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ABSTRACT

Background: In suckling piglets, transmissible gastroenteritis virus (TGEV) causes lethal 
diarrhea accompanied by high infection and mortality rates, leading to considerable 
economic losses. This study explored methods of preventing or inhibiting their production. 
Bovine antimicrobial peptide-13 (APB-13) has antibacterial, antiviral, and immune functions.
Objectives: This study analyzed the efficacy of APB-13 against TGEV through in vivo and in 
vitro experiments.
Methods: The effects of APB-13 toxicity and virus inhibition rate on swine testicular (ST) 
cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 
(MTT). The impact of APB-13 on virus replication was examined through the 50% tissue 
culture infective dose (TCID50). The mRNA and protein levels were investigated by real-time 
quantitative polymerase chain reaction and western blot (WB). Tissue sections were used to 
detect intestinal morphological development.
Results: The safe and effective concentration range of APB-13 on ST cells ranged from 0 to 
62.5 µg/mL, and the highest viral inhibitory rate of APB-13 was 74.1%. The log10TCID50 of 
62.5 µg/mL APB-13 was 3.63 lower than that of the virus control. The mRNA and protein 
expression at 62.5 µg/mL APB-13 was significantly lower than that of the virus control at 24 
hpi. Piglets in the APB-13 group showed significantly lower viral shedding than that in the 
virus control group, and the pathological tissue sections of the jejunum morphology revealed 
significant differences between the groups.
Conclusions: APB-13 exhibited good antiviral effects on TGEV in vivo and in vitro.
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INTRODUCTION

The porcine transmissible gastroenteritis virus (TGEV) is a coronavirus that causes severe 
diarrhea, vomiting, and dehydration in piglets less than 2 weeks old, and it has high 
morbidity and mortality rates [1]. TGEV infections usually occur in winter and early spring 
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[2] and cause substantial economic losses to the swine industry. TGEV is a positive single-
stranded RNA virus of the Coronavirus family that has 4 structural proteins, including the 
spike (S), membrane (M), nucleocapsid (N), and envelope (E) proteins, as well as 5 non-
structural proteins [3,4]. The N protein plays a vital role in the replication and transcription 
of viral RNA [5]. Several experiments have shown that many substances inhibit the 
replication of TGEV by impeding the expression of its related proteins and mRNA [6,7]. 
Currently, there are no specific drugs for the prevention and control of TGEV infections. 
Although a vaccine is used to prevent and control the TGEV, the effects of the vaccine are 
unsatisfactory. The TEGV causes an intestinal disease primarily in piglets, and maternal 
antibodies provide insufficient protection for piglets. Therefore, it is particularly important 
to find drugs or reagents that can treat TGEV infections effectively.

Indolicidin is a cationic 13-residue antimicrobial peptide (ILPWKWPWWPWRR-NH(2)) that 
is unusually rich in tryptophan and proline. Previous studies reported that antimicrobial 
peptides have antibacterial effects [8], antiviral effects [9,10], and anti-parasitic actions 
[11]. Bovine antimicrobial peptides-13 (APB-13) also have antibacterial [12], antiviral [13] and 
anticancer [14] activity. Indolicidin from the bovine cathelicidins reduces the herpes simplex 
virus (HSV)-1 and HSV-2 yields by 99% and decreases the infectivity of a Junin virus (JV) 
suspension by 50% compared to the untreated control sample [15]. Moreover, indolicidin can 
directly inactivate the virus particles for human immunodeficiency virus (HIV)-1 [16]. On the 
other hand, the effects of APB-13 on TGEV replication have not been reported. Antibacterial 
peptides are popular because of their non-toxic, non-residual, safe, and effective 
characteristics, and they are ideal substitutes for antibiotics in antibiotic-free breeding. The 
purpose of this research was to determine if APB-13 has an antiviral effect on the TGEV and, if 
so, to elucidate its mechanism of action. This study will be of great significance as a reference 
for the control of porcine transmissible gastroenteritis.

MATERIALS AND METHODS

Ethics statement
The research protocols for the experiments on live pigs in this study were approved by the 
Animal Care and Use Committee of Henan Agricultural University (Zhengzhou, China) (No. 
HAU20181120-6). All surgeries were performed under anesthesia using isoflurane, and all 
attempts were made to minimize animal suffering.

