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An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat
kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore
renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons
by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely
packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image
distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a
custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection
of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the
cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention
is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse
nephron and 58 manual corrections per rat nephron.

1. Introduction

The kidney performs the vital functions of water and solute
transport, blood pressure regulation, and urine concentration
through the functional unit of the nephron. The microarchi-
tecture of the kidney has recently been the focus of a number
of studies [1–3]. In particular, the functional implications
of the renal microstructure on the underlying mechanisms
involved are of great interest [4–6]. A deeper characterisation
of the microarchitecture enables the development of models
to accurately simulate the functionality of the kidney. Some
important data includes the ratio of short- to long-looped
nephrons, relative length, type, and distribution of parts of
the nephron.

A large database of histological images of mouse [7] and
rat [8] kidneys was made available from previous studies
performed at the Aarhus University, Denmark. The previous

work involved manual tracking of the paths taken by a few
hundred nephrons through the image sets and thereafter
performing an in-depth analysis of the findings.

The ultimate objective of this study is to improve under-
standing of the architecture of the human kidney; however,
tracking of human nephrons is subject to a number of
practical limitations and has been left for future work. It
is anticipated that several structural and functional aspects
of mammalian kidneys, including human kidneys, may be
elucidated through these studies of rodent histology.

Each mouse and rat dataset comprises, on average,
1000 and 3000 images, respectively. Manually tracking one
long-looped mouse nephron requires tracking about 1800
elements, which takes hours to carry out. The extensive time
and effort required for such datasets make it impractical to
track large numbers of nephrons.Therefore any semi- or fully
automated tracking procedure would be beneficial.
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This created the need for an automatic tracking algorithm
which could potentially be used as a standard tool on
multiple datasets.This would allow the renal characterisation
of multiple species as well as pathological specimens. Since
the microstructure of nephrons can vary in the same kidney,
it is important to obtain large samples when taking mea-
surements, such as lumen diameters and nephron lengths, in
order to render the findings more statistically accurate and
representative of a variety of kidney specimens.

It is important to note the difference between automatic
tracking and segmentation.The latter is the isolation of inde-
pendent structures in images, such as the separation of organs
in computed tomography andmagnetic resonance images [9,
10], or the differentiation between tissue types in histological
images, mostly for purposes of visualisation or further pro-
cessing. In contrast, automatic tracking utilises the results of
segmentation to create an abstract computational reconstruc-
tion of the structure for purposes of accurate measurement.

Currently, there exists no method for the automatic
tracking of nephrons through serial slices. However, methods
for automatic tracking of other biological structures do
currently exist, with a common example being that of blood
vessels in retinal images [11–13]. Other structures for which
automatic tracking has been attempted include the dendrites
of individual neurons and the portal and hepatic venous trees
of the liver [14].

However, the methods from the aforementioned appli-
cations cannot be directly applied to the nephron tracking
problem due to a number of factors. A crucial difference
is that there are hundreds to thousands of nephrons [15]
that need to be independently tracked through serial slices
(a three-dimensional problem) as opposed to one or a few
structures in single images (a two-dimensional problem). In
particular, the tortuosity of the nephrons poses a major chal-
lenge. Nevertheless, several concepts from existing tracking
applications have been adopted in the current approach, such
as graph-based tracking, metrics to indicate confidence per
iteration, and a set of validation rules to reduce error.

This paper presents a methodology for automatically
tracking nephrons through images obtained from serial
kidney sections using image processing, feature extraction,
graph-based tracking, and machine learning techniques. The
combined application of these techniques presents a novel
approach to the nephron tracking problem.

The research aims to determine how effectively and accu-
rately an automated approach can be compared to themanual
method and to quantify how much manual intervention is
necessary in the automatic approach to track the paths of
entire nephrons. Once tracked, the results can be processed
to extract useful metrics and statistics.

2. Data Acquisition

The dataset was obtained from two previous projects per-
formed at the University of Aarhus as described in the
following.

Experiment 1. Kidneys from three 8-week-old male mice
were fixed through the abdominal aorta with glutaraldehyde.

The tissue blocks were cut perpendicular to the longitudinal
axis from the surface of the kidney to the papilla. The
tissue blocks were fixed overnight in the same fixative and
postfixed with OsO

4
, en bloc stained with uranyl acetate, and

embedded in flat molds in Epon. From each of the three
mouse kidneys 897, 990, and 1064 2.5 𝜇m thick consecutive
sections were obtained using a microtome equipped with a
Diatome histoknife. The sections were stained with toluidine
blue when heated onto the microscope slices [7].

Experiment 2. Kidneys from three 3-month-old male Wistar
rats were cut into 4252, 4384, and 4541 2.5-𝜇m thick serial
sections and processed as described above [8]. All animal
experiments were carried out in accordance with provisions
for the animal care license provided by the Danish National
Animal Experiments Inspectorate.

The multiple serial sections were digitized using a micro-
scope equipped with a digital camera attached to a standard
PC. In Experiment 1, the sections were digitized into images
using a ×4 objective lens resulting in a final image size of
2500 × 1675 pixels and an isotropic pixel size of 1.16 𝜇m.
In Experiment 2, the images were recorded using a ×3
objective lens, producing images of 2750×2500 pixels with an
isotropic pixel size of 1.550 𝜇m. The multiple digitized serial
images were subjected to a classic rigid registration followed
by a nonrigid transformation using custom-made software
written in C [16–18].

