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Abstract

Review Article

IntroductIon

We are witnessing a transformation in pathology as a result 
of the widespread adoption of whole slide imaging (WSI) 
in lieu of traditional light microscopes.[1,2] Depicting 
microscopic pathology characteristics digitally presents 
new horizons in pathology. Access to digital slides 
facilitates remote primary diagnostic work, teleconsultation, 
workload efficiency and balancing, collaborations, central 
clinical trial review, image analysis, virtual education, 
and innovative research. Leveraging WSI technology, 
the computer vision and artificial intelligence (AI) 
communities have offered additional computational 
pathology possibilities including deep learning algorithms 
and image recognition. Artificial neural networks (ANNs) 
have witnessed tremendous progress mainly as a result 
of deep learning. Diverse deep architectures have been 
trained with large image datasets (e.g., The Cancer Genome 
Atlas or TCGA and ImageNet) to yield novel biomedical 
informatics discoveries[3] and perform impressive object 
recognition tasks. Whether AI will eventually replace, 
or how it can best assist pathologists, has emerged as 
a provocative topic.[4‑7] In this article, we discuss key 
challenges and opportunities related to exploiting digital 
pathology in the up‑and‑coming AI era.

challenges

In spite of the enthusiasm and amassed impressive results 
shared to date,[8‑11] there are clear obstacles that limit easy 
employment of AI methods in digital pathology. We discuss 
several compelling challenges that need to be tackled.

Challenge #1: Lack of labeled data
Most AI algorithms require a large set of good quality 
training images. These training images must ideally be 
“labeled” (i.e., annotated). This generally means that a 
pathologist needs to manually delineate the region of 
interest (i.e., anomalies or malignancy) in all images. 
Annotation is ideally best performed by experts. Besides the 
time constraint involved, manual annotations often also pose a 
financial bottleneck to app development. Crowdsourcing may 
be cheaper and quicker but has the potential to introduce noise. 
For pathologists, detailed annotation of large numbers of images 
may not only be boring but also can be particularly challenging 
when working with low resolution or blurry images, slow 
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networks, and ambiguity of features. Active learning applied to 
annotation may alleviate this taxing task. At present, there are a 
small number of publicly available datasets that contain labeled 
images that can be employed for this purpose. For instance, 
with the Medical Image Computing and Computer Assisted 
Intervention Society 2014 brain tumor digital pathology 
challenge, digital histopathology image data of brain tumors 
were provided. For this competition, when classifying brain 
tumors, the target was to distinguish images of glioblastoma 
multiforme (GBM) from low‑grade glioma (LGG). The 
training set had 22 LGG images and 23 GBM images, and the 
testing (validation) set had 40 images.[12] Another example is the 
Camelyon dataset that contains many digital slides (i.e., slides 
with pixel‑level annotations and unlabeled slides as a test set) 
for automated detection of breast carcinoma metastases in 
hematoxylin and eosin (H and E)‑stained whole slide images of 
lymph node sections.[13] Fortunately, datasets that emphasize the 
multiclass nature of tissue recognition are slowly emerging.[14] 
In addition, there are several methods that computational 
scientists can leverage to maximize limited training data such 
as data augmentation (i.e., artificially transforming original 
training images[15]).

Challenge #2: Pervasive variability
There are several basic types of tissue (e.g., epithelium, 
connective tissue, nervous tissue, and muscle). However, 
the actual number of patterns derived from these tissues 
from a computational perspective is nearly infinite if the 
histopathology images are to be “understood” by computer 
algorithms. Several tissue types build an organ that is also 
reflected in new textural variation of the basic tissue types. 
This extreme polymorphism makes recognizing tissues by 
image algorithms exceptionally challenging.[16,17] Thus, the 
inherent architecture of deep AI requires many training cases 
for each variation. This, however, may not be readily available, 
especially as labeled data.

Challenge #3: Non‑boolean nature of diagnostic tasks
Many published research papers deal with classification 
problems in digital pathology that deal largely with binary 
variables, having just two possible values such as “yes” or 
“no” (e.g., benign or malignant). This is a drastic simplification 
of the complex nature of diagnosis in pathology.[18] A pathology 
diagnosis employs several processes including cognition, 
understanding clinical context, perception, and empirical 
experience. Sometimes, pathologists use cautious language 
or descriptive terminology for difficult and rare cases. Such 
language has ramifications for potential monitoring and 
treatment.[19] Hence, binary language may only be desirable in 
easy, obvious cases. This is rarely the case in clinical practice.

