radiotherapy, especially in the case 
of single-site irradiation.21 Thus, a wide range of possibili-
ties in the choice of doses and volumes to irradiate makes 
possible combinations more complex.

In this context where both disease and treatment are 
characterized by heterogeneity, medical imaging may 
express its full potential as it allow analysis of the entire 
tumor mass and individual lesions, unlike traditional 
biopsies.33 Indeed, each lesion may have a different 
microenvironment and may receive different local and/
or systemic treatment effects, leading to heterogeneous 
response profiles.34 Imaging-derived biomarkers espe-
cially may help to better understand the relationship 
between radiotherapy and immunotherapy and to even-
tually guide the clinician in the choice of treatment and 
its modalities.

Here, we will present the potential applications and 
challenges of imaging to guide immunotherapeutic 
combinations with a particular focus on radiomics. We will 
also discuss the particularities to be taken into account 
in imaging for the evaluation of response in these new 
combinations.

IMAGING TO INCREASE KNOWLEDGE, TO PREDICT RESPONSES, 
AND TO GUIDE THERAPEUTICS
A brief introduction to computational medical imaging 
principles
Artificial intelligence approaches applied to medical 
imaging have been particularly developed in recent 
decades with great results for detection tasks, image 
reconstruction, and generation of imaging biomarkers 
for diagnostic support, prognostic assessment, or treat-
ment response prediction.33 35 36 The term ‘radiomics’ 
was introduced by Gillies et al37 in 2010 to define the 

process of computational translation of medical imaging 
into high-dimensional quantitative data (similar to other 
‘omics’) and the use of machine learning for the develop-
ment of imaging biomarkers. A typical pipeline of analysis 
is usually constituted by the following steps: (1) defini-
tion of the volumes of interest (VOIs) to be analyzed, (2) 
extraction of the quantitative information represented by 
the radiomics features, and (3) application of machine 
learning approaches and evaluation of the validity and 
generalizability of the model.35 38 While machine learning 
methods may seem complex at first glance to the clini-
cian, we will outline some general and relatively simple 
concepts that allow for a better understanding of this 
discipline.

Computational translation of the image into numbers 
relies either on the calculation of ‘classical’ radiomic 
features (in particular from the histogram of the image 
intensities, texture matrices, or the shape of the VOI, 
defined a priori and which can be extracted by different 
software such as LIFEx39 or Pyradiomics40), or on deep 
learning approaches that allow ‘discovering’ the relevant 
information directly from the raw image (‘deep features’) 
using neural networks (especially conventional neural 
networks).41 While classical radiomic features are mostly 
used for biomarker development, neural networks can 
also be used for image detection, segmentation and recon-
struction tasks. This data extraction can be performed 
in one or more volume of interest to be analyzed (eg, a 
tumor lesion), or on the whole image (especially when 
using deep learning techniques). It is important to note 
that the different acquisition protocols and reconstruc-
tion parameters of the imaging process (CT, MRI, or 
positron emission tomography scan (PET-CT)) directly 
affect the image and may be a confounding factor. This 
can particularly impact the performance of algorithms in 
the case of heterogeneous cohorts. Thus, image prepro-
cessing and normalization steps are performed to make 
the images of different patients with different acquisition 
protocols comparable.42 43

Once the quantitative data have been extracted from the 
image, machine learning algorithms aim to train a model 
for a particular task. Classically, three distinct data sets are 
used in machine learning approaches: a training set to 
learn a specific task, a validation set to optimize the algo-
rithm and an independent test set for the final validation 
and evaluation of the generalizability of the algorithm. 
Assessment of the model performance in an indepen-
dent data set is essential to ensure the external validity 
of an algorithm. Indeed, overfitting may happen during 
the training, especially when the number of features 
extracted is higher than the number of patients, leading 
to overoptimistic performance estimation and subpar 
performance when used in real clinical applications.