APB-13, cells, and virus
The sequence for APB-13 is ILPWKWPWWPWRR-NH2, and the peptide was derived from 
cattle. The peptides used in this study were synthesized by GL Biochemistry (China). The 
working solutions of APB-13 were prepared in fetal bovine serum (FBS)-free Dulbecco's 
modified Eagle's medium (DMEM) and 1% penicillin/streptomycin (Biochrom, Germany). 
APB-13 comes in liquid and lyophilized powder forms, and the activity of both is equivalent.

Swine testicular (ST) cells were grown in DMEM supplemented with 10% heat-inactivated 
FBS and 1% penicillin/streptomycin at 37°C with 5% CO2. Professor Zhanyong Wei of Henan 
Agricultural University isolated and identified the TGEV HN-2012 strain, which was grown in 
ST cells in the current study. Monolayers of ST cells in 75 cm2 cell culture flasks were infected 
with TGEV at a multiplicity of infection (MOI) of 5. When an 80% cytopathic effect emerged 
at 24 h post-infection (hpi) at 37°C, the flask was stored at −80°C and freeze-thawed 3 times; 
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the supernatant was then harvested. All in vitro infection experiments were performed at an 
MOI of 5. All experiments related to the TGEV were performed in a P2 biosafety laboratory 
and carried out in strict accordance with the Laboratory Biosafety Manual of the authors' 
laboratory.

Cellular toxicity assays
The viability and growth of ST cells were tested in vitro using a 3-(4,5-dimethylthiazol-2-
yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, as reported previously [17,18]. Different 
concentrations of APB-13 dissolved in serum-free DMEM were added to 90% confluent ST 
cells in 9 6-well plates for 24 h at 37°C with 5% CO2. Subsequently, 15 µL of MTT reagent 
(5 mg/mL) was added to each well for 4 h of incubation at 37°C. After the medium was 
discarded, 200 µL of a dimethyl sulfoxide (DMSO) solution was added, and the plates were 
oscillated for 10 min. The mean optical density (OD) at 570 nm was measured. The relative 
cell viability was counted as a percentage of that of the control based on the mean OD. The 
MTT assays were performed in triplicate, and 8 wells were repeated per plate.

Viral titer assay
The ST cells were seeded in 96-well cell culture plates and incubated until they reached 
90–100% confluence. The monolayers were washed twice with D-Hank's solution and then 
infected with 100 µL of 10-fold serial dilutions of the virus samples. The dilution range of 
TGEV was 10−1 to 10−12, with 8 replicates per dilution. After incubation for 72 h, the viral titers 
in the wells were calculated as the 50% tissue culture infective dose (TCID50)/mL using the 
Reed-Muench method [19].

Antiviral activity effect of APB-13 on TGEV in vitro
The cells were cultured in a 96-well plate for 24 h and grown into a monolayer. The cells were 
washed and infected with TGEV for 1 h. The diluted virus was discarded, and then the cells 
were washed twice. Four different safe and effective concentrations of APB-13 (150 µL) were 
added to the cells (8 replicates per concentration) and incubated for 24 h. The virus controls 
and cell controls were established at the same time. Subsequently, 10 µL MTT reagent (5 mg/
mL) was added and incubated for another 4 h. The medium was then discarded, and 200 µL 
of DMSO was added and incubated for 10 min with oscillation. The mean OD at 570 nm was 
measured. The viral inhibition rate was calculated using the following formula:

Mean APB-13-treated Group 𝑂𝑂𝑂𝑂570 − Mean Virus Control Group 𝑂𝑂𝑂𝑂570
Mean Cell Control Group 𝑂𝑂𝑂𝑂570 − Mean Virus Control Group 𝑂𝑂𝑂𝑂570

× 100% 

 
ST Monolayers in 6-well plates were infected with the TGEV for 1 h. After washing twice, various 
concentrations of APB-13 were added to a 6-well plate, and the cells were incubated for 23 h. 
The plates were freeze-thawed 3 times at −80°C, and the viral titer was determined using a 
TCID50 assay. Each sample was measured in triplicate from 3 independent experiments.

Inhibitory effect of APB-13 on TGEV proliferation in vitro
Pretreatment effect of APB-13 on TGEV
Monolayer ST cells (90% confluent) were washed twice. Different concentrations of APB-13 and 
FBS-free DMEM were added to 6-well plates containing cells for pretreatment for 3 h or 6 h. The 
ST cells were then infected with the TGEV and incubated for 1 h at 37°C. After the cells were 
washed and the diluted virus was removed, FBS-free DMEM was added to the 6-well plates, 
and the plates were then incubated at 37°C with 5% CO2. The cell control and virus control 
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samples were established at the same time (3 replicates). After incubation for 23 h, the plates 
were freeze-thawed 3 times at −80°C. The mixtures were harvested, and the viral titer was 
tested using a TCID50 assay.

