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Abstract: Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of the same
pathophysiological spectrum and have common genetic and cerebrospinal fluid (CSF) biomarkers.
Our aim here was to identify causative gene variants in a cohort of Greek patients with FTD, ALS
and FTD-ALS, to measure levels of CSF biomarkers and to investigate genotype-phenotype/CSF
biomarker associations. In this cohort of 130 patients (56 FTD, 58 ALS and 16 FTD-ALS), we performed
C9orf72 hexanucleotide repeat expansion analysis, whole exome sequencing and measurement of
“classical” (Aβ42, total tau and phospho-tau) and novel (TDP-43) CSF biomarkers and plasma
progranulin. Through these analyses, we identified 14 patients with C9orf72 repeat expansion and
11 patients with causative variants in other genes (three in TARDBP, three in GRN, three in VCP,
one in FUS, one in SOD1). In ALS patients, we found that levels of phospho-tau were lower in
C9orf72 repeat expansion and MAPT c.855C>T (p.Asp285Asp) carriers compared to non-carriers.
Additionally, carriers of rare C9orf72 and APP variants had lower levels of total tau and Aβ42,
respectively. Plasma progranulin levels were decreased in patients carrying GRN pathogenic variants.
This study expands the genotypic and phenotypic spectrum of FTD/ALS and offers insights in
possible genotypic/CSF biomarker associations.

Keywords: frontotemporal dementia; amyotrophic lateral sclerosis; genetics; biomarkers; C9orf72;
TARDBP; GRN; VCP

1. Introduction

It has been widely recognized that Frontotemporal Dementia (FTD) and Amyotrophic
Lateral Sclerosis (ALS) occupy the two extremes of the same pathophysiological spectrum,
sharing several histological features and genetic causes [1]. FTD is a highly inherited
disorder, with 30–50% of patients reporting family history of a similar phenotype [2]. For
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this familial form of FTD, several genes, such as the C9orf72, MAPT, GRN, TARDBP and
VCP genes, have been found to harbor pathogenic variants [3,4]. On the other hand, in the
10% of patients with the familial form of ALS and in a proportion of the sporadic cases,
causative variants have been identified in an increasing number of genes [5]. Interestingly,
many patients display both the FTD and the ALS phenotype, often associated with a
specific gene variant [6]. Additionally, a pathogenic FTD/ALS gene variant can cause
differing phenotypes (FTD, ALS or both FTD and ALS) in different members of the same
family [1].

Recent studies have shown that variants in the FTD/ALS-associated genes or FTD/ALS-
specific neuropathological changes may cause neurodegenerative phenotypes beyond
the typical FTD/ALS presentation [7–10]. Inversely, FTD/ALS clinical features may
be associated with non-FTD/ALS pathology [11,12]. These cases are clinically indis-
tinguishable; however, biomarkers, such as those derived from the cerebrospinal fluid
(CSF), offer clues to their diagnosis. These CSF biomarkers, namely total-tau protein (τT),
phosphorylated-tau protein (τP) and β-amyloid peptide with 42 amino acids (Aβ42) have
already been successfully incorporated in Alzheimer’s Disease (AD) diagnostic criteria
used for research purposes [13,14]. For FTD-ALS, TDP-43 protein in the CSF is an emerging
biomarker [15,16]. However, there is still uncertainty about the interplay between genetic
variants and CSF biomarkers.

The aim of the present study was to identify causative variants in the FTD and ALS-
associated genes in a well-characterized (including CSF biomarker profiling) cohort of
Greek patients presenting with FTD, ALS or FTD-ALS phenotypes. Additionally, we aimed
to investigate the association of the genotype with the clinical phenotype and the levels of
CSF (τT, τP-181, Aβ42, TDP-43) and plasma (progranulin) biomarkers.

2. Materials and Methods
2.1. Participants

A total of 130 patients were included in our study, presenting either to the 1st Depart-
ment of Neurology of the National and Kapodistrian University of Athens at Eginition
Hospital, Athens Greece, the University Hospital of Heraklion, Crete and the Papageorgiou
and AHEPA Hospitals, Thessaloniki, Greece. Patients were prospectively enrolled between
2014 and 2019. For inclusion in the study, patients had to receive the diagnosis of FTD,
ALS or FTD-ALS according to widely accepted criteria (see below). For the FTD patients,
exclusion criterion was the presence of an AD CSF biomarker profile, defined according to
the Neurochemistry Unit of the 1st Department of Neurology, University of Athens cutoff
values (Aβ42 ≤ 580 pg/mL, τT ≥ 376 pg/mL and τP-181 ≥ 62.5 pg/mL) [16].

