
NeuroImage: Clinical 29 (2021) 102531

Available online 11 December 2020
2213-1582/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Temporal-thalamic and cingulo-opercular connectivity in people 
with schizophrenia 

Adam J. Culbreth a,*, Qiong Wu b, Shuo Chen a,c, Bhim M. Adhikari a, L. Elliot Hong a, 
James M. Gold a, James A. Waltz a 

a Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, School of Medicine, United States 
b Department of Mathematics, University of Maryland, College Park, United States 
c Division of Biostatistics and Bioinformatics, University of Maryland, Baltimore, United States   

A R T I C L E  I N F O   

Keywords: 
Resting state functional connectivity 
Neuroimaging 
Schizophrenia 
Graph theory 

A B S T R A C T   

A growing body of research has suggested that people with schizophrenia (SZ) exhibit altered patterns of 
functional and anatomical brain connectivity. For example, many previous resting state functional connectivity 
(rsFC) studies have shown that, compared to healthy controls (HC), people with SZ demonstrate hyper-
connectivity between subregions of the thalamus and sensory cortices, as well as hypoconnectivity between 
subregions of the thalamus and prefrontal cortex. In addition to thalamic findings, hypoconnectivity between 
cingulo-opercular brain regions thought to be involved in salience detection has also been commonly reported in 
people with SZ. However, previous studies have largely relied on seed-based analyses. Seed-based approaches 
require researchers to define a single a priori brain region, which is then used to create a rsFC map across the 
entire brain. While useful for testing specific hypotheses, these analyses are limited in that only a subset of 
connections across the brain are explored. In the current manuscript, we leverage novel network statistical 
techniques in order to detect latent functional connectivity networks with organized topology that successfully 
differentiate people with SZ from HCs. Importantly, these techniques do not require a priori seed selection and 
allow for whole brain investigation, representing a comprehensive, data-driven approach to determining dif-
ferential connectivity between diagnostic groups. Across two samples, (Sample 1: 35 SZ, 44 HC; Sample 2: 65 SZ, 
79 HC), we found evidence for differential rsFC within a network including temporal and thalamic regions. 
Connectivity in this network was greater for people with SZ compared to HCs. In the second sample, we also 
found evidence for hypoconnectivity within a cingulo-opercular network of brain regions in people with SZ 
compared to HCs. In summary, our results replicate and extend previous studies suggesting hyperconnectivity 
between the thalamus and sensory cortices and hypoconnectivity between cingulo-opercular regions in people 
with SZ using data-driven statistical and graph theoretical techniques.   

1. Introduction 

A growing body of research has suggested that individuals with 
schizophrenia (SZ) exhibit altered patterns of functional and anatomical 
brain connectivity (Calhoun et al., 2009; Fitzsimmons et al., 2013; 
Fornito et al., 2012; Ramsay, 2019; Sheffield and Barch, 2016; Wood-
ward and Cascio, 2015). In large part, this work leverages resting-state 
functional connectivity (rsFC) analyses, which quantify the intrinsic 
coherence of ongoing slow fluctuations of blood-oxygen-level- 
dependent (BOLD) activity between brain regions (Fox and Raichle, 

2007). Overall, these findings have provided support for a hypothesis 
that symptoms of SZ might arise from a failure of neural systems to 
properly functionally integrate (Friston, 1998). If true, better under-
standing of aberrant rsFC in SZ may lead to useful diagnostic and 
symptom severity predictors (Lerman-Sinkoff and Barch, 2016; Sheffield 
and Barch, 2016), as well as more detailed mechanistic models of psy-
chosis, that could aid in development of novel intervention strategies 
(Anticevic et al., 2015b). 

Altered thalamic rsFC in SZ is a consistently reported finding (Anti-
cevic et al., 2013; Giraldo-Chica and Woodward, 2017; Ramsay, 2019). 
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The robust nature of this finding is not surprising, given the extensive 
functional connectedness of the thalamus with other brain regions 
(Guillery, 1995), as well as its integral role in sensory and cognitive 
processes known to be disrupted in SZ (Sherman, 2016). Further, meta- 
analyses of people with SZ, as well as those at genetic high-risk for the 
disorder have shown anatomical and functional abnormalities in the 
thalamus (Glahn et al., 2008; Ramsay, 2019). 

Broadly, rsFC analyses in SZ have revealed two main findings, with 
respect to the thalamus: 1) hypo-connectivity between sub regions of the 
thalamus and frontal, cingulate, and thalamic regions in people with SZ 
compared to healthy controls (HCs) (Anticevic et al., 2014, 2015a; 
Bernard et al., 2017; Cheng et al., 2015; Ferri et al., 2018; Hua et al., 
2019; Lencer et al., 2019; Lui et al., 2009; Martino et al., 2018; Penner 
et al., 2018; Ramsay, 2019; Tu et al., 2019; Wang et al., 2015; Welsh 
et al., 2010; Woodward and Heckers, 2016; Yamamoto et al., 2018; Zhu 
et al., 2015); 2) hyper-connectivity between sub regions of the thalamus 
and motor, somatosensory, temporal, occipital, and insular cortices 
including the superior temporal gyrus (Anticevic et al., 2014, 2015a; 
Bernard et al., 2017; Ferri et al., 2018; Hua et al., 2019; Iwabuchi and 
Palaniyappan, 2017; Lencer et al., 2019; Lui et al., 2009; Martino et al., 
2018; Penner et al., 2018; Tu et al., 2019; Wang et al., 2015; Woodward 
and Heckers, 2016; Yamamoto et al., 2018). Both of these findings have 
been documented in a recent meta-analysis (Ramsay, 2019). Taken 
together, this literature provides robust evidence for disrupted thalamic 
connectivity in people with SZ. 