A growing number of initiatives and recommendations 
are being issued to ensure the quality, the reproducibility 
and the methodological validity of artificial intelligence 
(AI) approaches applied on medical images.44–46 Harmo-
nization of imaging data and/or radiomic features a 
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posteriori is essential to enable robust development 
of generalisable imaging biomarkers in a multicenter 
setting.47 Although standardization of image acquisition 
protocols is a simple way to obtain consistent images 
across different centers,48 it can be difficult to imple-
ment on a large scale and does not take into account 
the potential batch effect of acquisitions from multiple 
devices from different manufacturers. Image processing 
methods, including at least isotropic spatial resampling of 
voxels and, for example, skull stripping for image intensity 
normalization (using, eg, the Z-score method), and bias 
field correction for brain MRI images, have been shown 
to be effective for medical imaging normalization.49 50 
Adjusting radiomic features after extraction to correct for 
batch effect using methods such as the ComBat approach 
has also shown interesting results in reducing discrepan-
cies between different imaging protocols and manufac-
turers.51 Standardization of radiomic feature definitions 
have also been proposed by the image biomarker stan-
dardization initiative to increase the reproducibility and 
comparability of software used for feature extraction.52 
Regarding deep learning studies, some recommendations 
to ensure their proper conduct have also recently been 
published.53 The Radiomic Quality Score calculated from 
a 16-point checklist allows the assessment of the various 
technical and statistical aspects and the clinical validity of 
the radiomic analysis method.54

Radiomics to predict response to immunotherapy and 
radiotherapy combinations: toward a selective destruction of 
predicted immune refractory lesions and immunogenic low-
dose radiotherapy for abscopal effect friendly lesions?
Since the first studies evaluating radiomics to predict 
the immune microenvironment in 2017,55 an increasing 
number of radiomic studies have confirmed the poten-
tial of imaging biomarkers for use in immuno-oncology 
(table  1). Promising results have been obtained using 
a wide variety of approaches on many different tumors 
types, such as lung cancers,56–61 head and neck cancers,62 
melanoma,56 63 64 urothelial65–67 and renal cancers,68 with 
either CT scans,56–58 69 PET-CTs,60 70 or MRIs71 72 (figure 1).

One of the major considerations for implementation of 
imaging biomarkers in radiotherapy and immunotherapy 
combinations in a metastatic context is whether they can 
be used to assess the spatial heterogeneity of the disease 
and more specifically the heterogeneity between lesions 
of a same patient to potentially guide radiotherapy on 
specific lesions (figure 2).

To the best of our knowledge, only two studies have 
evaluated radiomics to predict response of metastatic 
cancer patients treated with immunotherapy combined 
with radiotherapy.73 74 Interestingly, each of these inde-
pendently evaluated the previously published radiomics 
signature predicting CD8-T cells (CD8-Rscore) devel-
oped by our team.69 This CD8-Rscore was initially devel-
oped using contrast enhanced CT scans of 135 patients 
for whom RNA sequencing data of a biopsied lesion were 
available and allowed estimation of the abundance of CD8 

T cells. This signature, based on eight variables including 
five radiomics features extracted from the lesion analyzed 
and a peripheral ring around the lesion, two variables of 
VOI location and one technical variable (the kiloVoltage 
Peak), was validated using a Cancer Genome Atlas dataset 
of 119 patients (area under the curve (AUC)=0.67; 
95% CI 0.57 to 0.77; p=0.0019)69 and was also associated 
with clinical response and overall survival of 137 patients 
treated with immunotherapy (HR=0.58, 95% CI 0.39 to 
0.87; p=0.0081). However, in the primary study, only one 
lesion per patient was analyzed for predicting outcomes.69 
In ref 73, we applied the CD8-Rscore on multiple lesions 
on the baseline CT scan of 94 solid cancer patients 
treated with immunotherapy and radiotherapy. Almost all 
patients underwent hypofractionated radiotherapy (n=91 
(96.9%)). The main radiotherapy dose-fractionation 
schedule was 3×8 Gy delivered on a single lesion. Seven 
patients (7.4%) had more than one irradiated lesion. The 
CD8-Rscore was applied on a total of 100 irradiated lesions 
and 189 non-irradiated lesions. At a lesion level, the CD8-
Rscore at baseline of responding lesions was higher than 
those of stable or progressive lesions (AUC=0.63, 95% CI 
0.56 to 0.71), p=0.0020). To assess whether the CD8-
Rscore of multiple lesions may be aggregated to predict 
outcomes at a patient level, several metrics consisting of 
the mean value of the CD8-Rscores, its maximal and the 
minimal values, the SD, and the entropy of the distri-
bution of the CD8-Rscores have been evaluated, using 
median value to dichotomize two groups of patients. In 
this study, the entropy of the distribution of the CD8-
Rscores was associated with patient progression-free 
survival (PFS) (HR=1.67, p=0.040), out-of-field abscopal 
response (AUC=0.70, p=0.014) and overall survival 
(HR=2.08, p=0.023). The minimal value of the CD8-
Rscores, representing the lesion considered to be the 
least infiltrated by CD8 T cells by the radiomics signature, 
was also interesting with a statistical trend identified with 
PFS (p=0.07). Significance was reached when looking at 
the extreme values (first vs third quartile, HR=0.34,95% 
CI 0.17 to 0.68, p=0.0021). This last metric has the advan-
tage to allow direct designation of the most pejorative 
lesion in a non-invasive manner, which are more likely to 
be non-responsive to immunotherapy and eventually may 
benefit from ablative targeted radiotherapy (high dose 
radiotherapy).