3. System Overview

From a methodological perspective, a tracking problem
would fit the generic architecture of a Computer Aided
Diagnosis (CAD) system [18] with stages of preprocessing,
defining regions of interest, feature extraction and selection,
and classification [19]. Figure 1 describes the architecture of
the tracking system developed in the present study.

The systemwas implemented inMATLAB [20] as a series
of independent modules where structures of information
are progressively passed from one stage to the next. This
framework is related to an object-orientated approach in
that the major functions are decomposed into independent,
reusable blocks. The development of the system is incremen-
tal, involving continuous reiteration through the three main
stages to achieve optimal performance.

4. Image Preprocessing

The purpose of the preprocessing stage is to prepare the
images for the feature extraction stage, by creating uniformity
among all nephron cross sections and addressing nonideal
factors. The images are processed such that required features
(nephron cross sections) are enhanced while unwanted fea-
tures (such as interstitial tissue cross sections, large blood
vessels, background pixels, and large artefacts) are filtered out
or reduced.

The lumens of the nephrons are the object chosen to be
isolated because they are more easily and accurately isolated
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Figure 1: A high level overview of the nephron tracking system, showing the main subsystems and the flow of information between them.

than the nephron walls which touch each other. Each image
undergoes the following.

(a) Conversion to grayscale is performed as the staining
used on the specimens (toluidine blue [7]) results in
all structures being monochrome. If a more differen-
tiating stainingmethodwas to be used in future image
sets, the colour information should be retained.

(b) Background removal is achieved by forming a back-
ground mask through a threshold filtration, large
component extraction, and morphological image
closing using a circular kernel. The mask is then
inverted and applied to the original image by multi-
plication.

(c) Histogram equalisation is performed in order to
counteract uneven intensities which are commonly
present. Global and local adaptive equalisations are
applied through the use of a large and small equali-
sation window, respectively [21].

(d) Simple thresholding creates a binary image. The
threshold value is chosen so that it does not allow
independent lumens to merge while also not letting
small nephron cross sections disappear.

(e) Morphological erode/dilate cycles result in the
removal of thin interstitial tissue cross sections. The
kernel is chosen carefully so as to not mistakenly
remove small nephron cross sections.

(f) Binary components that are very small (<10 pixels)
and very large (>100 000 pixels) can be confidently
identified to not be nephron cross sections and are
removed.

Obtaining this final binary image is one of the most
important tasks, as the accuracy of the following stages
depends on how well the cross sections are isolated from one
another. Many parameter values are critical when deciding
on how many interstitial tissue cross sections appear in the
images. A compromise must be made between the number
of interstitial tissue cross sections present and the number of
small nephron cross sections that do not get eliminated.

Further preprocessing involves the removal of highly
distorted images and replacing them with the image above
or below (so as to not have missing image numbers in the
set). An average of 4 images per dataset has been manually

replaced. However, an automatic method can be devised if a
larger number of images are defective, for example, analysing
the mean intensity of each image in the image set.

4.1. Sigmoid Function for Automatic Parameter Variation. A
transition zone in the outer medulla exists where the thick
descending limb (≈60 𝜇m in diameter) suddenly narrows to
a diameter of 10–15𝜇m to form the thin descending limb
[22, 23]. This change requires almost all parameters of the
preprocessing steps to change to ensure that nephron cross
sections of all sizes are extracted. In order to automatically
accommodate this change in morphology, the parameters
of the preprocessing steps are made to vary according to
a modified sigmoid function [24] which has its inflection
point set at the transition zone. This also allows relatively
constant parameter values in the cortex and inner medulla.
The parameters of the sigmoid functions must be manually
chosen through experimentation as part of system calibra-
tion.

5. Feature Extraction

Feature extraction aims to simplify and concentrate useful
information from raw data.Within the images, large amounts
of the data are not useful, for example, the large number
of pixels making up the background. The pixel information
can instead be condensed into a set of features per nephron
cross section, which represent the problem to a sufficient
degree. Intuitively, themost useful information about a single
nephron cross section is its size, shape, colour, and location.

5.1. Image Segmentation. Connected component segmen-
tation [21] (4-connected neighbourhood) is used to seg-
ment the image into independent nephron cross sections.
Watershed segmentation is another possible segmentation
technique, which could perform better in cases where inde-
pendent lumens incorrectly merge through a few connected
pixels. However, this method tends to oversegment the image
[25], resulting in the division of elongated nephron cross
sections.

5.2. Node Allocation. A node is defined as a point coordi-
nate in the three-dimensional (3D) image space. The pixel
locations per nephron cross section can be reduced into a
set of nodes allocated along the cross section (e.g., a circular
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Figure 2: An example of a raw image is shown.The extracted binary
cross sections after preprocessing are highlighted in green and the
allocated nodes are shown as black dots. Each cross section will have
𝑘 nodes, 6 shape factors, and 𝑘 shape profiles. Many cross sections
in the cortex are not of actual nephrons but rather of the interstitial
tissue between them. The glomeruli are also highly segmented.

nephron can be represented by one centre coordinate, instead
of hundreds of pixel locations). An elongated cross section
can have multiple nodes along its length. This abstraction
greatly simplifies the problem, reduces the size of the data,
decreases the computational load on subsequent stages, and
concentrates the significant information.
𝐾-means clustering is used to allocate nodes [26]. Each

nonzero pixel on a single isolated binary cross section is
designated as an observation. If the nephron cross section
is circular or small, one centroid is requested (𝐾 = 1).
For elongated nephron cross sections, the 𝐾 value increases
until the mean distance between adjacent nodes is less than a
desired value. This ensures an adequate number of nodes are
allocated per nephron cross section depending on its size.