Attachment assay
Equal volumes of TGEV and APB-13 in a total volume of 1 mL was added to the monolayer 
cells and incubated for 1 h at 4°C. The unabsorbed viruses were removed by washing twice. 
The attachment was stopped, and 2 mL of FBS-free DMEM was added to the 6-well plates. 
The plates were placed at 37°C with 5% CO2 for 23 h. The cell control and virus control 
samples were established at the same time (3 replicates). The next steps were the same as 
those described above [20].

Penetration assay
Confluent monolayers of ST cells were infected with the TGEV for 1 h at 4°C. At this 
temperature, the virus can only attach to the cell surface but not penetrate the cells. The non-
adsorbed virus was removed by washing twice with D-Hank's solution. Different concentrations 
of APB-13 or FBS-DMEM were added to each 6-well plate, and the plate was incubated at 37°C 
with 5% CO2 for 3 h. The cell control and virus control samples were established at the same 
time (3 replicates). The remaining steps were similar to those in the prevention assay [21].

TGEV replication and release assay
Confluent monolayers of ST cells were infected with TGEV for 3 h or 6 h. After washing twice, 
different concentrations of APB-13 and FBS-free DMEM were added to a 6-well plate at 37°C with 
5% CO2 for 21 h and 18 h. The remaining steps were similar to those in the prevention assay [22].

Direct effect of APB-13 on TGEV particles
Equal quantities of different concentrations of APB-13 were mixed thoroughly with the TGEV 
in a total volume of 1 mL. The mixtures were incubated for 2 h at 37°C with 5% CO2. FBS-free 
DMEM control and virus control samples were established at the same time (3 replicates). 
The viral titers of the mixtures were determined using a TCID50 assay [20].

Influence of APB-13 on TGEV N protein
mRNA level
ST cells were seeded in 6-well plates, cultivated, and infected with the TGEV. Different 
concentrations of APB-13 were added, and ST cells were collected from each well after infection 
for the indicated period. The total RNA was extracted from the TGEV-infected ST cells with 
TRIzol Reagent (Invitrogen, USA) according to the manufacturer's protocol. The RNA was 
then reverse-transcribed with PrimeScript™ RT Master Mix (Takara, Japan) according to the 
manufacturer's instructions. Real-time quantitative polymerase chain reaction (RT-qPCR) 
analysis was carried out to amplify the N protein gene using cDNA as the template, and the 
β-actin gene was used as the internal standard. The thermal cycling parameters were as follows: 5 
min at 95°C, 10 sec at 95°C, and 40 cycles of 15 sec at 58°C and 20 sec at 72°C followed by 10 sec at 
95°Cand 5 sec at 65°C. The data analysis was based on measurements of the cycle threshold (Ct).

Protein level
The ST cells infected with and without the TGEV were washed twice with cold D-Hank's solution, 
harvested with a cell scraper, and centrifuged at 4°C for 10 min. The pellets were suspended 
in cold lysis buffer (Beyotime, China) containing the protease inhibitor, phenylmethylsulfonyl 
fluoride (PMSF; 0.5 µm). The protein concentration of the lysates was determined by BCA 
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protein assay kit (CW Biotech, China) and equalized with phosphate-buffered saline. Equivalent 
amounts of proteins were suspended in a sodium dodecyl sulfate (SDS) sample buffer containing 
100 mM 4-dithiothreitol (Sigma-Aldrich) and boiled at 100°C for 10 min. They were then 
separated on 12% SDS-polyacrylamide gel electrophoresis gels and transferred to nitrocellulose 
membranes (ISEQ00010; Millipore, USA). The membranes were blocked for 2 h in Tris-buffered 
saline containing 5% non-fat dry milk at room temperature and incubated overnight with the 
rabbit anti-TGEV-N polyclonal antibody (Sangon Biotech, China) as the primary antibodies 
(1:3,000) and a GAPDH antibody (Sangon Biotech) as the internal control antibody (1:2,000) 
at 4°C. After thorough washing with Tris-buffered saline with Tween-20, the membranes were 
reacted with the horseradish peroxidase-conjugated goat anti-rabbit IgG (Sangon Biotech) at 
4°C for 1.5 h, and the proteins were determined with 3,3-diaminobenzidine and detected by 
enhanced chemiluminescence (Genshare Biological, China) and autoradiography.