Korpics et al74 also evaluated the CD8-Rscore in a cohort 
of 68 patients with advanced solid cancer patients treated 
with multisite stereotactic body radiation therapy (SBRT) 
and pembrolizumab. Two to four metastases per patient 
were irradiated, with a prescription dose of 30–50 Gy in 
3–5 fractions. A total of 139 metastases were treated with 
SBRT and evaluated using the CD8-Rscore. Low pretreat-
ment CD8-Rscore was defined as a CD8-Rscore lower 
than the 25% percentile in their study. The average of 
the CD8-Rscores of irradiated lesions of each patient 
was used to evaluate the clinical outcomes at a patient-
level. High CD8-Rscore was associated with improved 
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lesion control (HR=0.18; 95% CI 0.04 to 0.74; p=0.018). 
At a patient-level, high scores were correlated with better 
PFS (HR 0.47; 95% CI 0.26 to 0.85; p=0.013) and OS 
(HR=0.39; 95% CI 0.20 to 0.75; p=0.005). As a continuous 
variable, higher scores were also associated with improved 
PFS (HR=0.12; 95% CI 0.03 to 0.51; p=0.004) but did 
not reach significance for overall survival and local 
control.74 Overall, although these two studies evaluating 
the CD8-Rscore were retrospective and need prospective 
validation, they illustrate the potential of radiomics for 
lesion response and patient outcomes prediction in the 
context of radiotherapy and immunotherapy combina-
tions. However, it remains unclear whether this type of 
signature, developed in pan-cancer cohorts, can be as 
effective in the case of homogeneous cohort of patients 
with specific tumor type. Indeed, tumor type might be a 
confounding factor since tumor immune infiltrate may 
vary according to tumor types.75 The development of 
tumor-specific signatures could therefore improve the 
performance of these models.

Regarding the prediction of out-of-field ‘abscopal’ 
response, a preclinical study evaluated CT and MRI radio-
mics on Lewis Lung Carcinoma in a syngeneic, subcuta-
neous murine model.76 Tumors were implanted on both 
flanks of 19 mice. Fifteen mice received radiotherapy on 
the right flank (3×8 Gy) followed by immunotherapy (anti 
PD-1), and four mice presented abscopal response on 
the left flank. A total of 92 CT and 92 MRI pretreatment 
radiomics features were extracted from each lesion (right 
and left flanks). Using six mice (12 tumors) for training 
and nine mice (18 tumors for validation), the authors 
identified some pretreatment CT and MRI features and 
a biological variable, the neutrophil-to-lymphocyte ratio, 
that were associated with abscopal response. This proof-
of-concept study, although very promising, must be inter-
preted with caution due to the low number of mice and 
events (occurrence of abscopal response).76 However, 
it suggests that radiomics may help to identify lesions 
favorable to the occurrence of an abscopal response. 
Such biomarkers would be of particular interest to guide 
potential low-dose immunogenic radiotherapy to improve 
systemic responses.29 30