In addition to aberrant thalamic connectivity, an adjacent literature 
has found reduced rsFC of a cingulo-opercular network of brain regions 
in people with SZ compared to HCs (Miyata, 2019). This network is 
thought to be critically involved in facilitating salience processing of 
environmental stimuli and modulating activation of executive control, 
motor, and sensory networks on the basis of salience signals (Menon and 
Uddin, 2010). Several seed-based rsFC studies have reported hypo-
connectivity between two integral regions of the cingulo-opercular 
network, the anterior cingulate cortex and subregions of the insula, in 
people with SZ compared to HCs (Chen et al., 2016; Sheffield et al., 
2019; Tian et al., 2019). Palaniyappan and Liddle suggested that 
weakened communication between these regions may result in poor 
error monitoring of aberrant salience signals (Palaniyappan and Liddle, 
2012). Other work has used network-based approaches and shown 
reduced rsFC within the cingulo-opercular network in people with SZ 
compared to HCs (Shao et al., 2018; Sheffield et al., 2017). Finally, two 
recent meta-analyses have shown hypo-connectivity between cingulo- 
opercular regions and regions of the default-mode and central- 
executive networks, suggesting disrupted modulation of networks on 
the basis of salience signaling in SZ (Dong et al., 2018; O’Neill et al., 
2019). 

While previous reports establishing aberrant thalamic and cingulo- 
opercular connectivity in people with SZ have been informative, most 
have utilized seed-based metrics (Anticevic et al., 2014, 2015a; Bernard 
et al., 2017; Ferri et al., 2018; Hua et al., 2019; Iwabuchi and Pala-
niyappan, 2017; Lencer et al., 2019; Lui et al., 2009; Martino et al., 
2018; Penner et al., 2018; Tu et al., 2019; Wang et al., 2015; Woodward 
and Heckers, 2016; Yamamoto et al., 2018) or conducted network-based 
statistics on predetermined brain regions (Sheffield et al., 2017). Seed- 
based approaches require researchers to define a single a priori brain 
region, which is then used to create a rsFC map across the entire brain. 
While useful for testing specific hypotheses, these analyses are limited in 
that only a subset of connections across the brain are explored. While 
other approaches (e.g., seed-voxel based whole brain association meta- 
analysis) have also been utilized to characterize aberrant thalamic rsFC 
in people with SZ, such approaches tend to be restricted by pre-selected 
seed regions and not allow whole brain connectome investigation 
(Cheng et al., 2015). 

In the current study, we conduct a whole brain connectome inves-
tigation in SZ using a set of novel network statistical techniques, 
including adaptive dense subgraph discovery (ADSD), l0 shrinkage, and 

permutation tests for family-wise error rate (FWER: Wu et al., under 
review). Broadly, in these analyses, data are transformed into a graph by 
representing brain regions as nodes and measures of connectivity (e.g., a 
Pearson correlation with transformation and normalization (Chen et al., 
2015a)) as connections between nodes (i.e., edges) (Bullmore and 
Sporns, 2009). Clinically, one goal of statistical graph techniques is to 
identify sub-networks of connectivity within the overall graph (e.g., the 
brain) that may differentiate clinical groups or co-vary with expression 
of particular symptoms of psychopathology. Regarding aberrant rsFC in 
people with SZ, this technique offers a comprehensive, data-driven 
approach to determining differential connectivity between diagnostic 
groups, as it does not require the definition of an a priori seed and 
automatically identifies disease-related networks from the whole brain 
connectome. This technique also differs from other data-driven whole- 
brain methods that have been used to study connectomics in SZ (e.g., 
regional homogeneity, homotopic connectivity, spatial ICA) in that 
patterns of connectivity and networks are not first derived across all 
participants and then compared between diagnostic groups (Li et al., 
2015; Jiang et al., 2015; Yang et al., 2014). Instead, the networks 
detected using the ADSD algorithm are disease-specific (i.e., most of the 
edges within the detected subgraph are related to schizophrenia in this 
case). Such an approach is also valuable over other alternative graph 
theoretic techniques (graph descriptive statistics) as it retains edge- 
specific information, which may be critical to revealing the network- 
structure/topology of connectivity patterns associated with SZ. How-
ever, identifying such phenotype-related sub-networks from the whole 
brain connectome is challenging due to the high dimensionality and 
complex topological structure of connectome data and substantial noise 
leading to false positive errors (Chen et al., 2020a, 2015b, 2018). 
Importantly, our approach is very robust in the face of these limitations 
as it simultaneously reduces network-level false positive discovery rates 
and improves power yielding more reliable results (Chen et al., 2020b). 
Using this approach, we aimed to examine the integrity of thalamic and 
cingulo-opercular rsFC between people with SZ and HCs. We then con-
ducted a replication in a larger sample of people with SZ and HCs. 

2. Methods 

2.1. Participants 

Two samples were analyzed. Sample 1 included 35 outpatients 
meeting DSM-IV criteria for SZ or schizoaffective disorder and 44 HCs. 

Table 1 
Sample 1 Demographics.  

Variable HC Group 
(n ¼ 44) 

SZ Group 
(n ¼ 35) 

Test Statistic p-value 

Demographic and Clinical Characteristics 
Age, mean (SD) 36.3 (11.6) 38.1 (11.7) t = -0.7 0.5 
Education, mean (SD)     

Participant 15.2 (1.9) 13.2 (2.4) t = 4.2 < 0.001 
Average Parental 14.5 (2.7) 13.7 (2.6) t = 1.3 0.2 

Sex, No.   χ2 = 0.02  0.9 

Male 27 22   
Female 17 13   

Race, No.   χ2 = 3.3  0.5 

White 25 21   
Black 16 11   
Asian 1 0   
Other 1 3   
Unknown 1 0    

Current Prescribed Psychiatric Medications 
Haliperidol Equivalent 11.5 (8.8)    

Symptom Data 
Clinical Rating, mean (SD)    

BPRS total 31.6 (8.5)   
BPRS Reality Distortion 7.2 (3.8)    
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Sample 2 included 65 people with SZ or schizoaffective disorder and 79 
HCs. Patients were recruited from the Maryland Psychiatric Research 
Center and from local outpatient psychiatric clinics in Baltimore, 
Maryland, area. 

For both samples, HCs were recruited from the community via 
Internet and newspaper advertisements, as well as word of mouth 
among recruited participants. They had no current Axis I diagnoses or 
history of psychotic illness, as established by the Structured Clinical 
Interview for DSM-IV-Axis I Disorders. They were not taking psycho-
tropic medications. All participants had no history of significant 
neurological injury or disease, reported current substance use disorders, 
or MRI contradictions. Participants provided informed consent for a 
protocol approved by the University of Maryland Institutional Review 
Board. While Sample 1 was demographically similar across a wide range 
of variables (e.g., age, sex, parental education, race), in Sample 2 the SZ 
and HC groups differed in sex, and personal education. See Tables 1 and 
2 for demographic information. 