The 130 patients were divided into three well-characterized groups:
The FTD group consisted of 56 patients who met the criteria for either the behavioral

subtype of FTD (bvFTD) [17] or primary progressive aphasia (PPA), regardless of the sub-
type [18]. Of the PPA patients who eventually participated in the study, 6 met the semantic
variant PPA (svPPA) criteria and 5 met the non-fluent agrammatic PPA (nfaPPA) criteria.

The ALS group included 58 patients who met the Awaji-Shima criteria [19].
The ALS-FTD group included 16 patients who met the criteria of the combined ALS-

FTD phenotype [20].
All patients underwent detailed clinical, neuropsychological, biochemical and neu-

roimaging examination (magnetic resonance imaging [MRI] in all patients and, additionally,
single-photon emission computed tomography [SPECT] in most FTD patients) to exclude
secondary causes of dementia and to establish the diagnosis of FTD, ALS, or FTD/ALS.

The study was performed according to the ethical guidelines of the 1964 Declaration
of Helsinki and had the approval of the Scientific and Ethics Committee of all hospi-
tals involved. Informed consent was obtained from each subject when possible or their
authorized caregiver(s).
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2.2. Blood Collection and DNA Extraction

For the genetic analyses, whole peripheral blood from participants was collected in
ethylenediaminetetraacetic acid (EDTA) tubes, which were stored at −20 ◦C until DNA
extraction and were only thawed once, just before the procedure. For the extraction of
the genomic DNA from 400 µL of whole peripheral blood, the QIAamp DNA Blood
Mini kit (Qiagen, CA, USA) was used. DNA concentration and purity were assessed
spectrophotometrically at 260 and 280 nm. Participant anonymity was ensured through
the designation of unique code identifiers for each DNA sample.

2.3. C9orf72 Repeat Expansions

Most of the patients (n = 94) were initially checked for C9orf72 hexanucleotide repeat
expansions at the Neurogenetics Laboratory of Eginition Hospital according to a two-step
protocol. This protocol included sizing PCR (amplification of the region that contains
the hexanucleotide repeat with primers flanking this region), agarose electrophoresis
and fragment analysis to identify samples with possible presence of the C9orf72 repeat
expansion. This was followed by repeat primed PCR, to verify and separate samples
with the C9orf72 repeat expansion, as previously described [21,22]. Samples were then
electrophorized on an ABI 310 Capillary Analyzer (Applied Biosystems, Foster City, CA,
USA) and analyzed on GeneScan v3.7 (2001, Applied Biosystems, Foster City, CA, USA). In
addition, 21 patients were initially analyzed for the presence of C9orf72 repeat expansion
by repeat primed PCR amplification and STR (short tandem repeats) PCR analysis at the
Diagnostic Service Facility, Laboratory of Neurogenetics, University of Antwerp, Belgium.

2.4. Whole Exome Sequencing

In most patients that did not carry a C9orf72 hexanucleotide repeat expansion, Whole
Exome Sequencing (WES) was performed (Figure 1) according to the following procedures:

(1) At Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology
(IMBB-FORTH, Crete) with the use of the Illumina NextSeq500 platform (n = 60). In
detail, sequencing of 2 × 75 bp DNA fragments with at least 50× coverage, targeting
regions of 45.3 Mb size, was performed. Libraries were prepared with the TruSeq®

Rapid Exome Library prep kit (Illumina, San Diego, CA, USA). Bioinformatics pro-
cessing of the data derived from mapping on the hg19 reference genome and quality
control of the results (e.g., number of readings and coverage quality) were performed
by the BaseSpace® software (Illumina, San Diego, CA, USA). Finally, genetic varia-
tion was identified with the VariantStudio® software after comparison with the hg19
reference genome and drawing information from genetic databases, e.g., Human
Genome Mutation Database (HGMD), ClinVar® (National Center for Biotechnology
Information, Bethesda MD, USA) (Annotation Excel file).

(2) At Macrogen (Seoul, Korea), using the Illumina HiSeq4000 platform (n = 24). In spe-
cific, 2 × 100 bp DNA fragments were sequenced with an aim of at least 50x coverage.
For the construction of genomic libraries, the Agilent Sure-Select Human All Exon V5
(not including UTRs) Target Enrichment System was used.

(3) At Otogenetics (GA, USA), using the Illumina HiSeq2500 platform (n = 11). In detail,
sequencing of 2 × 100 bp DNA fragments was performed aiming at coverage of
at least 50× and targeting a region of 45.3 Mb, that represents >98% of the human
coding sequence according to the Consensus Coding Sequences (CCDS) and Ensembl.
Exon-enriched library preparation was performed with the use of the Agilent V5
(51Mb) Sure-Select Target Enrichment System.
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Figure 1. Flow chart of the genetic characterization of FTD and/or ALS patients in the cohort we analyzed. Most (115 out of
the 130) patients were analyzed by C9orf72 repeat expansion analysis as the initial test. Subsequently, 81 of the 101 C9orf72
repeat expansion negative patients were analyzed by WES (whole exome sequencing). For 14 patients, WES was chosen as
the initial test, and for 1 (with a pathogenic variant in the VCP gene), targeted gene sequencing was performed initially due
to clinical picture and family history highly suggestive of inclusion body myopathy, Paget’s disease and FTD [23].