5.3. Shape Measurements. Tracking of a nephron using only
the 3D set of nodes results in the linkage of multiple neph-
rons, blood vessels, and interstitial tissue. By only considering
the point cloud, the algorithm is blind to a large amount of
available information. Therefore, shape information of each
cross section is also captured. Each node gets assigned a
group of shape metrics and a shape profile as shown in
Figure 2. The idea behind incorporating shape information
into the tracking is to make the algorithm intelligent and
highly confident at each incremental step of the process.

5.3.1. Shape Factors. A shape factor refers to a dimensionless
value that is dependent on an object’s shape but is indepen-
dent of its size [27].Thesemetrics are calculated using various
measurements of an object, such as its area, perimeter, and
diameter.They usually indicate the degree to which an object
deviates from an ideal shape, such as a square or circle [27].
Shape factors are extracted to capture abstract information
about each cross section along with the nodes. Circularity,
eccentricity, solidity, and aspect ratio were chosen as useful
descriptors for the cross sections. Area andminor axis length
are also captured as absolute-valued descriptors.

5.3.2. Shape Profile. The shape factors are useful for cross
sections that are round and elliptical, but they do not
adequately describe cross sections that are more arbitrarily

shaped, such as glomeruli or interstitial tissue cross sections.
As an additional feature, the shape profile, or centroidal
profile, of each cross section is calculated.

The shape profile of an object is a polar plot of the distance
to its boundaries with respect to a reference point [21]. It
transforms a two-dimensional shape representation into a
one-dimensional plot [21].The centroid is commonly selected
[21], but the nodes allocated in the previous step have been
chosen instead as they are more relevant to the problem and
will allow an accurate relative comparison of shape profiles
between nodes.

First, the edges of a single cross section are obtained using
a Sobel edge detector [28]. This method produces a well-
defined closed curve around the cross section.The edge pixels
are then processed into an ordered set of points. The angles
and radii relative to the reference point are calculated as in

𝜃 = arctan(
Pedge (𝑦) − 𝑃ref (𝑦)

Pedge (𝑥) − 𝑃ref (𝑥)
) ,

r (𝜃) = Pedge −𝑃ref

,

(1)

where Pedge is the vector of edge coordinates, 𝑃ref is the
reference coordinate, 𝜃 is the vector of angles, and r(𝜃) is
the vector of radial distances. The shape profile undergoes
unwinding and interpolation at desired angles in order to
eliminatemultivalued points and produce a consistent feature
set. The degree of abstraction is dependent on the angle
increment [21], which was chosen to be 15∘.

6. Tracking Algorithm

When a nephron is manually tracked by the eye, an intuitive
process is used by the brain. Once a single nephron cross
section has been fixated, a nephron cross section within
the same vicinity is searched for in the next image. Size,
shape, and colour are also subconsciously compared. The
tracking algorithm uses a similar process, with a number of
generalised rules to accommodate the tortuous path taken
by the many nephrons. The algorithm is highly dependent
on the quality of preprocessing and the accuracy of feature
extraction stages.

A graph-based approach similar to algorithms like the
A-star search algorithm is employed for tracking [29]. The
algorithm forms a graph in 3D space by establishing edges
between the nodes previously allocated during feature extrac-
tion.Open and closed lists are used tomanage the unexplored
and explored nodes, respectively. Each node is stored along
with its parent node, forming a linked list. Ideally, given a
starting seed, edges should be formed such that all nodes
belonging to one nephron are collected in the closed list. Prior
to proceeding, a few symbols are defined:

𝐼
𝑛
: image 𝑛,

C
𝑛
: the set of all nodes in image 𝑛,

𝑐
𝑖

𝑛
: the set of nodes on cross section 𝑖 in image 𝑛,

𝑐
𝑘

𝑖

𝑛
: the 𝑘th node on cross section 𝑖 in image 𝑛.
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Figure 3: Each node in image 𝑛 has the potential to connect to 2
nodes vertically (in images 𝑛 + 1 and 𝑛 − 1) within some tracking
radius and 1 node horizontally on the same cross section as itself.
This allows cross sections to be linked through turns and bends.

6.1. Edge Formation. The edges are established through a
controlled set of criteria. Given a particular node 𝑐

𝑘

𝑖

𝑛
in image

𝐼
𝑛
, it has the potential to connect to three other nodes through

two types of edges as shown in Figure 3:

min (C𝑛±1 − 𝑐𝑘
𝑖

𝑛


< 𝑟track) . (2)

6.1.1. Vertical Edge. It includes potential connections to cross
sections in the image above (𝐼

𝑛−1) and below (𝐼
𝑛+1

) the current
cross section. Nodes are searched for which lie within some
tracking radius around the current node; that is, a node
satisfying the following condition will become a child node
of the current node.

Only one node is allowed to be formed in each direction.
If multiple nodes satisfy the condition, the one with the
smallest Euclidean distance is used. The confidence of a
vertical edge is <1, as the possibility of linking to an incorrect
cross section exists due to the large number of closely packed
nephrons.