Antiviral effect of antibacterial peptides on piglets
Pigs and feed
Newborn 4-day-old crossbred pigs (Duroc × Changbai × Big White) were purchased from a 
sow farm in Anyang, Henan Province, and confirmed to be healthy piglets. Artificial milk 
substitute was purchased from Beijing Aidi Technology Co., Ltd. (China).

In vivo test design of the pigs
The 27 healthy piglets used in the experiment had uniform body weights. The piglets were 
divided randomly into 3 groups with 3 replicates per group and 3 pigs per replicate: the 
mock infection group (MOCK), the virus-only group (TGEV), and the APB-13-treated group 
(TGEV+APB-13). APB-13 (10 g/kg) was fed to the piglets from the date of purchase. On the 
night of the sixth day, the piglets in all 3 groups were orally inoculated with 10 mL of TGEV 
(1×108 TCID50/mL) or 10 mL of DMEM per head. The 3 groups were kept in different animal 
test rooms and managed by different breeders. The pre-test period was 2.5 days, and the test 
period was 4 days.

Animal sample collection and processing
During the test period, fecal samples were taken from the rectum and placed quickly at −80°C 
every day, the fecal samples were used to detect the amount of TGEV mRNA by RT-qPCR. At 
the end of the experiment, the piglets were euthanized. The duodenum, jejunum, and ileum 
sections were collected and stored in a 12% formalin solution to prepare the pathology sections.

Intestinal tissue morphology detection
The fixed duodenal, jejunal and ileal tissue samples were subjected to a series of treatments, 
such as dicing, flushing, dehydration, clearing, waxing, embedding, sectioning, mounting, 
dewaxing, and hematoxylin & eosin (H&E) staining, and the small intestinal morphology was 
observed under an optical microscope (DMi8; Leica, Germany). A typical field of view was 
selected for imaging, and a Leica Q-Win image analysis system was used to measure the villus 
height (VH, the vertical height of the villus from the root) and crypt depth (CD, the distance 
from the root to the basal layer) and to calculate the villus/crypt ratio (VH/CD).

Statistics
Data were expressed as the mean ± SD. Statistical analyses were performed using GraphPad 
Prism 6.01. The significance was determined by an analysis of the variance with thresholds of 
p < 0.05 and p < 0.01.
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RESULTS

Fifty percent cytotoxicity value (CC50) of APB-13 on ST cells
The cytotoxicity of APB-13 was detected using an MTT assay. APB-13 was diluted by 4-fold serial 
dilutions of FBS-free DMEM, with concentrations of 1,000 µg/mL (C1), 250 µg/mL (C2), 62.50 
µg/mL (C3), 15.63 µg/mL (C4), 3.91 µg/mL (C5), and 0.98 µg/mL (C6). The results showed that 
the APB-13 concentrations from 0 to 62.5 µg/mL were relatively non-toxic to the cells, and the 
cell states and mean OD values of the ST cells treated with APB-13 for these concentrations 
were similar to those of the control cells. The concentrations of C4, C5, and C6 of APB-13 could 
promote ST cell growth (Fig. 1). The CC50 of APB-13 was 603 µg/mL on ST cells.

In vitro inhibitory effect of APB-13 on TGEV
APB-13 had a significant inhibitory effect on the TGEV, and the viral inhibitory rates of APB-13 
at different concentrations were 9.6%, 20.8%, 43.9%, and 74.1% (Fig. 2A). The log10TCID50 of 
APB-13 62.50 (p < 0.01) and 15.63 µg/mL (p < 0.05) were reduced significantly by 3.25 and 2, 
respectively, compared to the virus control (Fig. 2B).

The stage of the TGEV proliferation process that was inhibited by APB-13 could not be 
determined. Therefore, further experiments were conducted to determine the exact stage 
that APB-13 affected TGEV replication. As shown in Fig. 2C-E, the APB-13 treatment had little 
or no effect on the pretreatment, attachment, penetration, replication, and release of TGEV, 
nor did it have a direct killing effect. On the other hand, the APB-13 treatment inhibited the 
TGEV replication phase significantly. The log10TCID50 of APB-13 62.50 µg/mL was 3.63 lower 
than that of the virus control. In other words, the antiviral activity of APB-13 62.50 µg/mL was 
4,266 times higher than that of the virus-positive control.
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APB-13 decreases the mRNA and protein levels of the TGEV N protein
To study the inhibitory effects of APB-13 on the TGEV replication process further, ST cell 
monolayers were infected with TGEV for 3 h, and different concentrations of APB-13 were 
added to the cells in 6-well plates. The cell pellets were collected at 18, 24, and 30 hpi. The 
mRNA expression levels of the TGEV N gene were detected by RT-qPCR. As shown in Fig. 3A, 
within a specific time range, the expression of TGEV mRNA increased gradually over time, and 
the mRNA expression of APB-13 62.50 and 0 µg/mL at 24 hpi showed the greatest differences 
from that at 18 h and 30 hpi.