2.5. Gene Variant Identification and Verification

We specifically searched for variants in the most recognized FTD and ALS related
genes, namely C9orf72, GRN, MAPT, TARDBP, FUS, CHMP2B, SQSTM1, UBQLN2, VCP,
OPTN, TBK1, SOD1 and CHCHD10, as well as the 3 genes associated with autosomal
dominant AD (APP, PSEN1, PSEN2). Single nucleotide polymorphism (SNP) variants
reported here were verified by Sanger sequencing to exclude false positive results.

2.6. Measurements of CSF and Plasma Biomarkers

The CSF levels of Aβ42, τT and τP-181 were measured in duplicate by commercially
available ELISA kits (Innotestβ-amyloid 1–42, hTau antigen and phospho-tau 181; Fujirebio,
Gent, Belgium) according to the manufacturer’s instructions. We chose to measure τP-181,
as in neurodegenerative disorder research and clinical practice, tau phosphorylated at
threonine 181 (τP-181) is the most commonly measured form of phosphorylated tau as a
biomarker in the CSF [24] and, recently, in plasma [25]. Additionally, to better evaluate the
τP-181 levels, the ratio of τP-181 to τT (τP-181/τT) was calculated [26]. TDP-43 was measured
in triplicate by double-sandwich enzyme-linked immunosorbent assay (ELISA) using a
commercial kit (Human TAR DNA-binding protein 43 ELISA kit; Cusabio Biotech, Wuhan,
China). All determinations were performed using a four-parameter logistic curve and
blindly to the clinical diagnosis. Cut-off levels were calculated by ROC (receiver operating
characteristic) analysis with the optimal combination of sensitivity and specificity, as
previously described [15,16].

Blood samples were collected between 08:00–10:00 a.m. (morning samples), trans-
ferred to EDTA-containing tubes and refrigerated until centrifugation (within 3 h) for the
plasma isolation. Plasma isolated from these samples was subsequently kept in deep freeze
(−80 ◦C). Plasma progranulin levels were measured using the Human Progranulin ELISA
Kit (Adipogen Life Sciences, Liestal, Switzerland) [27].
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2.7. Statistical Analysis

All numerical data were tested for normality and homogeneity of variances by the
Shapiro–Wilk’s and Brown–Forsyth tests, respectively. When appropriate, differences
among groups were tested by one-way analysis of variance (one-way ANOVA) or two-way
analysis of covariance (two-way ANCOVA), followed by Bonferroni correction for multiple
comparisons. When deviations from normality and/or heterogeneity of variances were
noted, Kruskal–Wallis test was performed, followed by Dunn’s post-hoc test. Categorical
data were compared among groups by the χ2-test.

3. Results
3.1. Demographic Data

Demographic data are summarized in Table 1. The three patient groups (FTD, ALS,
FTD-ALS) had comparable age and sex. Due to violations regarding normality and ho-
mogeneity of variances, disease duration was initially compared among groups with
Kruskal–Wallis test that showed a significant difference (p < 0.0001). Additionally, Dunn’s
post-hoc test revealed significantly longer disease duration for FTD as compared to ALS
patients (p < 0.0001).

Table 1. Demographic and clinical data of the studied groups.

FTD ALS FTD-ALS p-Value

n (m/f) 56 (32/24) 58 (26/32) 16 (7/9) NS †

Age (y) 60.2 ± 10.8 61.2 ± 11.8 60.7 ± 10.7 NS ‡

Disease Duration (y) 3.0 (1.3–6.0) a 1.0 (0.7–2.0) 3.0 (1.0–4.0) <0.001 §

Family History, 1st degree relative (%) 16 (28.6) 9 (15.5) 4 (25.0) NS †

Data are presented as mean values ± standard deviation (SD) for age, or median values (25th–75th percentile) for disease duration. m:
males; f: females; y: years; NS: non-significant. † χ2-test, ‡ 1-way ANOVA, § 2-way ANCOVA, a Bonferroni corrected p < 0.001 vs. ALS and
0.066 vs. FTD-ALS.

3.2. Family History

Among the 130 patients within the FTD-ALS spectrum, 28.6% (16/56) of the FTD
patients had at least one first degree relative affected with phenotype suggesting either FTD
or ALS. For the ALS and FTD-ALS groups, 15.5% (9/58) and 25.0% (4/16), respectively,
had positive family history for possible FTD or ALS, with at least one first degree relative
affected (Table 1).