6.1.2. Horizontal Edge. It involves linking all nodes that lie
on the same cross section as the current node, that is, 𝑐𝑖

𝑛
.

The current node is termed the “entering” node.The pairwise
Euclidean distances between all nodes are used to establish
the linkage between the nodes.

6.2. Local Image Registration. Local alignment is needed (in
addition to the alignment in the previous study [8]) due to the
presence of local image distortions and progressive change
in morphology. Images 𝐼

𝑛
, 𝐼
𝑛+1

, and 𝐼
𝑛−1

are cropped around
the current node location.The subimages in 𝐼

𝑛+1
and 𝐼
𝑛−1

are
cross-correlated against 𝐼

𝑛
in order to obtain the translational

𝑥- and 𝑦-offset between the images [30]. These are typically
only a few pixels but have a large impact on the accuracy of
tracking since some nephron cross sections are also just a
few pixels wide. This local alignment only takes translation
into account; it is assumed that local rotational offsets are
minimal. Future work could explore the increase in accuracy
obtained with the use of more complex image registration
methods such as a nonrigid transform. Once a link has been
made between cross sections, the transformation is reversed
to avoid accumulation of the offsets.

6.3. Skipping Images. An image may be termed defective if
it has a large number of interfering artefacts or distortions,
which obscure cross sections of the nephron at hand. These
images can in general be skipped while tracking the nephron.
However, a maximum of 2 images (the equivalent of 5 𝜇m of
the specimen) may be skipped at a time, as the morphology
can change vastly in this span and would introduce too
large a probability of error in tracking (e.g., jumping onto
another nephron). A set of skipping criteria are established
using a direction buffer and refractory period to prevent skip
attempts from occurring too frequently (from every dead
end).

6.4. Validation Steps. Thesteps discussed thus farwouldwork
if the data only contained information of the nephron cross
sections. However, many of the cross sections actually belong
to interstitial tissue and blood vessels which are randomly
dispersed between the nephron cross sections and lie in close
proximity to the nephron at hand. Even though the correct
nephron path may be found, much interference is caused by
interstitial tissue cross sections, potentially causing the path
to branch from the nephron’s path and even link onto other
nephrons. A rule base of three validation steps is incorporated
into the tracking algorithm in order to eliminate incorrect
moves from one cross section to another.

(a) Distance Validation. The Euclidean distance (in the
𝑥-𝑦 plane) between a parent and potential child node
must be less than the sumof their radii (half theminor
axis length is used). This ensures that even if a cross
section lies within the tracking radius, consistency in
terms of size and relative displacement is maintained.
Many cases of interstitial tissue cross sections linking
to nephrons are eliminated by this rule.

(b) Bidirectional Movement Validation. If a move is made
from node A in image 𝐼

𝑛
to node B in image 𝐼

𝑛+1
,

then an attempted move from B to image 𝐼
𝑛
must

lead back to node A (i.e., bidirectionality must be
maintained). If not, the move is discarded. Moves
between interstitial tissue cross sections are typically
not connected in this manner and are hence largely
eliminated.

(c) Skipping Validation. This ensures that a move involv-
ing a skip is only allowed if the shape of the cross
section remains relatively constant during the skip.
This means that skips will not be allowed on turns
and bends, as this presents a high chance of error.The
change in shape ismeasured by the percentage change
in the six shape factors.

6.5. Reconstruction. The path is reconstructed through infer-
ence of the parent-child node pairs. The longest path forms
the nephron path, while shorter branches are eliminated as
they are most likely ambiguous nephron paths or pieces of
interstitial tissue that were mistakenly linked. Each coor-
dinate can be linked to its shape factors, enabling a 3D
rendering of the nephron path with a varying lumen radius.
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Table 1: The intermediate output classes of the learning functions and their combination into final classes.

Final class Intermediate class

Valid move (1) A normal move between circular cross sections
(2) A normal move involving elongated cross sections

Invalid move (3) An abnormal move typically involving interstitial tissue or blood vessel cross sections
(4) A move involving a glomerulus cross section

x (5) A move in the inner medulla

215214

(a)

126124

(b)

Figure 4: The moves attempted by the unregulated tracking algorithm are captured, displayed, and labelled to form training examples for
the neural network. The image shows examples of a valid (a) and invalid (b) move, which will be labelled with a “1” and a “3,” respectively.

Lastly, the automatically tracked path must be evaluated
in 3D space. At this stage, known information about the
problem can be used, for example, the proximal and distal
convoluted tubules intertwine and must thus be in the same
vicinity in the cortex [7], or the proximal convoluted tubule
is longer and more convoluted than the distal [7]. Incorrect
paths can be eliminated by comparison with typical 3D
features of nephrons, such as curvatures of the bends. If the
results do not adhere to one or more of these expectations, it
could then be that the result is incorrect.

7. Validation Using Machine Learning

The validation rule base results in some nephrons being
correctly tracked, while others are incorrectly linked to other
nephrons, interstitial tissue cross sections, and blood vessel
networks. A large amount of information has not yet been
taken into account, such as the shape profile and shape
metrics. The purpose of the machine learning (ML) stage
is to incorporate some form of intelligent decision making
when linking one node to another during tracking. This is
done by assessing the shape descriptors and other features
of the two cross sections through a trained classifier. A
supervised Artificial Neural Network (ANN) and Support
Vector Machine (SVM) have been used to classify a move
from one cross section to another as either valid or invalid.
This classification is used by the tracking algorithm to make
decisions during tracking.