2.2. Symptom severity measures 

All participants with SZ were administered a 20-item version of the 
Brief Psychiatric Rating Scale (Overall and Gorham, 1962). Given our 
interest in positive symptoms we calculated a reality distortion factor by 
summing positive symptom items (i.e., Hallucinations, Suspiciousness, 
Grandiosity, and Unusual Thought Content). 

2.3. Resting-state imaging protocol 

Sample 1: Imaging data was collected using a Siemens 3 T TRIO MRI 
(Erlangen, Germany), running VB17 software and equipped with a 32- 
channel RF head coil. Resting-state functional T2*-weighted images 
were obtained using a single-shot gradient-recalled, EPI pulse sequence 
(TR: 2000 ms, TE: 30 ms, 128 × 128 matrix, 1.72 × 1.72 mm2 in-plane 
resolution, 2.0 mm slice thickness, 81 axial slices, and 131 volumes). 

Sample 2: Imaging data was collected using a Siemens 3 T TRIO MRI 
(Erlangen, Germany), running VB17 software and equipped with a 32- 
channel RF head coil. Resting-state functional T2*-weighted images 
were obtained using a single-shot gradient-recalled, EPI pulse sequence 
(TR: 2000 ms, TE: 30 ms, 128 × 128 matrix, 1.72 × 1.72 mm2 in-plane 
resolution, 4 mm slice thickness, 37 axial slices, and 444 volumes). 
Subsets of these data have been previously reported using different an-
alytic methods (Adhikari et al., 2019b; Chen et al., 2020b). 

2.4. Imaging preprocessing 

Image preprocessing was identical for both Sample 1 and 2. Specif-
ically, preprocessing was performed using the Enhancing Neuroimaging 
Genetics through Meta-Analysis (ENIGMA) rsfMRI analysis pipeline 
(Adhikari et al., 2018, 2019a). This single-modality pipeline is an 
extension of the conventional rsfMRI pipeline in Analysis of Functional 
NeuroImages (AFNI) software (Cox, 1996). In this pipeline, a principle 
component analysis-based denoising is implemented to improve signal- 
to-noise ratio (SNR) and temporal SNR properties of the time series data 
(Adhikari et al., 2018, 2019a). Then, a transformation is computed 
registering the base volume to the ENIGMA EPI template (derived from 
approximately 1100 datasets collected across 22 sites) Adhikari et al. 
(2019b). This template is used for regression of the global signal. 
Correction for head motion is performed by registering each functional 
volume to the volume with the minimal outlier fraction. Nuisance var-
iables such as linear trend, 6 motion parameters, their 6 temporal de-
rivatives, and time courses of local white matter and cerebrospinal fluid 
from lateral ventricles were modeled using multiple linear regression 
and removed as regressors of no interest. Time points with excessive 
motion (>0.2 mm), estimated as the magnitude of displacement from 
one time point to the next, including neighboring time points and outlier 
voxels fraction (>0.1) are censored from statistical analysis. Images are 
spatially normalized to the ENIGMA EPI template in Montreal Neuro-
logical Institute (MNI) standard space for group analysis. 

2.5. Resting state functional connectivity analyses 

Average BOLD timeseries were extracted from 246 regions of interest 
(ROIs) based on the Brainnetome atlas (Fan et al., 2016). These regions 
constituted the nodes of the brain connectome graph. Pearson correla-
tion coefficients were calculated between the 246 nodes and then 
Fischer’s Z transformations were performed on each correlation. These 
Z-transformed correlation coefficients constituted the edges of the brain 
connectome graph. 

2.6. Group-level analysis 

The overarching goal of our analysis was to detect and test the sig-
nificance of alterations in network connectivity between diagnostic 
groups by comparing connectivity matrices produced by people with SZ 
and HCs. Conventionally, between-group comparisons of brain con-
nectivity and network analyses are conducted in two manners: 1) 
determining which edges are differentially expressed between groups; 2) 
determining whether global graph descriptive metrics differ between 
groups (Simpson and Laurienti, 2016). However, a hybrid, analytic 
method may be more attractive in revealing an organized sub-network 
in the brain where most contained edges are differentially expressed. 
Here, we conduct such a hybrid analysis using network object-oriented 
algorithms (Chen et al., 2020a, 2020b, 2015a, 2015b, 2018). 

First, we conducted comparisons between people with SZ and HCs by 
performing independent-samples t-tests on each of the 30,135 edges. 
Whole-brain results are denoted as a graph, G = (V,E), where the node 
set V is a brain region, and an edge, eij ∈ E, connects regions i and j. For 
each edge, eij, we assigned the weight as Wij = − log(pij). Thus, the 
greater the value of Wij, the greater the difference in this edge between 

Table 2 
Sample 2 Demographics.  

Variable HC Group SZ Group    

(n ¼ 79) (n ¼ 64) Test 
Statistic 

p- 
value 

Demographic and Clinical Characteristics 
Age, mean (SD) 36.2 

(13.6) 
38.6 
(13.1) 

t = -1.1 0.3 

Education, mean (SD)     
Participant   χ2 = 17.0  < 0.01 

Some High School 3 6   
High School or GED 16 22   
Some College 28 19   
College Graduate 17 13   
Some Grad School 3 2   
Grad Degree 12 0   
Unknown 0 2   

Sex, No.   χ2 = 6.2  0.01 

Male 38 44   
Female 41 20   

Race, No.   χ2 = 6.2  0.1 

White 47 29   
Black 26 33   
Asian 5 1   
Unknown 1 1    

Current Prescribed Psychiatric Medications 
Haloperidol Equivalent  10.7 (8.8)    

Neuropsychological Test and Symptom Data 
Clinical Rating, mean 

(SD)     
BPRS total  39.6 (9.5)   
BPRS Reality 
Distortion  

10.6 (5.1)    
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Fig. 1. (A) Thalamo-Cortical Subnetwork identified about the ADSD algorithm (Sample 1) (B) 3-D Illustration of Identified Subnetwork. Red nodes denote regions 
characterizing one half of the bipartite structure. Green nodes denote regions characterizing the other half bipartite structure. Yellow lines denote greater con-
nectivity people with SZ compared to HCs. Blue lines denote weaker connectivity in people with SZ compared to HCs. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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people with SZ and HCs. The weighted adjacency matrix (W), is then 
used as our input for detection of altered brain networks. 