3.3. Pathogenic and Likely Pathogenic Variants in FTD-ALS Genes
3.3.1. C9orf72 Repeat Expansion

The percentage of patients positive for C9orf72 repeat expansion (defined as presence
of >30 repeats) was 10.4% in patients with FTD (5 out of 48 patients tested), 10.7% in
patients with ALS (6/56) and 27.3% in patients with FTD-ALS (3/11). All C9orf72 repeat
expansion positive patients in the FTD-ALS group had family history of possible FTD/ALS
and presented with a bvFTD phenotype at onset. The clinical and other characteristics of
the 14 patients harboring a C9orf72 repeat expansion are shown in Table 2.

3.3.2. Other Causative Variants

From the analysis of the FTD/ALS genes in the WES derived data, causative vari-
ants were identified in the TARDBP, GRN, VCP, SOD1 and FUS genes in 11 patients
(Table 3). Specifically, in three patients (two with pure ALS and one with FTD-ALS) we
found causative variants in the TARDBP gene, namely the p.Met337Val (c.1009A>G), the
p.Asn352Ser (c.1055A>G) and the p.Ile383Val (c.1147A>G) variant.
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Table 2. Patients with C9orf72 hexanucleotide repeat expansion.

Patient ID Sex Phenotype Age at
Onset

Age at
Diagnosis Family History MRI HMPAO-SPECT

1 F FTD 61 63 Sister and 3 cousins
ALS

Mild frontal atrophy and left sylvius
and temporal pole. NA

2 F bvFTD 69 70 Mother with dementia Mild frontal, temporal (L > R) and
parietal atrophy

Frontal hypoperfusion (R > L)
and right parietal

3 F FTD-psychiatric symptoms 45 54
Mother FTD-ALS

Maternal uncle ALS and aunt
dementia

Mildfrontal atrophy and white
matter lesions Frontal hypoperfusion (L > R)

4 M bvFTD 51 58 Mother
ALS

Bilateral frontal strokes and
frontal atrophy NA

5 M bvFTD with
psychiatric symptoms 38 41 No Frontal, temporal and

parietal atrophy NA

6 M ALS 71 72 No Mild global atrophy NA

7 F ALS 59 61 No Frontal and parietal atrophy NA

8 F ALS 63 64 Sister
ALS NA NA

9 F ALS 42 43 Mother and 2 maternal aunts
with ALS NA NA

10 M FTD-ALS 48 50 Father with FTD Diffuse atrophy, temporal > frontal NA

11 F FTD-ALS 43 44
Grandmother and

7/9 uncles with ALS; mother
with dementia

Frontal, perisylvian atrophy (L > R),
mild increase in signal intensity

along the corticospinal tract

Diffuse frontal, temporal and
parietal hypoperfusion

12 F ALS 56 58 Mother with ALS; maternal
cousin with ALS and C9orf72 (+) Mild ischemic microangiopathy NA

13 M FTD-ALS 44 45 Mother and 2 maternal uncles
with motor disorder Frontotemporal atrophy NA (DATSCAN+)

14 F ALS 41 43 Father with dementia; paternal
aunt with ALS Midline cerebellar dysplasia NA

ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia; bv: behavioral variant; NA: non-available.
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Table 3. Patients with causative variants other than the C9orf72 repeat expansion.

Patient
ID Sex Phenotype Age at

Onset
Age at

Diagnosis
Family
History Brain MRI Gene Transcript Variant gnomAD

Frequency (%) rs CADD
Score

MaxEnt-Scan
(Splice Site Loss)

1 F ALS (bulbar
onset) 67 69

2 brothers;
sister; father

with ALS
Unremarkable

TARDBP NM_007375.4

p.Met337Val
(c.1009A>G) ≤0.001 80356730 22.4 -

2 F ALS 63 64 No Unremarkable p.Asn352Ser
(c.1055A>G) 0.000 80356734 18.6 -

3 M FTD-ALS 57 60 No Frontal, temporal
atrophy

p.Ile383Val
(c.1147A>G) 0.002 80356740 17.2 -

4 F PPA 60.3 61 No Frontal, temporal
atrophy (L > R)

GRN NM_002087.4

c.463-2A>G 0.000 - 33.0 From 3.77 to −4.19

5 M PPA 50 60 Yes
(grandmother)

Frontal, temporal,
parietal atrophy

(L > R)
c.934-1G>A 0.000 - 34.0 From 9.63 to 0.88

6 F PPA 61 62 No Perisylvian
atrophy (L > R)

p.Cys482Tyr
(c.1445G>A) 0.000 - 30.0 -

7 M IBM/FTD 47 63
Yes (brother
ALS; brother

bvFTD)