It is interesting to note that, vice versa, these imaging 
tools may help to indicate lesions—and patients—with 
a high chance of response under immunotherapy and 
not requiring radiotherapy. This is of particular interest 
in order to optimize and limit radiotherapy as parsimo-
niously as possible. Indeed, side effects of radiotherapy 
have to be taken into account, in particular lymphopenia, 
which may decrease the response to immunotherapy.77 
In the same spirit, analyses of intratumor heterogeneity 
could also be of interest for the partial irradiation of 
tumors, which is also an approach being explored in the 
combination of radiotherapy and immunotherapy. More-
over, computational imaging approaches have also shown 
promising results for intratumor heterogeneity assess-
ment.78 79 This could be key for guiding partial tumor 
irradiation, which is also an approach being explored R
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in radioimmunotherapy with the concept of ‘adscopal 
effect’, the immune mediated effect of radiotherapy close 
to the irradiated field.80

Spatial heterogeneity assessment: the key to allow 
characterization and targeting of lesions
Aggregating spatial heterogeneity from predictions made 
at a lesion level to perform predictions at a patient level 
is particularly challenging, and no consensual method 
is clearly defined (figure 3). Indeed, such models need 
to take into account the possibility for each patient to 
have different numbers of lesions and to be robust to 
variation in lesion selection if exhaustive delineation is 
not performed. This may explain why the majority of 
radiomics studies only analyzed a single lesion to predict 

outcomes of patients (table 2). Some relatively simple 
ways to analyze several lesions are the aggregation of 
either all the lesions delineated into one volume corre-
sponding to the tumor burden before the extraction of 
features,81 or the aggregation of the features extracted 
from several lesions using metrics such as the average 
value, the minimal or the maximal value of the features, 
irrespective of the lesion from which the value was 
extracted.65 82 However, although they have shown very 
interesting results to predict response or survival of 
patients treated with immunotherapy, these methods do 
not allow evaluation of the aggressiveness or the immu-
nogenicity of a particular lesion, which is determinant 
in order to identify a possible target for destruction in 

Figure 1  Overview of the different methodologies and strategies applicable for developing imaging biomarkers. Adapted from 
Sun et al Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations. 
Cancer/Radiothérapie 2021; Volume 25 (Issues 6–7): 630–637. Copyright 2021 Elsevier Masson SAS. All rights reserved.

Figure 2  Potential clinical interest of imaging biomarkers for radiotherapy-immunotherapy combinations. Lesion-level analyses 
may help to identify potential immune-refractory lesions (high-risk lesions) needing focal destruction with ablative SBRT (high 
dose RT) or immunogenic lesions for which low dose RT may improve systemic response. Patient-level analyses allow overall 
response prediction. RT, radiotherapy; SBRT, stereotactic body radiation therapy.
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radiotherapy (cooperative effect of radiotherapy) or 
to promote an abscopal response (synergistic effect of 
radiotherapy). Similarly, some authors have trained a 
lesion-wise radiomics model to predict patient response 
by assigning the same patient response to each different 
lesions.66 This, however, does not take into account the 
possibility of dissociated response, with presence of both 
responding and progressive lesions.

Trebeschi et al56 have applied a very interesting method 
to address these challenges. In a study analyzing 1055 
primary and metastatic lesions from 203 patients with 
advanced melanoma and NSCLC treated with anti-
PD1, they trained a lesion-wide model predicting lesion 
progression. Best performances were obtained with 
NSCLC pulmonary and nodal metastases (0.83 AUC, 
Mann-Whitney U test p<0.001 and 0.78 AUC, p<0.001, 
respectively). By combining predictions made on indi-
vidual lesions, this method allowed identification of 
patients with at least one predicted progressive lesion. 
The patients experiencing either a uniform progres-
sive disease or a dissociated response had lower overall 
survival than patients with a uniform response (0.76 AUC 
for all patients).56 This study highlighted the potential 

of imaging to identify high-risk lesions for predicting 
survival of patient treated with immunotherapy.