7.1. Feature Selection. The chosen features must fully char-
acterise a move from one cross section to another and
provide a good degree of distinction between different types
of examples. Since two cross sections are being compared, it

is useful to look at combined features. A total of 66 features
are used including

(i) the means and differences between the shape factors,
(ii) the Euclidean distance between nodes in the 𝑥-𝑦

plane,
(iii) the 𝑧 position of the nodes relative to the image set

to indicate depth into the kidney, that is, cortex to
medulla,

(iv) the image difference, normally 1, that can be 2 or 3 if
images have been skipped,

(v) image alignment offset, high offset coupledwith other
odd features, which may be a flag for an abnormal
move,

(vi) the shape profiles of the cross sections at 15∘ intervals
and a correlation metric of the shape profiles.

7.2. The Training Process. The training set is created by cap-
turing moves (pairs of cross sections) during unsupervised
tracking (without any machine learning validation) of a
chosen set of nephrons. Each parent-child pair is assigned a
label as in Figure 4.

Five output classes listed in Table 1 were chosen to form
the output matrix. A voting scheme [31] between the classes
is then used to determine the final classification as valid or
invalid. Class 4 is used to terminate tracking at the glomerulus
while class 5 is used as a “region signal” to change the mode
of tracking between the cortex and inner medulla. The shape
factors and descriptors belonging to each cross section in the
pair can be extracted as required and the 66 features are then
combined to form the input matrix. A multiclass classifier is
produced using the one-versus-all approach [32].
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Figure 5: The number of false positives increases with increasing
validation sensitivity, resulting in premature termination of track-
ing. This means only a portion of the nephron is tracked, but with
a low error, where error refers to deviation onto an incorrect path.
If manual correction is used, the number of corrections required for
continuation of tracking will increase with sensitivity (up to 𝐿

𝑁
, the

length of the nephron). This means a decreased level of automation
but also decreased chances of error.The graph is merely conceptual.

In addition to manual selection of examples, a method
involving a feedback process between the tracking algorithm
and the training process is used in order to collect a fair
number of examples per class. This prevents the formation
of a skewed dataset or underrepresentation of a certain class,
which may affect classification accuracy.

A threshold is applied to the continuous output of the
ANN in order to deem the result positive or negative. This
threshold has an impact on the sensitivity of invalid move
rejection. For the SVM, the width of the radial basis function
(RBF) kernel has the analogous effect. It is critical that false
positives are minimised as these would halt the tracking pro-
cess by blocking a valid move along the path of the nephron,
hence preventing the rest of the nephron from being tracked.
A false negative on the other hand would allow an incorrect
path to be formed, but the incorrect path is typically halted
due to the presence ofmany invalidmoves through interstitial
tissue and is therefore not as critical as a false positive.

8. Manual Intervention

Premature termination of tracking (due to nonideal prepro-
cessing, feature extraction, image artefacts, or distortions)
commonly occurs in the inner medulla. Image spatial resolu-
tion is a limiting factor for these small cross sections. Oneway
of overcoming premature termination without introducing
an error is to allow the user to manually bypass problematic
cross sections at the end points of the automatically tracked
path. This, of course, reduces the automaticity of the system
but still dramatically reduces the time and effort required for
the manual tracking task. The degree of automation can be
controlled by sensitivity of the validation stages, as shown in
Figure 5.

9. Results

9.1. Automatically versus Manually Tracked Nephrons. The
accuracy of an automatically tracked nephron is measured
against the manually tracked data, which forms the gold
standard. The following is defined for ease of description:

Υ
𝑛
: the manually tracked path of nephron 𝑛,

Ψ
𝑛
: the automatically tracked path of nephron 𝑛.

When the result has a low degree of correctness, it
is because either tracking terminated prematurely or the
path deviates onto an incorrect one (linkage with another
nephron, blood vessel, or interstitial tissue cross sections),
or a combination of these. The outcome of the tracking of a
particular nephron is hence evaluated using two correctness
measures:

(1) 𝛼
𝑛
= % of Ψ

𝑛
that is correct – “accuracy,”

(2) 𝛽
𝑛
= % of Υ

𝑛
, that Ψ

𝑛
covers – “extent.”

These are calculated using per image residuals between
the automatic and manually tracked coordinates. 𝛼measures
the similarity to the manually tracked nephron. It is low if the
path deviates onto other structures and high if the tracked
path contains data of only the target nephron, be it a small or
large portion. 𝛽measures how much of the target nephron is
tracked; it is low (relative to the ideal 𝛽 value per segment) if
only a small portion is tracked. It can still be high if the path
branches onto incorrect structures, as long as a large part of
the target nephron is found.

The tracking algorithm successfully tracks large portions
of the nephrons automatically, occasionally requiring man-
ual intervention in order to obtain full nephron paths. 16
nephrons from 2 mouse datasets and 11 nephrons from 2
rat datasets were chosen to form a test set. These were
not used to form the training set for the machine learning
algorithms. Different parts of the nephrons were tracked with
varying accuracies and extents as shown in Table 2, due to
differing tubule characteristics. In particular, the proximal
convoluted tubule (PCT) and proximal straight tubule (PST)
were tracked well, while the descending thin limb (DTL) and
ascending thin limb (ATL) of the loop of Henle were more
problematic in both the mouse and rat datasets. Automatic
tracking of the PCT of a rat nephron is shown in Figure 6
and example of the PCT, PST, and DTL of a nephron tracked
both manually and automatically is compared in Figure 7.
The thick ascending limb (TAL) is tracked well in both the
mouse and rat while the distal convoluted tubule (DCT) is
only tracked well in the rat due to its larger diameter.