Frontal lobe
atrophy

VCP NM_007126.5

p.Arg159His
(c.476G>A)

≤0.001 121909335 23.2 -

8 M IBM/FTD 58 68 Yes (mother
ALS) -

9 M IBM/FTD/PaD 43 53 No - p.Arg155His
(c.464G>A) 0.000 121909329 24.6 -

10 M ALS 79 81 No Unremarkable FUS NM_001170634.1 p.Gly506Val
(c.1517G>T) 0.000 - 23.7 -

11 M ALS 36 37 Yes (brother
ALS) Unremarkable SOD1 NM_000454.5 p.Ser106Leu

(c.317C>T) ~0.000 1378590183 22.4 -

ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia; IBM: inclusion body myositis; PaD: Paget’s disease.
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In three patients with FTD, all with the PPA phenotype, we found three causative
variants in the GRN gene (Table 3). The two patients with splice site GRN variants (c.463-
2A>G and c.934-1G>A) presented with an svPPA and nfaPPA phenotype, respectively. Both
had increased CSF τT and TDP-43 levels and τP-181 and Aβ42 levels within the reference
range for healthy controls. Another FTD-PPA patient was detected with the p.Cys482Tyr
GRN variant. She had increased CSF levels of τT and τP-181, while the CSF levels of TDP-43
and Aβ42 were within the reference range for healthy controls.

Additionally, in three patients with FTD and Inclusion Body Myopathy (IBM), all
from Crete, we found two causative variants in the VCP gene (Table 3). A 63-year-old male
patient with the pathogenic p.Arg159His (c.476G>A) heterozygous missense VCP gene
variant was identified with the characteristic clinical picture of IBM and FTD [23]. The same
VCP variant (p.Arg159His) was found in a 68-year-old patient with progressive muscle
weakness and atrophies in all four extremities and the trunk and behavioral disturbances.
The symptoms of the patient had started at the age of 58 years. Another patient was found
to have myopathy, persistently increased Creatine PhosphoKinase (CPK), language deficits
and Paget’s disease of bone. He carried the p.Arg155His (c.464G>A) VCP change (Table 3).

Further, we found ALS causative variants in the FUS and the SOD1 genes (Table 3).
Specifically, we detected the p.Gly506Val (c.1517G>T) FUS gene variant in a 82-year-
old male with a predominately lower motor neuron involvement and no family history.
Moreover, we found the p.Ser106Leu (c.317C>T) SOD1 gene variant in a 37-year old patient
with personal and family history of ALS.

3.4. Association of Variants in FTD -ALS Genes with CSF Biomarkers

As a next step in our analyses, we proceeded in measuring CSF biomarker levels in
this patient cohort and associated these levels with the results of C9orf72 repeat expansion
determination and WES based genotyping. Our efforts focused on typical neurodegenera-
tive disease-associated CSF biomarkers (TDP-43, Aβ42, τP-181 and τT) and on genes that
either have as their protein product the above biomarkers (TARDBP, APP, MAPT) or are
commonly associated with FTD/ALS (C9orf72). Of these four genes, no genotype/CSF
biomarker associations were possible for the TARDBP gene since very few patients with
variants in this gene were found.

3.4.1. Association of C9orf72 Variants with CSF Biomarkers

Regarding the C9orf72 gene, in the cohort analyzed, besides the pathogenic hexanu-
cleotide repeat expansion (see above), we found five rare intronic variants (c.444+31T>G,
c.600+86A>T, c.666-120C>T, c.855+52A>G, c.856-37G>T) and the p.Asn207Ser (p.N207S)
exonic variant. These C9orf72 variants differ in their location and nature (repeat expansion,
intronic and exonic) and thus possibly have differential effects on gene expression and
function. For this reason, these three types of genetic variants were analyzed separately.
Thus, for this part of our study, we compared Aβ42, τT, τp-181 and TDP-43 CSF levels and
the τP-181/τT ratio in FTD and/or ALS patients carrying the hexanucleotide C9orf72 repeat
expansion, rare intronic C9orf72 variants or the p.Asn207Ser (p.N207S) exonic C9orf72
variant to patients without these variants. Analyses were performed separately for FTD
patients, ALS patients ± FTD and all patients combined.