Only few studies have compared the performance of 
different aggregation methods for multiple lesions.73 82 83 
Liu et al compared the predictive value of radiomic features 
extracted from the largest lesion (LL model) with the 
average of features extracted from several target lesions 
defined according to RECIST V.1.184 (TL model) with a 
maximum of five lesions analyzed, at baseline (pretreat-
ment), as well as the relative change of these features on the 
follow-up CT (delta-radiomics), in a cohort of 197 NSCLC 
patients (and 322 target lesions) treated with anti-PD1 
immunotherapy. LL and TL models seemed comparable 
in their study, with good performance when using delta-
radiomics to predict responders at 6 months; however, 
none of the methods showed significant predictive value 
when using only the baseline features.82 Chang et al eval-
uated six different aggregating methods of radiomics 
features extracted from brain metastases: ‘Unweighted 
average’ of radiomic features (except for the size and 
shape features which were summed), ‘Weighted average’ 
of radiomic features according to the total volume of all 
metastases, ‘Weighted average of largest three metastases’, 

Figure 3  Summary of different aggregating methods for multiple lesion analyses. (A) Defining a fixed number of a lesion to 
analyze for each patient. (B) Aggregating lesions into one volume (tumor burden). (C) Aggregating features extracted from 
several lesions (ie, using metrics such as the average value or the minimal value). (D) Predicting lesion-level response then 
aggregating the predictions to assess patient outcomes. (E and F) Assigning for each lesion the patient outcome to predict then 
using predefined aggregation metrics (E) or learned aggregation methods (attention) in multiple-instance learning approaches 
(F).
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‘Largest+number of metastases’, and ‘Largest metas-
tasis and Smallest metastasis’.83 The ‘volume-weighted 
average of the largest three tumors’ model had the best 
performance for predicting patient survival with C-index 
of 0.627 (0.595–0.661), 0.628 (0.591–0.666), and 0.652 
(0.565–0.727) for Cox proportional hazards model, 
LASSO and random forest models, respectively. In our 
study evaluating the CD8-Rscores in patients treated with 
radiotherapy and immunotherapy, we have shown that 
entropy of the distribution of the score and the least score 
were metrics to assess patient outcomes, while average or 
maximal score were not.73 Interestingly, Van den Eynde 
et al have shown similar results with an immunohisto-
chemistry and digital pathology-based scoring system of 
lymphocyte populations (CD3 and CD8), the Immuno-
score, in metastatic colorectal cancer patients.85 86 They 
evaluated the Immunoscore in 603 resected metastases 
from 222 patients. The value of the least infiltrated lesion 
had a stronger association with patient outcomes than 
the most infiltrated lesion or the average value of the 
different lesions of a patient.

Evaluating spatial heterogeneity also raises questions of 
the effect of the number of lesions chosen for analysis, 
as well as the minimal number of lesions to analyze, in 
order to obtain maximum information regarding disease 
heterogeneity, and whether a comprehensive analysis of all 
lesions is mandatory. These questions have been studied 
particularly for the number of lesions to be measured in 
radiology87 but remains pending for radiomic analyses.

Finally, advanced machine learning approaches such as 
deep learning and multiple instance learning (MIL) may 
be key for spatial heterogeneity assessment.88–90 Unlike 
the methods described previously where one class label is 
assigned to each observation or ‘instance’, in MIL, class 
labels are assigned to a ‘bag of instance’, which is a collec-
tion of observations. Here, the bag of instance could be 
the patient global response, where the instances would be 
the different lesions. The challenge of the MIL approach 
is to determine which instance(s) influence the overall 
bag label. This approach is particularly interesting since 
obtaining the annotation and labels of each lesion is diffi-
cult and time-consuming, while patient response label is 
easier to obtain.

Other promising immunotherapy radiomics biomarker
Radiomics biomarkers have shown promising results to 
predict several biological and histological features that 
can be used as a rationale for characterizing the patient’s 
disease and developing radiomic scores predictive of 
response to high or low doses of radiotherapy. A study 
used a deep learning method in a cohort of 327 patients 
with NSCLC to predict tumor mutational burden (TMB) 
(AUC=0.81, 95% CI 0.77 to 0.85) in the test cohort).91 
This radiomic signature of TMB was associated with 
overall survival, in an independent cohort of NSCLC 
patients treated with immunotherapy (OS: HR=0.54; 
95% CI 0.31 to 0.95; p=0.030, and PFS: HR=1.78; 95% CI 
1.07 to 2.95; p=0.023).91