Tracking a full mouse nephron requires an average of
19 manual corrections while a full rat nephron requires 58
manual corrections. The frequency of manual intervention
is dependent upon the number of image artefacts and
distortions encountered along the path of the nephron, as
well as the visibility of the cross sections. A longer path (in
terms of the number of moves) requires more corrections;
for example, the rat nephrons are on average 4.7 times longer
than mouse nephrons.
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Table 2: Test results on a chosen set of 16 mouse nephrons and 11 rat nephrons. The number of manual corrections is given as the mean ±
one standard deviation. Ideal 𝛽 values for the six segments for both the mouse and rat were derived from measurement of manual data and
the results in the appendix of the previous study [8].

Area of
nephron

𝛽IDEAL (%) [8]

Mouse Rat

𝛽MEAN
(%)

Extent:
𝛽MEAN/𝛽IDEAL

(%)

Accuracy:
𝛼MEAN
(%)

Average number
of manual
corrections

𝛽MEAN
(%)

Extent:
𝛽MEAN/𝛽IDEAL

(%)

Accuracy:
𝛼MEAN
(%)

Average
number of
manual

corrections
PCT 25 27.36 109.44 95.14 1.20 ± 1.11 28.48 113.92 96.32 5.20 ± 4.70
PST 18 16.33 90.72 98.24 0.50 ± 0.71 14.64 81.33 90.17 5.00 ± 2.75
DTL 19 13.90 73.16 80.57 5.44 ± 1.69 15.83 83.32 84.63 24.00 ± 8.19
ATL 14 14.94 106.71 85.67 2.46 ± 1.87 15.63 111.64 88.47 13.50 ± 6.95
TAL 14 13.19 94.21 96.32 3.64 ± 1.55 11.50 82.14 97.48 6.67 ± 3.09
DCT 10 14.29 142.90 72.13 5.86 ± 3.00 13.91 139.10 95.23 4.33 ± 2.49
Full 100 100 100 87.49 19.09 ± 1.65 100 100 80.85 58.70 ± 4.70

Figure 6: An example of a labelled image is shown with the red
numbers representing the different manually tracked nephrons.The
automatically tracked nephron (number 41) is superimposed, shown
in white with black crosses at the nodes. Unlabelled “41” cross
sections are of the DCT which was not tracked in this instance.

The average number of corrections required for each part
of the nephron is contained in Table 2. Most corrections are
for the DTL and ATL. Figure 8 displays the ability to track an
entire nephron with manual intervention.

The number of manual corrections varies with the sen-
sitivity of the validation steps. For example, decreasing the
ANN threshold, increasing the coefficient of distance valida-
tion, or turning bidirectional validation off will decrease the
number of requests for manual correction by the algorithm.
However, this increases the chance of tracking incorrect
structures (decreases 𝛼) as shown conceptually in Figure 5.
The settings of the validation stepswere therefore chosen such
that the algorithm tracks with high accuracy (𝛼) while not
requesting excessive unnecessary manual interventions.

9.2. Efficacy of Validation Steps. The validation steps for a
particularmove are carried out in a set sequencewith the least
computationally expensive step being first. This is so that if
an invalid move is detected, it does not have to go through all

Table 3: The invalid move rejection rate and accuracies of the
validation steps are shown. Results are based on 8017 invalid moves.

Validation step
% of total

invalid moves
flagged

% of detected
invalid moves
that are unique

% accuracy

Distance Val. 40.21 25.94 99.67
Skip Val.
Total 38.59 25.38 90.01
Skips 98.97

Bidirec. Val. 29.92 18.94 92.05
ML Val. 57.61 42.46 93.62

of the subsequent stages. However, for testing, all validation
steps were carried out.

9.2.1. Validation through the Rule Base. Although the types
of invalid moves are diverse, the rule base attempts to model
the majority through hard-coded, direct rules while the ML
validation attempts to model them in a more generalised, less
rigid manner. The rejection rates and accuracies are detailed
in Table 3.

All four rules produce accuracies above 90% with the
distance validation rule being the most accurate (99.67%)
and the machine learning validation being the most often
triggered (captures 57.61% of all invalid moves). Given a large
set of detected invalid moves, certain fractions are uniquely
captured by each of the validation steps as shown in Table 3.
Of the 8017 invalid moves, 49.65% were measured as being
captured by more than one rule.