These analyses revealed that in patients with ALS (with or without concurrent FTD),
the CSF levels of τP-181 were lower in C9orf72 repeat expansion carriers compared to non-
carriers, whereas levels of TDP-43, Aβ42 and τT and the τP-181/τT ratio did not differ
between the two groups (Figure 2). Additionally, carriers of rare intronic variants in
C9orf72 had lower CSF levels of τT (Figure 3). In contrast, this difference in τT levels was
not found for the more common C9orf72 p.Asn207Ser (p.N207S) variant (Figure 3). Results
on C9orf72-based biomarker level comparisons that did not reveal statistically significant
results or results not approaching statistical significance are not shown.
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were performed separately for FTD patients and ALS (with or without FTD) patients. In patients
with ALS (with or without concurrent FTD), levels of τP-181 were lower in C9orf72 carriers compared
to non-carriers (C). All other comparisons yielded non-significant results.
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Figure 3. Aβ42, τT and τp-181 CSF levels in FTD, ALS and FTD/ALS patients carrying either
the p.Asn207Ser (p.N207S) exonic C9orf72 variant (A) or the rare intronic C9orf72 variants (B,C).
(A) Here we compared Aβ42 CSF levels in FTD patients carrying the p.Asn207Ser (p.N207S) exonic
C9orf72 variant to patients without this variant and no statistically significant difference was found.
(B) FTD patients that were carriers of rare intronic variants in the C9orf72 gene had lower CSF levels
of τT. (C) CSF levels of τp-181 did not differ in FTD and/or ALS patients carrying rare C9orf72
intronic variants.

3.4.2. Association of MAPT and APP Gene Variants with CSF Biomarkers

When we compared levels of CSF biomarkers between groups of patients carrying dif-
ferent MAPT and APP gene variants, we found that the c.855C>T (p.Asp285Asp/p.D285D)
synonymous MAPT variant carriers had significantly lower τp-181 (Figure 4). There was
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no difference found for the other three biomarkers tested (TDP-43, Aβ42 and τT), when
comparing carriers of the p.Asp285Asp (p.D285D) change with non-carriers (data not
shown). Additionally, all other MAPT variants similarly tested did not show an effect
on biomarker levels (data not shown). Additionally, as shown in Figure 4, carriers of
rare APP variants (p.Ala11Ala, p.Val118Ile, c.-44C>T/c.-49+321C>T, c.697+50G>A and
c.697+11888delT) had lower Aβ42 levels, whereas this was not found for the more common
c.1000-31T>C intronic APP variant. Finally, other biomarkers (τT, τp-181, TDP-43) analyzed
relative to APP variants did not yield significant results (data not shown).
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3.4.3. Correlation of CSF Biomarkers Values

As a next step in our analyses, we performed correlation analyses of CSF biomarker
values (Aβ42, τT, τp-181, TDP-43) in pairs across different patient groups. Results of these
analyses showed that only τT and τp-181 CSF values were correlated, across all three
patient groups (Figure 5). For these analyses, Spearman ρ values were 0.74 (p < 0.0001)
for FTD patients, 0.78 (p < 0.0001) for ALS patients and 0.62 (p = 0.031) for FTD/ALS
patients. Correlation between other CSF biomarker measurements pairs (τP-181 vs. Aβ42,
Aβ42 vs. TDP-43 and TDP-43 vs. τP-181) did not yield statistically significant results (data
not shown).

3.5. Association of Pathogenic Variants in the GRN Gene with Plasma Progranulin Levels

To show that our findings for CSF biomarkers (i.e., that genetic variants affect CSF
biomarker levels) are valid also for plasma biomarkers, we performed plasma progranulin
quantification in the three patients with the GRN variants, c.463-2A>G, c.934-1G>A and
p.Cys482Tyr (c.1445G>A), that were considered causative based on strong in silico predic-
tions. Patients carrying the pathogenic GRN variants had more than two-fold lower plasma
progranulin levels compared to FTD patients harboring the C9orf72 repeat expansion and
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to other FTD patients (Figure 6). These findings verified the pathogenicity of the three
novel GRN gene variants.
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Figure 6. Association of GRN pathogenic variants with plasma progranulin levels. Lower plasma
progranulin levels were found in the 3 FTD patients with the GRN variants (c.463-2A>G, c.934-1G>A
and p.Cys482Tyr) compared to FTD patients harboring the C9orf72 repeat expansion and to other
FTD patients.



Brain Sci. 2021, 11, 1239 13 of 19

4. Discussion

Our study presents a clinical series of Greek FTD/ALS spectrum patients by innova-
tively integrating phenotypic, genotypic and biomarker data. Causative genetic variants
(either SNPs or C9orf72 hexanucleotide repeat expansions) were identified in 25 cases
(19.2% of the total patient cohort). The frequency of patients carrying causative FTD/ALS
gene variants in our series is higher compared to other similar series from Greece, most
of them having evaluated either FTD or ALS cohorts separately [28–30]. This increased
frequency probably reflects a higher proportion of FTD/ALS patients in our study, as well
as the exclusion of patients with probable AD pathology through CSF biomarker measure-
ments. Additionally, we have observed several unique associations between genotype and
CSF/plasma biomarker levels, with our study being one of the first studies to adopt such
an approach.