Tunali et al92 have developed a radiomic signature 
predicting overall survival of NSCLC patients treated with 
immunotherapy using a large cohort of 180 patients for 
training, and two cohorts of 90 and 62 patients for valida-
tion. Interestingly, the signature they identified, allowing 
discrimination of four risk groups was based on one 
radiomic feature: gray level co-occurrence matrix inverse 
difference, which has been associated with the expression 
of CAIX, an hypoxia-related gene in their analyses.92

Other radiomic studies, although conducted without 
immunotherapy, have also shown interesting results in 
large cohorts for the prediction of lymphocyte infiltra-
tion according to the Immunoscore on MRI images,71 93 
PD-L1 on either CT94 95 or PET images,70 or of microsat-
ellite instability on CT or MRI images96 97 and may also 
show promise for the prediction of response to immu-
notherapy. The diversity of biological mechanisms that 
can be assessed by radiomics is of definite interest for the 
development of new immunotherapy combinations such 
as myeloid-derived suppressor cells (MDSC)-targeting 
immunotherapy.98

While both biologically driven radiomic signatures (ie, 
predicting TILs,69 PD-L199 or TMB91) and radiomic signa-
tures directly designed to predict patient outcomes from 
images seem to achieve good performance to predict 
response to immunotherapy (table  1), both strategies 
have their advantages and disadvantages. Using radiomics 
to estimate a biological intermediate biomarker allows 
to bring a rational to the interpretation of the patient’s 
outcomes predictions, which makes the signature 
appearing less like a ‘black box’. However, the final perfor-
mance on the output of clinical interest, for example, OS 
or PFS, may be limited by this two-step process and the 
associated accumulation of errors. Radiomic signatures 
trained without any biological assumptions are less inter-
pretable but may help to discover new mechanisms and to 
generate new hypotheses. Thus, some radiomic signatures 
have shown to be independent from known biological 
biomarkers, which paves the way for potential multi-
modal signatures integrating genomics and TMB, path-
omics, biology and/or metabolomics.95 100 101 Trebeschi 
et al102 have developed an AI-derived score predicting 
1-year survival of advanced NSCLC patients treated with 
nivolumab from morphological changes on chest CT 
acquired during patient’s follow-up (73 patients in the 
training set, 79 in the test set). This showed that their tool 
outperformed PD-L1 expression (>1%) and volumetric 
changes of tumor burden in a multivariate analysis; 
however, it was only evaluable for 22 patients. Khorrami 
et al58 have shown in a similar population that a delta-
radiomic feature combined with PD-L1 was better than 
PD-L1 alone to predict patient overall survival. Finally, 
Luo et al have shown in a cohort of 247 NSCLC patients 
treated with immunotherapy that a multimodal signature 
integrating radiology, pathology and genomic data was 
able to predict response to anti-PD-1 (AUC=0.80, 95% CI 
0.74 to 0.86) and outperformed unimodal radiomic 
model (0.65, 95% CI [0.57 to 0.73), PD-L1 (AUC=0.73, 
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95% CI 0.65 to 0.81), and TMB (AUC=0.61, 95% CI 0.52 
to 0.70).103

Despite this, a low level of evidence for radiomic 
studies remains, with many studies often performed in 
small numbers and some without independent testing 
cohorts.60 61 72 104 To date, only one study has a prospec-
tive testing cohort,59 and only the CD8-Rscore has had 
testing by an external team.74 Thus, further research still 
remains, prior to implementing strategies based on radio-
mics into clinical practice. Standardization of imaging 
protocols and prospective clinical trials will be key.

Contribution of functional imaging
Many functional and molecular imaging techniques have 
been developed in recent years with promising applica-
tions for radiotherapy and immunotherapy combina-
tions.105 106

Functional images have the advantage of directly eval-
uating cellular functions or metabolic pathways, while 
machine learning approaches can only seek statistical 
associations of these processes with imaging patterns.