In addition, the collected cells were tested for TGEV protein expression by western blot 
(WB) analysis. The expression of the TGEV N protein at 18, 24, and 30 hpi increased 
gradually with decreasing APB-13 concentration. The differences in expression between the 
APB-13 62.50 µg/mL and 0 µg/mL were significant at 24 hpi (p < 0.01) and 30 hpi (p < 0.05). 
(Fig. 3B and C).
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Fig. 3. Inhibitory effects of APB-13 on TGEV N protein. (A) Relative mRNA expression during TGEV replication. The ST cells were infected with TGEV (MOI = 5) for 3 
h, and APB-13 was added to the cell medium. The cells were collected at 18, 24, and 30 hpi. The total RNA was extracted and reverse transcribed, and RT-qPCR 
was performed. The data are representative of 3 independent experiments. (B) TGEV N protein expression. The ST cells were infected with TGEV (MOI = 5) for 3 h, 
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averaging the densitometric intensities from the WBs. (C) Statistical analysis of the optical densities of target protein bands from Fig. 3B. 
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The results indicated that APB-13 is not toxic to ST cells within a specific range and even 
promotes cell growth. Furthermore, APB-13 had a potent antiviral effect on the TGEV. An in 
vivo test was performed to verify the effect of APB-13 on piglets.

Effect of APB-13 on the morphological development of the small intestine in 
piglets
To examine the effects of APB-13 on the morphology of the piglet small intestine, 3 
representative piglets per group were euthanized, and the duodenal, jejunum, and ileum 
samples were collected and stained with H&E. The results indicated that APB-13 had the 
greatest effect in the jejunum. Moreover, the differences in the jejunum VH, CD, and VH/
CD between the TGEV and TGEV+APB-13 groups were significant (p < 0.01) (Fig. 4). 
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The differences in the duodenal CD and VH/CD between the TGEV and TGEV+APB-13 
groups were significant (P < 0.05). The differences between the MOCK and TGEV groups 
were significant in the jejunum VH, CD, and VH/CD (P < 0.05). The jejunum villi of the 
TGEV+APB-13 group were long, slender, and intact compared to those of the TGEV group. 
The duodena of the TGEV+APB-13 group exhibited a slightly better morphology than those of 
the TGEV group, and the small intestinal villi of the TGEV group were atrophied, shed, and 
ruptured compared to the MOCK and TGEV+APB-13 groups.

Viral shedding in the rectum of the TGEV-infected piglets
The piglets were infected, and in vivo TGEV shedding was detected (Fig. 5) on the first, 
second, third, and 4th days post-infection. Viral shedding of piglet rectum in both groups 
increased with increasing infection time. On the third and fourth days, however, viral 
shedding of the TGEV+APB-13 group was significantly lower than that of the TGEV group. 
These results suggest that APB-13 reduces the production of TGEV particles, i.e., APB-13 has 
an in vivo antiviral effect on TGEV.

DISCUSSION

Antibacterial peptides are used widely in animal breeding because of their broad-spectrum 
antiviral effects. This study examined the antiviral effect of APB-13 on TGEV. The results 
showed that APB-13 has an inhibitory effect on TGEV production in vitro and in vivo.