The most common genetic change detected in the cohort analyzed was, as expected, the
C9orf72 repeat expansion (12.2%; 14 out of 115 patients tested). C9orf72 repeat expansions
have been reported to 4–40% of patients with ALS [31]. In previously reported Greek ALS
cohorts, 5–10% of cases carried the abnormal C9orf72 expansion [28,32], in accordance with
our findings. Regarding the FTD group, we found a rate of C9orf72 repeat expansions
(10.4%), similar to one of the studies from Greece [29], but almost two-fold higher compared
to another Greek study [30]. The latter can be explained by the biomarker supported clinical
diagnosis of FTD patients in our study, avoiding the contamination of this group with other
pathologies presenting as a frontal-behavioral or language syndrome.

Additionally, using a WES based approach, we identified causative gene variants in
11 more patients: three variants in each of the TARDBP and GRN genes, two variants in the
VCP gene (in three patients) and one variant in each of the SOD1 and FUS genes (Table 3).
Variants in these genes are commonly described in FTD/ALS cohorts, including the most
recent studies [33].

In detail, we detected three patients (two women with ALS and one man with FTD-
ALS) with TARDBP pathogenic variants (p.Met337Val, p.Asn352Ser and p.Ile383Val). This
is of special importance as TARDBP encodes TDP-43, a protein which is increasingly
implicated in neurodegenerative processes and offers an attractive therapeutic target [34].
Pathogenic TARDBP gene variants are considered the cause of 1–7% of familial ALS cases
and of several sporadic ALS cases [35,36], but they are less frequently reported in FTD [3,37].
Our 60-year old patient with the p.Ile383Val TARDBP gene variant presented with an
FTD-ALS phenotype. This specific variant has been repeatedly described as pathogenic
across the FTD/ALS spectrum [33,38–41]. Additionally, three FTD patients of Greek
origin harboring the p.Ile383Val TARDBP gene variant have been recently reported [30].
These data are a call for a systematic study of this variant’s geographic distribution and
significance. Furthermore, the c.1009A>G (p.Met337Val) TARDBP variant found in one of
our patients with familial ALS has been repeatedly reported to segregate with ALS [42–46],
including bulbar onset ALS [47]. The p.Asn352Ser TARDBP variant that we found in
another ALS patient has also been often described in the literature [48–50] and functionally
characterized [51,52].

In three of our patients, we found causative variants in the GRN gene (c.463-2A>G,
c.934-1G>A and p.Cys482Tyr), all novel (not previously reported) but with strong evi-
dence in favor of their pathogenicity. Variants in the GRN gene have been emerging as
a frequent cause of FTD, with marked phenotypic heterogeneity [53–55] but most fre-
quently associated with TDP-43 histopathology and PPA phenotype [56–58]. Our data
add further support to the association of GRN variants with the PPA phenotype. The two
splice site variants (c.463-2A>G, c.934-1G>A) described here have strong in silico evidence
that they disrupt splicing, as indicated by their MaxEntScan and CADD scores (Table 3).
Additionally, in the GRN gene, this type of variant (splice-site variants) is frequently de-
scribed as causing FTD. In another FTD-PPA patient, we detected the p.Cys482Tyr GRN
variant, which is essentially absent from public variant databases such as gnomAD and
has strong computational evidence (CADD score = 32.0) in favor of its pathogenicity
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(Table 3). All three patients in the cohort we analyzed harboring causative GRN variants
showed decreased plasma progranulin levels (Figure 6). This is additional evidence of the
pathogenicity of these variants, as it has been shown for other GRN variants [27,59].

Three male patients, all originating from Crete and all presenting with the IBM/FTD
phenotype, were found to harbor heterozygous pathogenic VCP variants. These VCP
variants were the p.Arg155His (c.464G>A) and, in two apparently unrelated patients, the
p.Arg159His (c.476G>A) variant. Pathogenic VCP gene variants are associated with the
characteristic clinical picture of IBM, FTD and ALS, often with Paget’s disease of bone. This
syndrome can be partially or fully developed depending on the respective causative VCP
variant and other factors [60,61]. The p.Arg155His VCP variant has been repeatedly shown
to co-segregate with the disease phenotype in multiple affected family members [61–63].
This variant is in a mutational hot spot and there are in vitro and in vivo functional studies
and strong computational evidence (CADD = 24.6) supportive of its damaging effect.
This p.Arg155His VCP missense change occurs at an amino acid residue where different
missense changes (p.Arg155Pro, p.Arg155Leu, p.Arg155Cys, p.Arg155Ser) are known to be
pathogenic [63]. Regarding the p.Arg159His variant, there are several reports describing
patients with this variant in the literature [63], including the clinical description of one of
our patients [23]. This variant is not present in population databases such as gnomAD,
it has strong in silico evidence of pathogenicity (CADD = 23.2) and affects a conserved
arginine residue (Table 3). This amino acid change has been shown to disrupt the function
and structure of VCP and can lead to protein aggregates [64–67].