Next, we applied the adaptive dense subgraph discovery (ADSD) 
algorithm to the weighted adjacency matrix (W) (Wu et al., under re-
view). The use of this algorithm allows for automatic detection of latent 
networks with organized topology that successfully differentiate people 
with SZ from HCs (Wu et al., under review). In this approach, the 
advanced l0 norm regularization was applied to ensure that the differ-
ential subgraph covers most disease-related connections in parsimo-
nious sizes (i.e. minimal number of edges). The algorithm essentially 
implements the nondeterministic polynomial time (NP) complete 
maximum coverage problem in the graph space. For each altered 
network detected by the ADSD algorithm, we performed a permutation 
test to determine statistical significance (network-level p-values) with 
family-wise error rate control (Chen et al., 2015a, 2015b). 

2.7. Associations with positive symptom severity 

For every identified subgraph, we examined associations between 
the strength of the edges within the graph and positive symptom 
severity. Specifically, we performed correlations between every edge 
within the identified subnetworks and the BPRS Reality Distortion fac-
tor. We determined significance using a corrected p-value (Benjamini- 
Hochberg False Discovery Rate (BH-FDR) at p < 0.05). 

2.8. Analysis of connectivity between thalamic and frontal cortex regions 

Given the prior literature suggesting hypoconnectivity between 
subregions of the thalamus and frontal cortices in people with schizo-
phrenia when compared with healthy controls, we conducted a sup-
plemental analysis examining these connections at a more liberal 
statistical threshold. Specifically, we performed simple zero-order cor-
relations between the rsFC time series for each thalamic node in the 
Brainnetome atlas and a bilateral middle frontal gyrus node (Left MFG: 
x = − 41, y = 41, z = 16; Right MFG: x = 42, y = 44, z = 14). This middle 
frontal gyrus node was selected from our atlas as it was in closest 
proximity to a node revealed in a recent meta-analysis (Left MFG: x =
− 40, y = 48, z = 22; Right MFG: x = 38, y = 48, z = 24) to show strong 
hypoconnectivity with thalamic regions in SZ compared to HCs (Ram-
say, 2019). To test for group differences, we conducted a Fischer’s R-to-Z 
transformation and compared the magnitude of the correlations be-
tween diagnostic groups. 

3. Results 

3.1. Resting state functional connectivity 

Sample 1: The algorithm identified a highly significant thalamo-
cortical subnetwork within the overall brain connectome data that 
effectively differentiated people with SZ from HCs (Fig. 1A & B, see 
Table 3 for region descriptions). Between-group differences within the 
identified subnetwork predominantly reflected enhanced connectivity in 
people with SZ, relative to HCs (depicted by warmer colors in Fig. 1A & 
B). The subnetwork was largely comprised of subregions of the thalamus 
and temporal cortices but also included cingulate, striatal, occipital, and 
parietal regions (Fig. 1A & B, Table 3). Further analysis of this graph 
revealed a bipartite structure, displaying strong diagnostic group dif-
ferences in the rsFC between a set of thalamic regions and temporal 
regions. 

Sample 2: Given the relatively modest number of participants in 
Sample 1, we conducted a replication of the aforementioned analyses in 
a larger sample of people with SZ and HCs. The ADSD algorithm iden-
tified a highly significant subnetwork, comprised of subregions of the 
thalamus and temporal, occipital, and parietal regions that effectively 
differentiated HCs from people with SZ (Fig. 2A & B, Table 4). Further 
analysis of this graph revealed a bipartite structure, characterized by 

Table 3 
Thalamic Subgraph Regions (Sample 1).  

First Part of the Bipartite Structure  

Graph 
# 

Description x y z 

Frontal 1 Left Orbital Gyrus − 10 18 − 19 
Parietal 2 Right Inferior Parietal Lobule 55 − 26 26 
Cingulate 3 Right Cingulate Gyrus 9 − 44 11 

4 Left Cingulate Gyrus − 4 39 − 2 
Occipital 5 Left MedioVentral Occipital 

Cortex 
− 5 − 81 10 

6 Right MedioVentral Occipital 
Cortex 

7 − 76 11 

7 Left MedioVentral Occipital 
Cortex 

− 6 − 94 1 

8 Right MedioVentral Occipital 
Cortex 

8 − 90 12 

9 Left Lateral Occipital Cortex − 31 − 89 11 
10 Right Lateral Occipital Cortex 16 − 85 34 

Hippocampus 11 Right Hippocampus 29 − 27 − 10 
Striatum 12 Left Nucleus Accumbens − 17 3 − 9 
Thalamus 13 Left Medial Prefrontal 

Thalamus 
− 7 − 12 5 

14 Right Medial Prefrontal 
Thalamus 

7 − 11 6 

15 Left Pre-motor Thalamus − 18 − 13 3 
16 Right Pre-motor Thalamus 12 − 14 1 
17 Left Sensory Thalamus − 18 − 23 4 
18 Left Rostral Temporal 

Thalamus 
− 7 − 14 7 

19 Right Rostral Temporal 
Thalamus 

3 − 13 5 

20 Left Posterior Parietal 
Thalamus 

− 16 − 24 6 

21 Right Posterior Parietal 
Thalamus 

15 − 25 6 

22 Left Occipital Thalamus − 15 − 28 4 
23 Right Occipital Thalamus 13 − 27 8 
24 Left Caudal Temporal 

Thalamus 
− 12 − 22 13 

25 Left Lateral Pre-frontal 
Thalamus 

− 11 − 14 2 

26 Right Lateral Pre-frontal 
Thalamus 

13 − 16 7  

Second Part of the Bipartite Structure  

Graph 
# 

Description x y z 

Frontal 27 Left Inferior Frontal Gyrus − 52 13 6 
28 Left Precentral Gyrus − 32 − 9 58 
29 Right Precentral Gyrus − 26 − 25 63 
30 Left Precentral Gyrus 34 − 19 59 
31 Left Precentral Gyrus − 13 − 20 73 

Temporal 32 Left Superior Temporal Gyrus − 54 − 32 12 
33 Left Superior Temporal Gyrus − 62 − 33 7 
34 Right Superior Temporal 