Challenge #4: Dimensionality obstacle
WSI deals with gigapixel digital images of extremely large 
dimensions. Image sizes larger than 50,000 by 50,000 pixels 
are quite common. Deep ANNs, however, operate on much 
smaller image dimensions (i.e., not larger than 350 by 
350 pixels). “Patching” [i.e., dividing an image into many small 

tiles, Figure 1] is a potential solution for not just AI algorithms 
but also for general computer vision methods. However, even 
for patches, one generally needs to downsample them in order 
to be able to feed them into a deep network. A region smaller 
than 1.5 µm2 may not be suitable for many diagnostic purposes 
and this is, most of the time, at least 1000 by 1000 pixels. 
Downsampling these patches may result in loss of crucial 
information. On the other hand, deep nets with larger input 
sizes would need much deeper topology and much larger 
number of neurons making them even more difficult and 
perhaps impossible to train. Of note, patch‑based ANNs have 
been shown to outperform image‑based ANNs.[20]

Challenge #5: Turing test dilemma
Alan Turing, one of the most renowned pioneers of AI, 
suggested measuring the intelligence of machines using 
a human evaluator.[21] The level of machine intelligence, 
according to Turing, is inversely proportional to the time that 
human evaluators would need to figure out that the answers 
to one’s questions are coming from a machine and not from 
a human operator if the source of the answers is concealed to 
the evaluator. The Turing test declares that human evolution 
is the ultimate validation of AI; a machine is as intelligent as 
a human only if it can successfully and infinitely impostor a 
human.[22] In digital pathology, we may not know the Turing test 
explicitly, but everybody adheres to its core statement, namely 
that the pathologist is the ultimate evaluator if AI solutions 
are deployed into clinical workflow. Thus, full automation 
is probably neither possible, it seems, nor wise as the Turing 
test postulates.

Challenge #6: Uni‑task orientation of weak artificial 
intelligence
Weak AI is a form of AI focused on a specific task. What we 
speak of today is mostly “weak AI,”[23] representing a collection 
of specialized algorithms that can perform a given task with 
high accuracy, provided we can feed them with a large set of 
training data. In contrast, with strong AI, also called artificial 

Figure 1: Patching is generally used to represent large scans. For instance, 
every patch could be a 1000 pixel ×1000 pixel image at ×20
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general intelligence (AGI),[24,25] we expect algorithms with 
human‑level intelligence, multitasking, and even consciousness 
as well as ethical cognition. Of course, the latter is still within 
scope in the distant future. Deep ANNs belong to the class of 
weak AI algorithms, as they are designed to perform only one 
task. That means we would need to separately train multiple 
AI solutions for tasks such as segmentation, classification, 
and search. Even for a given task like classification (the major 
domain for AI algorithms), one would need to design, develop, 
and train solutions for many anatomical sites. Needless to say, 
this would require tremendous resources.

Challenge #7: Affordability of required computational 
expenses
Deep AI solutions are heavily dependent on using Graphical 
Processing Units (GPUs), highly specialized electronic circuits 
for fast processing of pixel‑based data (i.e., digital images 
and graphics). Training and using deep solutions on ordinary 
computers with Central Processing Units is prohibitively 
sluggish and hence impractical.[26] It is obvious that having 
access to GPU clusters is a must to deploy deep networks in 
practice.[27‑29] Pathology laboratories, however, are already 
under immense financial pressure to adopt WSI technology, 
and acquiring and storing gigapixel histopathological scans is 
a formidable challenge to the adoption of digital pathology. 
Asking for GPUs, as a prerequisite for training or using deep 
AI solutions, is consequently going to be financially limiting 
in the foreseeable future.

Challenge #8: Adversarial attacks – The shakiness of 
deep decisions
Several reports in the literature have shown that one can “fool” 
a deep ANN. Targeted manipulation of a very small number 
of pixels inside an image, which is called an adversarial 
attack, can mislead a heavy‑duty deep network.[30] Apparently, 
some deep networks that act as a nonlinear and complex 
“lookup table” are prone to slipping into an adjacent cell of 
that (invisible) decision table that they implicitly store in their 
millions of weights. Such behavior is, of course, worrisome in 
the medical field. Does this imply that the minimal presence 
of noise or artifacts (e.g., tissue tears/folds, crushed cells, 
debris, and contamination[31,32]) in a deep ANN can mistakenly 
be diagnosed as cancer? The research community has still 
to find out how to create deep networks robust enough to 
avoid such mishaps. Perhaps, such uncertainty is a new 
manifestation of the old problem of “overfitting” in AI where 
a big solution swallows (i.e., memorizes) a small problem. 
Even so, verification of this new type of error is more difficult 
to deal with.