Ideally, theML validation stage should be able to perform
the tasks of distance and skipping validation, as the rules
should be spontaneously integrated into the learnt hypoth-
esis. Since 57.54% of the moves captured by the machine
learning step are captured by other rules, it can be said that
it does perform the tasks of the rule base to some degree. It
can also be said that the rule base models the abnormalities
to a good degree since the majority of invalid moves are
eliminated even without the machine learning component.
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Figure 7: A manually tracked mouse nephron is shown on the left. The same nephron is successfully tracked automatically by the algorithm
(with 𝛼 = 97%) and is shown on the right. Tracking terminates automatically at the glomerulus. Note that, in each plot, the cortex is shown
at the bottom and the DTL extends upwards. The path is coloured by the error, or residual, with respect to the manually tracked nephron.
Slight discrepancies in appearance are due to different image alignments and different point coordinates used by the two methods. The distal
DTL has greater error simply because the manual path was not tracked as far (therefore, 𝛽 > 100%). It can be seen in the error histogram that
most of the residuals are less than 15 pixels. The correct paths of the PCT, PST, and DTL are tracked.
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Figure 8: A manually tracked mouse nephron is shown on the left. The PCT and PST are successfully tracked automatically as shown in the
middle plot. Tracking terminates due to diminishing tubule size coupled with artefacts in the inner medulla. A more complete nephron path
is obtained with 5 manual corrections on the DTL and 4 on the ATL, as shown on the right plot (semiautomatically). The paths are coloured
by the error, or residual, with respect to the manually tracked nephron. The maximum residual (shown as dark red) in this instance is 35
pixels. The black asterisks are points of manual correction. This is acceptable considering that a total of 1222 coordinates make up this path.
𝛼AUTO = 97.13%; 𝛽AUTO = 39.84%; 𝛼SEMI-AUTO = 98.77%; 𝛽SEMI-AUTO = 90.23%.
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Table 4: Results of the ANN and SVM on the test set of 712 examples. The 5 classes have been condensed into valid and invalid classes for
final classification.

Classification algorithm Predicted class Target class Performance indicators (%)
Valid Invalid Accuracy Precision Sensitivity

ANN (threshold = 0.3) Valid 492 32 93.82 93.62 84.61Invalid 12 176

SVM with RBF kernel (width = 5) Valid 475 19 93.25 86.70 90.86Invalid 29 189

9.2.2. Validation through an ANN and SVM. The machine
learning algorithms eliminate a large number of invalid
moves which would have otherwise resulted in multiple
nephrons, interstitial tissue, and blood vessels being linked
(42.46% of detections are unique). The labelled dataset
consisted of 9424 examples, which was split into train-
ing, validation, and test sets with a 0.7 : 0.15 : 0.15 ratio,
respectively.

Both the ANN and SVM produced a classification accu-
racy of approximately 93% on the test set, with the ANN
being purposely less sensitive (84% for the ANN compared
to 90% for the SVM) in order to minimise the number of
false positives. The confusion matrix and performances are
detailed in Table 4.

The impact of different features on classifying different
types of examples is visualised and deduced using Principal
Component Analysis (PCA), a dimensionality reduction
technique. PCA of the features revealed that the shape profile
feature is most significant when differentiating between
classes 1 and 2, while shape factors play more of a role in
distinguishing classes 3 and 4.

9.3. Processing Times. The current implementation is not
optimally efficient, although the main aim was to develop the
technique rather than optimising efficiency for an end-user
application. Computational bottlenecks include the discrete
Fourier transform required for image alignment, continuous
calling of the ANN structure, and reading in three images per
iteration of the algorithm. An implementation of the system
using C++ or anothermore efficient language would decrease
execution time. Parallel processing and use of a graphics
processing unit for imaging operations would also improve
speed.

10. Analysis and Discussion

The validation steps generally increase accuracy (𝛼) while
manual intervention increases the extent to which a nephron
is tracked (𝛽). Each portion of the nephron is discussed with
reference to the results in Table 2. A result applies to both the
mouse and rat datasets if it is not explicitly distinguished.

From the measured 𝛽 values, up to 43% of a nephron’s
length is made up of the PCT and PST. The algorithm is able
to track the full length of the PCT and PST with 1–3 and 2–15
manual corrections in the mouse and rat, respectively, when
large distortions and artefacts are detected.

Although the PCTwas predicted to be themost challeng-
ing part of the nephron to track due to its convoluted nature,

it is tracked with high accuracy (𝛼 = 95.14% in the mouse
and 𝛼 = 96.34% in the rat) as follows.

(i) The cross sections are well isolated as they are large in
diameter (15–30 pixels wide) and well defined (they
have thick walls).

(ii) The average distance between neighbouring cross
sections (≈25 pixels) is larger than the average image
misalignment of 4 pixels.

Similarly, the PST of the mouse is tracked well with 𝛼 =
98.24% as the cross sections are well isolated and defined and
the paths have a relatively straight course. In comparison,
tracking of the rat PST produced a lower accuracy of 90.17%
due to a higher frequency of tissue folds leading to incorrect
linking with other nephrons.

A class 2 move is successfully detected by the ML
algorithms when the PCT of a nephron joins the glomerulus
at its urinary pole, thus terminating the tracking. Without
this, fragments in the glomerulus would be tracked towards
the vascular pole, and tracking would continue through the
adjoining afferent/efferent arteriole, which then joins blood
vessel systems and other glomeruli, which is undesirable.
When the PST narrows into the DTL, a class 5 move is
successfully triggered.The level of the class 5 output is used as
a region signal to change themode of tracking into a unidirec-
tional one for the inner medulla. This reduces error in track-
ing in the innermedulla tremendously as ambiguity decreases
when only one unidirectional path is allowed to be formed.