Gyrus 
47 12 − 20 

35 Left Superior Temporal Gyrus − 55 − 3 − 10 
36 Right Superior Temporal 

Gyrus 
56 − 12 − 5 

37 Left Middle Temporal Gyrus − 65 − 30 − 12 
38 Left Middle Temporal Gyrus − 53 2 − 30 
39 Right Middle Temporal Gyrus 51 6 − 32 
40 Left Middle Temporal Gyrus − 59 − 58 4 
41 Right Middle Temporal Gyrus 60 − 53 3 
42 Left Middle Temporal Gyrus − 58 − 20 − 9 
43 Right Middle Temporal Gyrus 58 − 16 − 10 
44 Left Posterior Superior 

Temporal Sulcus 
− 54 − 40 4 

45 Right Posterior Superior 
Temporal Sulcus 

53 − 37 3 

46 Left Posterior Superior 
Temporal Sulcus 

− 52 − 50 11 

47 Right Posterior Superior 
Temporal Sulcus 

57 − 40 12 

Parietal 48 Right Inferior Parietal Lobule 45 − 71 20 
49 Left Inferior Parietal Lobule − 47 − 65 26 

Occipital 50 Left Lateral Occipital Cortex − 46 − 74 3  
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Fig. 2. (A) Thalamo-Cortical Subnetwork identified about the ADSD algorithm (Sample 2) (B) 3-D Illustration of Identified Subnetwork. Red nodes denote regions 
characterizing one half of the bipartite structure. Green nodes denote regions characterizing the other half bipartite structure. Yellow lines denote greater con-
nectivity people with SZ compared to HCs. Blue lines denote weaker connectivity in people with SZ compared to HCs. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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diagnostic group differences in the rsFC between a set of thalamic re-
gions and a set of temporal, parietal, and occipital regions (Fig. 2A & B, 
Table 4). Connectivity within this subnetwork was predominantly 
increased for people with SZ compared to HCs. 

In contrast to analyses of data from Sample 1, application of the 
ADSD algorithm to data from Sample 2 identified a second subnetwork 
that effectively differentiated diagnostic groups. This subnetwork 
largely consisted of cingulo-opercular (anterior cingulate cortex, insula, 
operculum) and temporal regions. Connectivity within this subnetwork 
was weaker for people with SZ, relative to HCs (Fig. 3A & B, Table 5). 

3.2. Overlap in thalamocortical subnetworks identified in samples 1 & 2 

The thalamocortical subnetworks identified by the ADSD algorithm 
in both samples contained many but not all of the same regions (see 

Table 6 for overlapping regions). Specifically, both subnetworks were 
characterized by hyperconnectivity between a set of thalamic regions 
and temporal regions in people with SZ compared to HCs. However, 
regions outside of the thalamus and temporal cortex did not show large 
overlap across samples. 

3.3. Associations with positive symptom severity 

Given previous, albeit mixed, findings from the literature suggesting 
associations between thalamo-temporal connectivity and positive 
symptom severity, we investigated effects of positive symptom severity 
in our three identified subnetworks. For Sample 1, 132 of the 624 edges 
in the thalamo-temporal subnetwork had significant associations with 
BPRS Reality Distortion (p < 0.05, uncorrected; Supplemental Mate-
rials). For Sample 2, 25 of the 425 edges in the thalamo-temporal sub-
network and 8 of the 378 edges in the cingulo-opercular subnetwork had 
significant associations with BPRS Reality Distortion (p < 0.05, uncor-
rected; Supplemental Materials). After correcting for multiple compar-
isons (BH-FDR at p < 0.05), only 9 edges in Sample 1 remained 
significant and none of the edges in either of the Sample 2 subnetworks 
remained significant following multiple comparison correction. The 9 
edges showing significant FDR corrected associations are presented in 
Table 7. Of these edges, only one represented in temporal-thalamic 
connection. All of these associations were positive in direction. 

3.4. Covarying medication status and biological sex 

Across all three identified subgraphs, antipsychotic dose equivalents 
were not significantly associated with the magnitude of any edge, after 
controlling for multiple comparisons. Thus, it appears unlikely that 
medication status confounds the current findings. Similarly, in Sample 
2, inclusion of biological sex as a covariate did not influence the 
aforementioned diagnostic group differences. 

3.5. Additional analyses to examine thalamic hypoconnectivity 

The aforementioned data-driven analyses revealed hyper- 
connectivity between subregions of the thalamus and sensory cortices 
in people with SZ compared to HCs. However, hypoconnectivity be-
tween thalamic and frontal regions was not identified. Given a robust 
literature demonstrating hypoconnectivity between the thalamus and 
frontal regions in SZ, we performed a supplementary analysis, exam-
ining the functional connectedness between the bilateral middle frontal 
gyrus and the thalamus. Specifically, we conducted simple zero-order 
correlations between thalamic nodes and the bilateral middle frontal 
gyrus node in our atlas (Left MFG: x = − 41, y = 41, z = 16; Right MFG: x 
= 42, y = 44, z = 14), which was in closest proximity to a node revealed 
in a recent meta-analysis (Left MFG: x = − 40, y = 48, z = 22; Right MFG: 
x = 38, y = 48, z = 24) (Ramsay, 2019). Zero-order correlations were 
examined to observe whether differences in functional connectivity 
were evident at a more liberal threshold of statistical significance. In 
contrast to our expectations, the magnitude of these associations did not 
significantly differ between people with SZ and HCs (Supplemental 
Materials: Section 1). 

4. Discussion 

The goal of the current study was to apply a novel neuroimaging 
analysis method to identify sub-networks of rsFC within the brain that 
differentiate clinical groups. Our analyses revealed that people with SZ 
are characterized by hyper-connectivity between subregions of the 
thalamus and temporal cortex. We replicated this finding in a relatively 
large sample of people with SZ and HCs. The current findings are 
consistent with several previous studies that have shown hyper con-
nectivity between subregions of the thalamus and sensory cortices in 
people with SZ compared to HCs, primarily using seed-based rsFC 

Table 4 
Thalamic Subgraph Regions (Sample 2).  