Challenge #9: Lack of transparency and interpretability
Deep ANNs have demonstrated several impressive success 
stories in object and scene recognition. However, they have 
not removed one of the major drawbacks of ANNs when used 
as classifiers, which is lack of interoperability. Some consider 
ANNs to embody a “black box” after they are trained.[33,34] 
Although researchers have started to investigate creative ways 

to explain the results of AI,[35] there is at present no established 
way to easily explain why a specific decision was made by 
a network when dealing with histopathology scans. In other 
words, the millions of multiplications and additions performed 
inside a deep ANN in order to provide an output (i.e., a decision) 
do not provide a verifiable path to understanding the rationale 
behind its decisions. This is generally unacceptable in the 
medical community, as physicians and other experts involved 
in the diagnostic field typically need to justify the underlying 
reasons for a specific decision. The pathway to a reliable 
diagnosis must be transparent and fully comprehensible. This 
is also important if a deep learning algorithm needs to be 
fixed (locked down) as well as obtains regulatory approval 
for its use in clinical practice.

Challenge #10: Realism of artificial intelligence
While there is currently much optimism that AI applied 
to pathology is going to soon deliver far‑reaching 
benefits (e.g., increased efficiency such as automation, error 
reduction and greater diagnostic accuracy, and better patient 
safety), implementing these tools so that they function 
well in daily practice is going to be difficult to accomplish. 
Reports of AI failures in health care are not necessarily 
related to failed technology but rather difficulties deploying 
AI tools in practice.[36] Pathologists’ buy‑in to employ these 
tools, irrespective of whether they intend to aid or replace 
them in practice, will depend on three key factors: (1) ease 
of use (e.g., uncomplicated preimaging demands, agnostic 
input, and generalizable, scalable, understandable output), 
(2) financial return on investment associated with using the 
app, and (3) trust (e.g., evidence of performance).

opportunItIes

Opportunity #1: Deep features – Pretraining is better
Transfer learning has gained much attention in recent years.[37] 
Customarily, one trains a deep network with a large set of 
images in a specific domain and uses the acquired knowledge 
in a different domain by either using the deep network as a 
feature extractor or by minimally re‑training it with a (small) 
set of images in the new domain to fine‑tune it for the new 
purpose.[38,39] Pretrained networks, hence, have clear potential 
for many domains including the medical field.[40] For instance, 
sentiment analysis in text documents in different domains 
can benefit from transfer learning, and features learned from 
a million natural images (animals, buildings, vehicles, etc.) 
may provide features for medical images. Moreover, some 
of the aforementioned challenges can be overcome if transfer 
learning is used instead of attempting to train a new network 
from scratch.

Opportunity #2: Handcrafted features – Do not forget 
computer vision
The success of deep learning in developing some AI algorithms 
has pushed many computer vision schemes aside, among 
others the role of incorporating handcrafted features. Many 
well‑established feature extraction methods such as local binary 
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patterns,[41] and more recently encoded local projections[42] have 
demonstrated to be at least on par with deep features and even 
better in some cases. Their behavior can be fully understood, 
their results can be interpreted (at least by humans), and their 
extraction does not need excessive computational resources 
for learning. Whereas deep learning and other AI algorithms 
are quite exotic technologies for the pathology community, 
using “projections” and other conventional technologies may 
be more in alignment with the knowledge of many medical 
professionals. Many computer vision methods that utilize 
handcrafted features (e.g., nuclear size and gland shape) can 
be much more easily employed in digital pathology to deliver 
high identification accuracies.[43‑46]

Opportunity #3: Generative frameworks: Learning to see 
and not judge
Most successful AI techniques belong to the class of 
discriminative models, methods that can classify data 
into different groups, but most commonly into two 
groups (e.g., malignant versus benign findings). Discriminative 
models are subject to most of the challenges we have already 
listed, most notably that their development needs labeled 
data. Generative models, in contrast, focus on learning to (re) 
produce data without making any decisions.[47,48] Naïve Bayes, 
restricted Boltzmann machines, and generative adversarial 
networks are examples of generative methods. If an algorithm 
can generate image data, it must have understood the image 
to be able to generate it. In general, generative algorithms 
learn joint probability (the statistics that characterize the 
image features) and guess the label (say what is in the image), 
whereas discriminative models directly estimate the class 
label. Deep generative models have been used, among others, 
for interstitial lung disease classification and for functional 
magnetic resonance imaging analysis.[48]