Immuno-PET is the combination of ultrasensitive func-
tional imaging, PET imaging and the high affinity and 
specificity of monoclonal antibodies or ligands based on 
monoclonal antibodies. This approach allows detection, 
quantification and longitudinal monitoring of specific 
immune receptors or cells. Several studies have shown 
promising PET-imaging tracers allowing detection of 
PD1 expression such as the 64Cu-DOTA-PD-1,107 or PD-L1 
expression such as the 89Zr-C4.108 Combined with radio-
therapy, these approaches have helped increase knowl-
edge by allowing evaluation of changes induced after 
radiation.109–112 For instance, several immune-PET studies 
have illustrated radiotherapy-induced PD-L1 upregula-
tion on tumor cells.110–112 Christensen et al evaluated an 
89Zr radiolabeled anti-PD-L1 immuno-PET tracer, the 
89Zr-DFO-6E11, in tumor-bearing mice treated with radio-
therapy with and without antimouse PD-L1 immuno-
therapy or with antimouse PD-L1 immunotherapy alone. 
The PET-CT imaging was performed in all mice and 
72 hours after the selective irradiation of the tumor (2 Gy 
× 3) for irradiated mice. In their study, radiotherapy+anti-
PD-L1 and ant-PD-L1 alone resulted in significant tumor 
control compared with the control group and RT alone. 
They reported that the 89Zr-DFO-6E11 allowed objective 
quantification of PD-L1 in tumors and spleens of irra-
diated mice. Moreover, the maximum 89Zr-DFO-6E11 
tumor-to-muscle ratio was associated with treatment 
response (p=0.025). Several early-phase clinical trials 
have confirmed the potential of immuno-PET targeting 
PD-L1 approaches for immunotherapy with different 
promising tracers113–115: the 89Zr-atezolizumab,98 the 89Zr-
CX-072, which is a PD-L1 targeting probody therapeutic, 
which is engineered to be activated in the tumor micro-
environment by tumor-associated proteases,114 and the 
89Zr-durvalumab.115

Immuno-PET approaches have also shown interesting 
results to monitor tumor-infiltrating CD8 T cells.116 117 

Farwell et al117 evaluated an anti-CD8 radiolabeled mini-
body, 89Zr-Df-IAB22M2C, in a phase 1 trial including 
15 patients with metastatic solid tumors treated with 
immunotherapy (n=8), targeted therapy (n=2) and 5 
treatment-naïve patients. Radiotracer uptake in tumors 
occurred in 10 patients, seven of whom were receiving 
immunotherapy. A post-treatment increase of the 89Zr-Df-
IAB22M2C uptake in tumor lesions occurred in three 
patients treated with immunotherapy and was correlated 
with response, which is very promising for immuno-
therapy early response prediction. Whether the 89Zr-Df-
IAB22M2C may characterize the impact of radiotherapy 
on CD8 T cell infiltration within irradiated and non-
irradiated tumor lesions in patients with polymetastatic 
solid cancers is evaluated in an ongoing clinical trial 
(ABSCOTEP trial, EudraCT: 2016-000665-23).

Overall, these functional imaging approaches are very 
promising for immunotherapy-radiotherapy combina-
tions and will surely help to better understand determi-
nant of abscopal response and to identify the best targets 
for radiotherapy. However, these approaches do have 
limitations such as the difficult access to the tracers that 
may impact the repeatability of these exams, the need for 
standardization to allow reproducibility, and the need to 
take into account the tracer biological distribution, espe-
cially in certain normal lymphoid tissues such as spleen 
and nodes.110 112

Imaging to assess response to radioimmunotherapy
Addition of radiotherapy to immunotherapy has raised 
specific questions for response assessment.

The term ‘abscopal effect’ has been introduced to 
describe an immune-mediated response of lesions occur-
ring after radiotherapy outside the radiation field.118 
While rare abscopal responses have been described with 
radiotherapy alone, immunotherapy has been used to try 
to enhance the systemic effect of radiotherapy. However, 
the proper systemic benefit of radiotherapy added to 
the direct effect of immunotherapy is difficult to eval-
uate outside of a controlled trial. Moreover, definition of 
abscopal effect varies between studies. Some have consid-
ered as abscopal response, a reduction in the size of one 
non-irradiated metastasis by  ≥30%,119–121 while others 
have considered out-of-field response using aggregate 
diameter of non-irradiated target lesions, in accordance 
with RECIST 1.1 criteria (‘best out-of-field (abscopal) 
response rate’).6 122 123 To the best of our knowledge, only 
few data comparing both definitions are published. In 
our cohort of 94 patients treated with immunotherapy 
and radiotherapy, 15 patients (16.0%) presented an out-
of-field response according to RECIST 1.1 criteria, while 
nine patients had at least one non-irradiated responding 
lesion but the aggregated change in diameter of all the 
non-irradiated lesions did not reach the 30% threshold. 
Overall survival of patients with ‘RECIST-negative’ out-of-
field response was not significantly different than survival 
of patients with no responding out-of-field lesion, while 
‘RECIST-compliant’ out-of-field patients had significantly 
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better overall survival (p=0.039).73 This result therefore 
encourages staying with the RECIST 1.1 criterion for out-
of-field response assessment, which considers the eval-
uation of patient response on non-irradiated targets.124 
To note, immunotherapy has also brought new patterns 
of response, such as pseudoprogression, dissociated 
response, and hyperprogression,125 126 which led to the 
introduction of additional response assessment criteria 
such as Immune related Response Criteria,127 immune 
RECIST,128 immune modified RECIST,129 and immune-
related RECIST.130