First Part of the Bipartite Structure  

Graph 
# 

Description x y z 

Temporal 1 Right Superior Temporal Gyrus 66 − 20 6 
2 Right Superior Temporal Gyrus 56 − 12 − 5 
3 Left Middle Temporal Gyrus − 65 − 30 − 12 
4 Left Middle Temporal Gyrus − 53 2 − 30 
5 Left Middle Temporal Gyrus − 58 − 20 − 9 
6 Right Middle Temporal Gyrus 58 − 16 − 10 
7 Left Fusiform Gyrus − 31 − 64 − 14 
8 Left Posterior Superior Temporal 

Sulcus 
− 54 − 40 4 

9 Right Posterior Superior 
Temporal Sulcus 

53 − 37 3 

10 Left Posterior Superior Temporal 
Sulcus 

− 52 − 50 11 

11 Right Posterior Superior 
Temporal Sulcus 

57 − 40 12 

Parietal 12 Left Inferior Parietal Lobule − 34 − 80 29 
13 Right Inferior Parietal Lobule 45 − 71 20 
14 Right Inferior Parietal Lobule 53 − 54 25 
15 Right Precuneus 6 − 54 35 
16 Left Postcentral Gyrus − 46 − 30 50 
17 Right Postcentral Gyrus 48 − 24 48 

Occipital 18 Left Lateral Occipital Cortex − 31 − 89 11 
19 Right Lateral Occipital Cortex 34 − 86 11 
20 Left Lateral Occipital Cortex − 46 − 74 3 
21 Right Lateral Occipital Cortex 48 − 70 − 1 
22 Left Lateral Occipital Cortex − 11 − 88 31 
23 Right Lateral Occipital Cortex 16 − 85 34 
24 Left Lateral Occipital Cortex − 22 − 77 36 
25 Right Lateral Occipital Cortex 29 − 75 36  

Second Part of the Bipartite Structure  

Graph 
# 

Description x y z 

Frontal 26 Left Middle Frontal Gyrus − 26 60 − 6 
Striatum 27 Right Ventral Caudate 15 14 − 2 
Thalamus 28 Left Medial Pre-Frontal Thalamus − 7 − 12 5 

29 Right Medial Pre-Frontal 
Thalamus 

7 − 11 6 

30 Left Pre-Motor Thalamus − 18 − 13 3 
31 Right Pre-Motor Thalamus 12 − 14 1 
32 Right Sensory Thalamus 18 − 22 3 
33 Left Rostral Temporal Thalamus − 7 − 14 7 
34 Right Rostral Temporal Thalamus 3 − 13 5 
35 Left Posterior Parietal Thalamus − 16 − 24 6 
36 Right Posterior Parietal Thalamus 15 − 25 6 
37 Left Occipital Thalamus − 15 − 28 4 
38 Right Occipital Thalamus 13 − 27 8 
39 Left Caudal Temporal Thalamus − 12 − 22 13 
40 Right Caudal Temporal Thalamus 10 − 14 14 
41 Left Lateral Pre-Frontal Thalamus − 11 − 14 2 
42 Right Lateral Pre-Frontal 

Thalamus 
13 − 16 7  
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Fig. 3. (A) Cingulo-Opercular Subnetwork identified about the ADSD algorithm (Sample 2) (B) 3-D Illustration of Identified Subnetwork. Blue lines denote weaker 
connectivity in people with SZ compared to HCs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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metrics (Anticevic et al., 2014, 2015a; Bernard et al., 2017; Ferri et al., 
2018; Hua et al., 2019; Iwabuchi and Palaniyappan, 2017; Lencer et al., 
2019; Lui et al., 2009; Martino et al., 2018; Penner et al., 2018; Tu et al., 
2019; Wang et al., 2015; Woodward and Heckers, 2016; Yamamoto 
et al., 2018). The application of the ADSD algorithm to data from Sample 
2 also identified a subnetwork including cingulo-opercular and auditory 
regions that successfully differentiated people with SZ from HCs. It may 

have been the case that the effect size of diagnostic group on cingulo- 
opercular connectivity is smaller than that of thalamic connectivity, 
requiring greater sample sizes to observe this effect. Connectivity within 
this subnetwork was attenuated in people with SZ compared to HCs. 
Thus, the current result replicates and extends previous reports using a 
novel data-driven method. 

It is important to consider the potential role of altered thalamo- 
temporal connectivity in SZ. In HCs, connectivity between subregions 
of the thalamus and temporal cortex has been strongly associated with 
processing and integration of sensory information, particularly auditory 
input. A large literature has demonstrated impaired low-level auditory 
processing in people with SZ compared to HCs (Javitt, 2009). Failure to 
appropriately process and integrate sensory information is a critical 
component of modern theories attempting to explain auditory halluci-
nations, including source monitoring (Keefe et al., 1999) and predictive 
coding (Sterzer et al., 2018) frameworks. Further, results showing 
hyperconnectivity between thalamic-basal ganglia and temporal regions 
fit nicely with a recent theoretical account of auditory hallucinations 
proposed by Horga and Abi-Dargham (Horga and Abi-Dargham, 2019). 
Specifically, Horga and Abi-Dargham propose that excessive dopamine 
transients (i.e., a D1/D2 imbalance) reinforce/strengthen speech inputs 
to the basal ganglia, as well as strengthen outputs from the basal ganglia 
through thalamus to associative auditory cortex. They claim that 
excessive activity within this circuitry provides a plausible account for 
auditory hallucinations. While conducted at a more macro level of 
analysis, the current result is broadly consistent with this account 
showing strong rsFC in people with SZ within this circuitry. 

Other evidence suggests that hyper-connectivity may reflect 
abnormal NMDA-receptor function. In healthy participants, adminis-
tration of ketamine, a drug that effectively blocks NMDA receptors, has 
been shown to enhance connectivity between thalamus and temporal 
cortex (Höflich et al., 2015). Consistent with these accounts, several 
studies have reported small but reliable positive associations between 
severity of positive symptoms and hyperconnectivity between the thal-
amus and sensory cortices in people with SZ (Anticevic et al., 2015a; 
Ferri et al., 2018). However, other studies have reported non-specific or 
non-significant relationships between symptom severity and hyper-
connectivity between the thalamus and sensory cortices (Anticevic et al., 
2014; Bernard et al., 2017; Hua et al., 2019; Iwabuchi and Pala-
niyappan, 2017; Lencer et al., 2019; Lui et al., 2009; Martino et al., 
2018; Penner et al., 2018; Tu et al., 2019; Wang et al., 2015; Woodward 
and Heckers, 2016; Yamamoto et al., 2018). In the current report, we did 
not find strong and reliable correlations between positive symptom 
severity and connectivity, further adding to mixed nature of the findings 
in this area of research. Determining the presence or absence of symp-
tom relationships remains an important avenue for future research. 