In addition, we detected the p.Gly506Val (c.1517G>T) FUS gene variant in a patient
with ALS. The FUS protein is a widely expressed DNA/RNA-binding protein with func-
tional homology to TDP-43 [68]. It is involved in transcriptional and translational regulation
and in mRNA splicing and transport [69]. FUS gene pathogenic variants cause 5% of fa-
milial and 1% of sporadic ALS, with predominant lower motor involvement [68,70,71].
The p.Gly506Val FUS gene variant is not present in public databases, such as gnomAD,
and there is computational evidence in support of its pathogenicity (CADD = 23.7). Addi-
tionally, there are reports on a different amino acid substitution (as p.Gly507Asp) at the
same amino acid residue causing ALS [68,70]. Finally, in a 37-year old male with family
history of ALS, we identified the p.Ser106Leu SOD1 variant. This variant has already been
described in young ALS patients with rather slow disease progression, as was the case in
our patient [72–74].

There have been several studies on the CSF levels of TDP-43, Aβ42, τT, τP-181 in
patients with FTD and ALS [15,75], but very few have focused on the association of
these levels with the genotype of these patients. Here we found several interesting geno-
type/CSF biomarker associations. Specifically, we found that levels of τp-181 were lower
in C9orf72 repeat expansion and MAPT c.855C>T (p.Asp285Asp) carriers compared to
non-carriers. Additionally, carriers of rare C9orf72 and APP variants had lower levels of τT
and Aβ42, respectively.

Regarding C9orf72, it has been reported that 25% of patients with C9orf72 repeat
expansion show low Aβ42 levels in the CSF [76], but the effect of this expansion on tau and
phospho-tau levels is not clear [77]. Our finding that C9orf72 changes (either the pathogenic
repeat expansion or the rare intronic variants) can affect levels of τP-181 and τT, indicates
that there is an association between C9orf72 and tau species that needs further assessment.

The effect of the MAPT c.855C>T (p.Asp285Asp) change on levels of τp-181 in the
FTD/ALS cohort we studied suggests that this variant could be an indirect modifier of
tau phosphorylation (e.g., by affecting mRNA processing) and thus of pathophysiological
significance. This is of interest, since the same effect, increased levels of τp-181, has been
found for several MAPT variants in patients with AD [78]. Our findings extend the
observations about this effect on another neurodegenerative disorder beyond AD.

Finally, the effect of rare APP variants on Aβ42 levels suggests these variants are
possibly important for APP processing by secretases, as it has already been shown for
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known pathogenic and non-pathogenic APP variants in AD and other neurodegenerative
disorders [79–81].

Strengths and Limitations

The main strength of our work relates to the extent and depth of the genotypic
and phenotypic analysis, that included both WES-based genotyping and CSF/plasma
biomarker measurements.

One limitation to our work is the rather small cohort size; however, this is coun-
terbalanced by the depth of the genotypic and phenotypic characterization. In addition
to the plasma and CSF biomarkers used in our study, there is increasing interest in the
possible role of other emerging biomarkers in ALS and FTD, including neurofilaments
both in CSF [82,83] and plasma [84,85]. This is of special importance for patients with the
FTD/ALS phenotype, given that there is evidence that elevated Neurofilament Heavy
chain (NfH) levels could antedate the onset of ALS in FTD patients [83]. Our study was
not designed to test the levels of these biomarkers in the plasma and CSF; however, future
analyses are panned to include these important biomarkers.

5. Conclusions

In conclusion, we found causative genetic variants (in the C9orf72, TARDBP, GRN,
VCP, FUS and SOD1 genes) with a high frequency (19.2%) in a cohort of Greek FTD/ALS
spectrum patients. In addition, we observed several potentially important associations
between the plasma/CSF biomarker levels and the genotype of several genes. Specifi-
cally, we found lower levels of τp-181 in C9orf72 repeat expansion and MAPT c.855C>T
(p.Asp285Asp) carriers compared to non-carriers. Additionally, carriers of rare C9orf72 and
APP variants had lower levels of τT and Aβ42, respectively. Finally, plasma progranulin
levels were decreased in patients with the newly described pathogenic GRN variants.

Our results further expand the genotypic/phenotypic spectrum of FTD/ALS and
provide insights in the interaction of the genome with plasma and CSF biomarkers. Taken
together, our findings call for an integrated individualized approach in interpreting plasma
and CSF biomarker levels, as these can be influenced by the genotype of the patient
under study.
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