Interestingly, the concern of evaluating treated and 
untreated lesions has also been raised with intratu-
moral immunotherapy injections. The itRECIST criteria 
proposed to assess injected and non-injected lesions 
response separately, with the possible definition of target 
and non-target lesions in both injected and non-injected 
lesions.131 Sum of diameters (SOD) is performed on 
target-injected lesions and target non-injected lesions 
separately, then a combined SOD includes all target 
lesions (injected and non-injected).131 The relevance 
of such strategies for radiotherapy and immunotherapy 
combination does not seem clear yet might be worth 
investigating.

Use of machine learning and functional imaging for 
early response assessment might also be useful to predict 
patient outcomes and discrimination of progression and 
pseudoprogression.81 82 117 132 Delta-radiomics, which 
considers the relative changes of radiomic features 
between two time points, might help to improve the 
assessment of treatment response. Dercle et al81 have 
shown in a study analyzing 575 melanoma patients from 
the KEYNOTE-002 and KEYNOTE-006 studies that a 
radiomics signature taking into account changes in tumor 
imaging phenotype at month 3, performed better than 
RECIST 1.1 criteria for discriminating patients overall 
survival (AUC=0.92, 95% CI 0.89 to 0.95 vs 0.80, 95% CI 
0.75 to 0.84).81

Radiomics analysis of follow-up images have also shown 
interesting results for the assessment of radiotherapy-
immunotherapy toxicity.133 Cheng et al113 have developed 
a radiomics signature to differentiate immune check-
point inhibitor-related pneumonitis (CIP) and radiation 
pneumonitis (RP) on CT scan images. They trained their 
model using CT images of patients with pneumonitis 
while treated with ICI (n=28) or radiotherapy only (n=31) 
and tested their model in a cohort of 14 patients treated 
with ICI+radiotherapy. Performance of the best-trained 
model in the test set was promising with an AUC=0.896, 
although further prospective validation is needed.

Finally, another challenge will be to assess whether 
imaging biomarkers may help to monitor patients under-
going treatment. Indeed, the development of imaging 
biomarkers has particularly focused on the prediction of 
response using pretreatment scans, with or without the 
use of first evaluation images (ie, with delta-radiomics). 
However, no study has assessed whether these tools are 
still effective in predicting patient responses or variations 

in the tumor microenvironment during treatment over 
time. Development of automatic segmentation tools and 
deep learning will probably be key to automate such 
analyses.

Conclusion
While radioimmunotherapy combinations seem very 
promising for improving patients’ outcomes, novel perfor-
mant biomarkers are needed to identify patients who are 
most likely to benefit from these treatments and to help 
clinicians choose the optimal modalities of both radio-
therapy and immunotherapy. Imaging biomarkers have 
shown promising results to characterize the whole disease 
with its spatial heterogeneity, which eventually may guide 
different radioimmunotherapy strategies such as a syner-
gistic immunogenic low-dose radiotherapy to improve 
systemic effects, or a complementary preemptive abla-
tive high-dose radiotherapy to destroy selective lesions at 
high risk of progression under immunotherapy. Further 
efforts and randomized prospective studies are needed 
to validate such strategies, but imaging biomarkers will 
surely be key for development of precision medicine in 
immunotherapy and radioimmunotherapy combinations 
and monitoring of patients.
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