In addition to hyperconnectivity between thalamic regions and 
sensory cortices in people with SZ, the ADSD algorithm also identified a 
subnetwork characterized by weaker connectivity of cingulo-opercular 
and temporal regions for people with SZ compared to HCs in Sample 
2. The cingulo-opercular network is thought to be involved in facili-
tating salience processing of environmental stimuli and modulating 
activation of executive control and motor networks on the basis of 
salience signals (Menon and Uddin, 2010). Several seed-based rsFC 
studies have reported hypoconnectivity between two integral regions of 
the cingulo-opercular network, the anterior cingulate cortex and sub-
regions of the insula, in people with SZ compared to HCs (Chen et al., 
2016; Sheffield et al., 2019; Tian et al., 2019). Palaniyappan and Liddle 
suggested that weakened communication between these regions may 
result in poor error monitoring of aberrant salience signals, and thus 
enhanced propagation of such signals (Palaniyappan and Liddle, 2012). 
Further, several recent reports have noted hypoconnectivity between 
subregions of the insula and cortical regions including superior temporal 
gyrus (Chen et al., 2016; Sheffield et al., 2019; Tian et al., 2019). In 
particular, work by Tian and colleagues (2019) showed that hypo-
connectivity between the insula and auditory regions was related to 

Table 5 
Cingulo-Opercular Subgraph Regions (Sample 2).   

Graph # Description x y z 

Frontal 1 Left Superior Frontal Gyrus − 6 − 5 58 
2 Left Middle Frontal Gyrus − 28 56 12 
3 Left Orbital Gyrus − 7 54 − 7 
4 Right Orbital Gyrus 6 47 − 7 
5 Left Orbital Gyrus − 41 32 − 9 

Temporal 6 Right Superior Temporal Gyrus 51 − 4 − 1 
7 Left Superior Temporal Gyrus − 45 11 − 20 
8 Right Superior Temporal Gyrus 47 12 − 20 

Parietal 9 Left Inferior Parietal Lobule − 47 − 65 26 
10 Right Inferior Parietal Lobule 55 − 26 26 

Insular 11 Right Insula 37 − 18 8 
12 Left Insula − 32 14 − 13 
13 Right Insula 36 18 1 
14 Left Insula − 38 − 4 − 9 
15 Right Insula 39 − 2 − 9 
16 Right Insula 39 − 7 8 
17 Right Insula 38 5 5 

Limbic 18 Left Cingulate − 3 8 25 
19 Right Cingulate 5 22 12 
20 Left Cingulate − 6 34 21 
21 Right Cingulate 5 28 27 
22 Right Cingulate 9 − 44 11 
23 Left Cingulate − 5 7 37 
24 Right Cingulate 4 6 38 
25 Left Cingulate − 7 − 23 41 
26 Right Cingulate 6 − 20 40 
27 Left Cingulate − 4 39 − 2 
28 Right Cingulate 5 41 6  

Table 6 
List of Regions that Replicated across Samples 1 & 2 for the Thalamic Subgraph.  

First Part of the Bipartite Structure (Thalamus) 

Description x y z 

Left Medial Prefrontal Thalamus − 7 − 12 5 
Right Medial Prefrontal Thalamus 7 − 11 6 
Left Pre-motor Thalamus − 18 − 13 3 
Right Pre-motor Thalamus 12 − 14 1 
Left Rostral Temporal Thalamus − 7 − 14 7 
Right Rostral Temporal Thalamus 3 − 13 5 
Left Posterior Parietal Thalamus − 16 − 24 6 
Right Posterior Parietal Thalamus 15 − 25 6 
Left Occipital Thalamus − 15 − 28 4 
Right Occipital Thalamus 13 − 27 8 
Left Caudal Temporal Thalamus − 12 − 22 13 
Left Lateral Pre-frontal Thalamus − 11 − 14 2 
Right Lateral Pre-frontal Thalamus 13 − 16 7  

Second Part of the Bipartite Structure (Non-Thalamus) 

Description x y z 

Right Superior Temporal Gyrus 56 − 12 − 5 
Left Middle Temporal Gyrus − 65 − 30 − 12 
Left Middle Temporal Gyrus − 53 2 − 30 
Left Middle Temporal Gyrus − 58 − 20 − 9 
Right Middle Temporal Gyrus 58 − 16 − 10 
Left Posterior Superior Temporal Sulcus − 54 − 40 4 
Right Posterior Superior Temporal Sulcus 53 − 37 3 
Left Posterior Superior Temporal Sulcus − 52 − 50 11 
Right Posterior Superior Temporal Sulcus 57 − 40 12 
Right Inferior Parietal Lobule 45 − 71 20 
Left Lateral Occipital Cortex − 46 − 74 3  
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poor clinical outcomes and suggested that aberrant insular connectivity 
may underlie poor sensory integration in people with schizophrenia. The 
current manuscript is broadly consistent with the findings of these 
studies; however, we report general hypoconnectivity with similar re-
sults across insular subdivisions. 

Several future directions are notable, given the present results. First, 
the ADSD algorithm is a new analytical tool for examining functional 
connectivity in psychiatric populations. Replication across samples in 
the current design demonstrated the potential robustness of this analytic 
technique. However, it will be important for future work to examine 
other aspects of reliability for the ADSD algorithm (e.g., test–retest). Of 
note, a recent meta-analysis has shown poor test–retest reliability of 
traditional rsFC metrics (Noble et al., 2019). Poor psychometrics limit 
the utility of rsFC as a measure for tracking/predicting illness course and 
treatment response. Thus, development of highly reliable rsFC metrics 
remains of critical importance to the field. Future work is needed to 
determine if the ADSD algorithm has attractive psychometrics when 
compared to traditional rsFC measures. Second, the current work is 
limited in that our atlas (Brainnetome) did not include cerebellar nodes. 
This is unfortunate as connectivity between the thalamus and cere-
bellum features prominently in modern theories of schizophrenia (e.g., 
Andreasen’s Cognitive Dysmetria Model; (Andreasen et al., 1998)). 
Further, prior empirical work has shown that hypoconnectivity between 
the thalamus and cerebellar regions in schizophrenia is associated with 
delusions and bizarre behavior (Ferri et al., 2018). Thus, it will be 
important for future work to conduct similar analyses using cerebellar 
nodes. Third, it will be important for research to consider whether 
connectivity within the identified subgraphs could be a useful thera-
peutic target. For example, work by Ramsay and colleagues has 
demonstrated that functional connectivity between the thalamus and 
sensory cortices in people with schizophrenia is malleable (Ramsay 
et al., 2020). Specifically, they have shown that targeted cognitive 
training of the auditory system changed connectivity between superior 
temporal and thalamic regions. Further, the degree of change in con-
nectivity was associated improvements in global cognitive scores. Thus, 
future work could examine whether connectivity within the observed 
subnetworks could be altered by auditory-focused cognitive training. 