ST and PK-15 cells are used widely for TGEV isolation and propagation [23]. Therefore, it is 
necessary to determine a safe APB-13 concentration range in ST cells. In the current study, 
high concentrations of APB-13 were harmful to ST cell growth, while low concentrations of 
APB-13 promoted ST cell growth. Concentrations of APB-13 at 0 to 62.50 µg/mL were almost 
non-toxic to ST cells and were considered suitable for ST cell growth. Within this range, the 
antiviral effect was dependent on the concentration of APB-13. The results indicated that 
3.91 µg/mL is the most suitable concentration for ST cell growth but not necessarily the best 

10/13https://vetsci.org https://doi.org/10.4142/jvs.2020.21.e80

Bovine antimicrobial peptide inhibits TGEV production

0
0 1 2 3 4 5

4

2

6

8

lo
g 1

0g
en

om
ic

 e
qu

ip
m

en
ts

/r
ec

ta
l s

w
ab

 fl
ui

d 
(G

E)
/m

L

Days post-infection

TGEV+APB-13
TGEV

Fig. 5. Viral shedding in the rectum of the TGEV-infected piglets. On the sixth day of birth, the piglets were 
administered 10 mL/head TGEV (1 × 108 TCID50/mL) orally, and the fecal samples were collected from the rectum 
on the 1st, 2nd, 3rd, and 4th day after challenge. The amount of viral shedding was detected by absolute 
quantitative PCR. 
TGEV, transmissible gastroenteritis virus; TCID50, 50% tissue culture infective dose; PCR, polymerase chain 
reaction; APB-13, antimicrobial peptides-13.

https://vetsci.org


concentration for anti-TGEV activity. The lack of protection is probably related to the active 
concentration of this antimicrobial peptide [24]. These results are consistent with those 
reported by Yao and Duan, who reported that high concentrations inhibited growth, but low 
concentrations promoted cell growth [25,26]. Therefore, a suitable concentration range must 
be determined.

Based on the safe concentration range of APB-13, the effects of APB-13 on the TGEV were 
examined using an MTT assay. The highest inhibition rate was 74.1% at 62.50 µg/mL APB-13. 
Subsequent research confirmed that the difference was most obvious (i.e., APB-13 had the 
greatest inhibitory effect on TGEV production) at 3 hpi. In addition, the viral titer for the TGEV-
only groups used in the experiment was originally 11, but this was reduced to approximately 6 at 
3 and 6 hpi. Therefore, APB-13 plays a vital role in inhibiting TGEV production.

The N protein is an essential component of TGEV replication that acts by binding to the 
RNA genome and forming a helical nucleocapsid [27]. The TGEV N protein facilitates 
template switching and is required for efficient transcription [28]. RT-qPCR and WB 
experiments were performed to determine if APB-13 affects the N protein and its mRNA. 
The results showed that APB-13 inhibited TGEV replication, and within a certain range, 
the mRNA and protein expression levels of the N protein increased gradually as the APB-13 
concentration decreased. Similarly, EIF4A2 inhibited TGEV replication by reducing mRNA 
and protein expression [29]. The probiotic Enterococcus faecium exerts antiviral activity against 
TGEV by reducing the expression of the viral structural proteins [30]. The PERK arm of the 
unfolded protein response negatively regulates TGEV replication by suppressing protein 
translation [31]. On the other hand, the expression of the viral N protein and its mRNA was 
decreased at 30 hpi in the APB-13 0.98 µg/mL group. A TGEV infection activates autophagy, 
which further inhibits TGEV replication [32]. Therefore, APB-13 reduces TGEV mRNA and N 
protein expression.

The APB-13 treatment inhibited the TGEV in vitro, but further confirmation will be needed 
to determine if it also inhibits TGEV in vivo. The main site at which TGEV harms piglets is 
the small intestine. Therefore, the development of the small intestinal morphology directly 
reflects the effects of APB-13 on the TGEV. The in vivo test results indicated that the VH and 
CD of the treatment group were superior to those of the control group. The TGEV-infected 
pigs exhibited marked villus shortening, clubbing, and blunting as well as reduced CD [33], 
which is consistent with the present results. These findings suggest that APB-13 has an 
antiviral effect on TGEV in vivo and suggests that APB-13 may promote the performance of 
piglets through changes in the intestinal morphology, as described by Alvarez et al. [34]. 
The intestinal tract is the site of digestion and nutrient absorption and acts as a barrier to 
exclude harmful pathogens and toxins [18]. This finding is also consistent with the previous 
CC50 result, suggesting that APB-13 promotes cell growth. Moreover, the reduction of viral 
shedding in vivo also directly reflected the effects of APB-13 on the TGEV. Therefore, APB-13 
has an anti-TGEV effect both in vivo and in vitro.

In conclusion, this study confirmed that an APB-13 treatment effectively reduces TGEV 
production in vitro and in vivo. This study provides an important reference for the prevention 
and control of the TGEV and sustainable ecological breeding. Nevertheless, further studies 
will be needed to determine if APB-13 regulates the immunity-related pathways of the host to 
inhibit TGEV.
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