The DTL in mouse and rat kidneys is tracked with only
moderate accuracies of 𝛼 = 80.57% and 𝛼 = 84.63%,
respectively, as the cross sections are very small in diameter
(3–8 pixels) and very dense (≈6 pixels between neighbouring
cross sections). This results in a higher error probability
during tracking as these values are comparable to the average
misalignment of 4 pixels. Confusion is more likely among
identical, closely packed nephrons which are not ideally
aligned. The DTL requires many manual corrections (27
on average in the rat) to produce a high 𝛽 value. Frequent
premature termination occurs because the cross sections are
lesswell defined,making itmore difficult to isolate them (very
thin nephronwalls cause independent cross sections tomerge
in the binary image), which results in missing cross sections
and invalid moves as seen by the ANN.

The ATL faces the same challenges as the DTL. However,
these cross sections are slightly larger (6–12 pixels) and
have thicker walls and are thus tracked more accurately in
comparison to the DTL. The ATL requires about half the
number of manual corrections when compared to the DTL
in both the mouse and rat datasets.
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The TAL is tracked well (with 96.32% and 97.48% accura-
cies in the mouse and rat, resp.) as its cross sections are well
isolated and relatively large (8–12 pixels in the mouse and 13–
20 pixels in the rat), and the path is straight.

The DCT differs vastly in the mouse and rat datasets. In
themouse, the DCT remains narrow as it progresses from the
TAL. The small cross sections making up a convoluted path
are difficult to track. Fast changes inmorphology (due to only
having every second slice) combined with small-sized cross
sections trigger the distance validation rule. An average of 5
corrections is required in the mouse DCT.

The rat DCT is tracked well as its characteristics are
comparable to the rat PCT.The cross sections aremuch larger
than in the mouse. Although the DCT is longer in the rat,
it also requires an average of 5 corrections. Branching is
correctly handled when the DCT of multiple nephrons join
through a common collecting duct.

Manual intervention is useful when the path terminates
prematurely (usually due to image defects), as the user
simply bypasses the problematic cross section. In cases where
incorrect links are made between different nephrons, manual
intervention is not useful.The latter case is difficult to identify
and correct without comparison to themanually tracked data
or by manual inspection.

In general, the results are highly dependent on the quality
of the images, the size of the nephron cross sections, and the
amount of interfering interstitial tissue. Thicker slices (e.g.,
every second slice in the mouse (5 𝜇m) compared to every
slice in the rat (2.5 𝜇m)) also produce less accurate results as
the change in morphology is then more abrupt from image
to image. Local image distortions and low image resolution
in images of the inner medulla are the main limiting factor in
automatically tracking full nephron paths.

A high frequency of images containing artefacts and tis-
sue folds decreases the accuracy of the findings tremendously,
as it only requires a single incorrect move to cause the path to
deviate from the nephron at hand onto another structure (i.e.,
the stability of the tracking process is completely dependent
on the results of the current iteration). This is especially
applicable for tracking in the inner medulla, where high
tubule density coupled with an artefact may result in two
nephron cross sections joining incorrectly and the turn being
mistaken for a loop of Henle.

11. Future Work

Further studies would be required to establish if the method
developed is sufficiently generic to be used to map the archi-
tecture of other anatomical structures such as blood vessel
networks in tomographic CT and MRI images. The learning
algorithm would require retraining on new examples, and
parameters could be tuned to control algorithm sensitivity,
allowing the system to adapt to the features of different
structures. The applicability and adaptability of this system
to other fields are an avenue for future work.

11.1. Recommendations for Future Histological Image Sets.
Higher resolution images would offer improved accuracy in
isolation and tracking of cross sections in the inner medulla.

Another useful additionwould be usingmarkers on the slides
to aid automatic image alignment, as well as eliminating or
marking highly distorted images.

A previous study by Pannabecker and Dantzler [2, 3]
manually reconstructed rat nephrons using immunohis-
tochemically stained sections (antibodies which bind to
segment specific proteins) to stain various parts of the
nephrons.This resulted in the DTL, ATL, collecting duct, and
blood vessels fluorescing with different colours. Such staining
methods would provide differentiating colour information
and features to the tracking andmachine learning algorithms,
respectively. The confidence of results would increase as
different types of cross sections could easily be distinguished
from one another and interstitial tissue interference would be
virtually eliminated as only cross sections of interest would
be highlighted. A drawback is that the morphology of the
tubules may not be intact as only particular features of the
tubules would be stained.

12. Conclusion

Theaimof the present studywas to develop an automated sys-
tem for the tracking of nephrons. A proposed methodology
involving image processing and a custom tracking algorithm
supervised by machine learning algorithms is presented. A
number of features are extracted in order to retain shape
information during the data abstraction process. The ANN
and SVM have high classification accuracies and eliminate
invalid moves caused by a number of hindering factors such
as artefacts. The presented system is able to successfully
track large portions of the nephrons automatically through
both highly convoluted and straight paths. Particularly, the
PCT, PST, and TAL are tracked with >90% accuracies in
the mouse and rat datasets and form more than half of the
nephron length. While only portions of the paths can be
obtained automatically from the starting seed, full nephron
paths can be obtained with an average of 17 and 62 manual
corrections in themouse and rat datasets, respectively.This is
reasonable considering the thousands of coordinates making
up each nephron path. Although complete automation is still
elusive, the system saves a considerable amount of time and
effort compared to the manual tracking task as it performs
99% of the task automatically. Performance may improve
with further training of the machine learning algorithms,
optimising automatic parameter variation, and manually
eliminating image artefacts. The methods developed during
this study form a foundation for further development towards
a fully automated nephron tracking system.
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