While the current analysis identified hyperconnectivity between the 
thalamic regions and sensory cortices in people with SZ compared to 
HCs, subnetworks characterized by hypoconnectivity between thalamic 
and prefrontal regions were not identified. Further, we did not observe 
hypoconnectivity between the thalamus and prefrontal regions, even at 
low statistical thresholds, not controlling for multiple comparisons. This 
was surprising, given strong evidence for such hypoconnectivity in 
previous reports (Anticevic et al., 2014, 2015a; Bernard et al., 2017; 
Cheng et al., 2015; Ferri et al., 2018; Hua et al., 2019; Lencer et al., 
2019; Lui et al., 2009; Martino et al., 2018; Penner et al., 2018; Ramsay, 
2019; Tu et al., 2019; Wang et al., 2015; Welsh et al., 2010; Woodward 
and Heckers, 2016; Yamamoto et al., 2018; Zhu et al., 2015). Several 
factors may, at least partially, explain discrepancies between our results 

and previous findings, with regard to connectivity between the thalamus 
and prefrontal regions. First, the 246 ROIs in the current analysis were 
based on the Brainnetome atlas (Fan et al., 2016), which includes 
multiple thalamic ROIs. Previous studies observing hypoconnectivity 
between thalamus and frontal cortices have either functionally-defined 
a thalamic seed (Woodward and Heckers, 2016) or anatomically defined 
thalamic nuclei using a brain-based atlas (e.g., the Oxford Brain Atlas) 
(Anticevic et al., 2014). Thus, different coordinates were used between 
the current and previous studies regarding thalamic ROIs. Second, the 
graph-theoretic analyses implemented in the current manuscript differ 
greatly from seed-based analyses used in the majority of previous 
manuscripts. 

Finally, it should be stated that many alternative data-driven 
methods (e.g., regional homogeneity, spatial ICA, homotopic connec-
tivity) have been implemented to further understanding of the etiology 
of schizophrenia (Li et al., 2015; Jiang et al., 2015; Yang et al., 2014). All 
of these methods provide different information with regard to whole- 
brain connectomics. Regional homogeneity examines local vs. remote 
functional connectivity patterns, homotopic connectivity examines de-
gree of interhemispheric connectivity, and spatial ICA uses dimensional 
reduction techniques to separate the whole-brain resting state data into 
independent components that can be thought of as networks. While each 
of these methods yields complimentary insights into brain function and 
disease etiology, none of these methods are disease-driven. For example, 
in spatial ICA, components (or networks) are first derived across all 
participants and then comparisons of network summary statistics are 
made between diagnostic groups. With this approach, not all elements 
within an ICA component will be associated with a diagnostic group 
status because the detection of the ICA components/networks are not 
disease-driven. In contrast, the networks detected using the ADSD al-
gorithm are disease-specific (i.e., most of the edges within the detected 
subgraph are related to schizophrenia in this case). Thus, the ADSD al-
gorithm offers a complimentary approach for detecting functional net-
works that may be important to understanding the etiology of 
schizophrenia. 

5. Summary 

In summary, we found evidence for aberrant thalamic connectivity in 
SZ using a set of novel network statistical techniques. Specifically, 
hyperconnectivity within a subnetwork containing subregions of the 
thalamus and temporal cortex was shown to effectively differentiate 
people with SZ and HCs. This finding is consistent with prior literature 
(Anticevic et al., 2014, 2015a; Bernard et al., 2017; Ferri et al., 2018; 
Hua et al., 2019; Iwabuchi and Palaniyappan, 2017; Lencer et al., 2019; 
Lui et al., 2009; Martino et al., 2018; Penner et al., 2018; Tu et al., 2019; 
Wang et al., 2015; Woodward and Heckers, 2016; Yamamoto et al., 
2018). The algorithm also identified a subnetwork including cingulo- 
opercular and auditory regions that successfully differentiated HCs 
from people with SZ. Connectivity within this subnetwork was weaker 

Table 7 
Edges in the Sample 1 subnetwork showing significant correlations with positive symptom severity following multiple comparison correction (BH-FDR).  

Significant Edges in Sample 1 

Node 1 Node 2 

Fig # Description x y z Fig # Description x y z 

15 Left Pre-motor Thalamus − 18 − 13 3 28 Left Precentral Gyrus − 32 − 9 58 
9 Left Lateral Occipital Cortex − 31 − 89 11 28 Left Precentral Gyrus − 32 − 9 58 
5 Left MedioVentral Occipital Cortex − 5 − 81 10 40 Left Middle Temporal Gyrus − 59 − 58 4 
8 Right MedioVentral Occipital Cortex 8 − 90 12 37 Left Middle Temporal Gyrus − 65 − 30 − 12 
8 Right MedioVentral Occipital Cortex 8 − 90 12 32 Left Superior Temporal Gyrus − 54 − 32 12 
15 Left Pre-motor Thalamus − 18 − 13 3 34 Right Superior Temporal Gyrus 47 12 − 20 
1 Left Orbital Gyrus − 10 18 − 19 34 Right Superior Temporal Gyrus 47 12 − 20 
9 Left Lateral Occipital Cortex − 31 − 89 11 34 Right Superior Temporal Gyrus 47 12 − 20 
4 Left Cingulate Gyrus − 4 39 − 2 38 Left Middle Temporal Gyrus − 53 2 − 30 

Note: All associations were positive in direction. 
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for people with SZ than HCs. Thus, the current result replicates and 
extends previous reports of aberrant thalamo-cortical and cingulo- 
opercular connectivity in people with schizophrenia, using a novel 
data-driven method. 
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