Opportunity #4: Unsupervised learning: When we do not 
need labels
Prior success stories for deep solutions have led to overuse 
of supervised algorithms. These are algorithms that need 
labeled data, images in which regions of interest are manually 
delineated by human experts. Unsupervised learning, however, 
has been a pillar of AI for decades that has been almost 
shoved into oblivion in recent years perhaps because of the 
impressive success of supervised AI methods.[49,50] We need 
to rediscover the potential of unsupervised algorithms, such 
as self‑organizing maps[51] and hierarchical clustering,[52] 
and adequately integrate them into the workflow of routine 
pathology practice. Since labeling images is not part of the 
daily routine of pathologists, extracting features without 
supervision (i.e., labeled data) may be very valuable.[53]

Opportunity #5: Virtual peer review – Placing the 
pathologist in the center
Putting all of the challenges and opportunities together, it is 
obvious that the pathologist should be central to both algorithm 
development and execution; we need pathologists for the 
former to validate algorithm performance, while the latter 

will serve the pathologist with some extracted knowledge. 
Instead of making decisions on behalf of pathologists, 
smart algorithms could rather provide reliable information 
extracted from proven diagnosed cases in an archive when 
they are (anatomically/pathologically) similar to the relevant 
characteristics of the patient being examined. The task of 
finding similar cases (already diagnosed and treated by other 
colleagues) can be performed using the laboratory’s archive, 
a regional archive, or even a national or global repository of 
vetted diagnosed cases. For instance, if a patient has a biopsy, 
then the diagnosis can be compared to a prior specimen for 
quality assurance purposes (e.g., comparing a cervix biopsy 
histologic diagnosis to a recent Pap test interpretation for 
real‑time cytologic‑histopathologic correlation). With AI, 
it may be more palatable to let ultimate decision‑making 
reside with pathologists and in so doing provide them with 
as much extrinsic meaningful knowledge as possible to assist 
in this process. With respect to the problem of interobserver 
variability,[54,55] accessing image data to facilitate consensus 
would be beneficial.[56,57]

Opportunity #6: Automation
AI software tools, if exploited and implemented well, 
have the possibility of handling laborious and mundane 
tasks (e.g., counting mitoses and screening for easily identifiable 
cancer types) and simplifying complex tasks (e.g., triaging 
biopsies that need urgent attention and ordering appropriate 
stains upfront when indicated). For instance, it has been 
recently demonstrated for breast cancer that image retrieval 
for “malignant regions” that “can be easily recognized 
by pathologists” can be performed by AI methods with a 
sensitivity above 92%.[58] This can certainly contribute to 
reducing the workload of pathologists and assist with case 
triage.

Opportunity #7: Re‑birth of the hematoxylin and eosin 
image
In recent years, we have witnessed an increase in molecular 
testing, sometimes in lieu of tissue morphologic evaluation. 
However, by grinding up tissue for such analyses, we risk 
losing valuable insight into histopathology (e.g., host stromal 
reaction to cancer[59]) and spatial relations (e.g., tumor 
microenvironment, immune response to neoplasia, and 
rejection in transplantation). With the advent of computational 
pathology,[60,61] especially when combined with emerging 
technologies (e.g., multiplexing and three‑dimensional 
imaging), we have the ability to more deeply analyze individual 
pixels of pathology images to unlock diagnostic, theranostic, 
and potentially untapped prognostic information. Moreover, 
most AI approaches to mitosis detection, segmentation, nucleus 
classification, and predicting Gleason scores have been using 
H and E‑stained images.[62]

Opportunity #8: Making data science accessible to 
pathologists
AI has the potential to favorably modify the pathologist’s role 
in medicine. Despite the perceived threat of AI, it is plausible 
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that AI tools that generate and/or analyze big image data will 
be a boon to pathologists by increasing their value, efficiency, 
accuracy, and personal satisfaction.[63]

summary

The accelerated adoption of digital pathology in clinical 
practice has ushered in new horizons for both computer 
vision and AI.[64,65] Because of recent success stories in image 
recognition for nonmedical applications, many researchers 
and entrepreneurs are convinced that AI in general and deep 
learning in particular may be able to assist with many tasks in 
digital pathology. However, there are no commercial AI‑driven 
software tools available just yet. Hence, pathologist buy‑in from 
the outset (i.e., even when developing algorithms) is critical 
to make sure that these eagerly anticipated software packages 
fill germane gaps without disrupting clinical workflow. What 
parts of the clinical workflow and which human tasks can be 
improved or may be even replaced by AI algorithms remains 
to be seen. The adoption of AI in pathology is certainly not 
going to be as straightforward as the current enthusiasm 
appears to suggest. Regulatory approval of AI tools is likely to 
significantly promote their adoption in clinical practice. The US 
Food and Drug Administration (FDA) has already approved AI 
apps in other fields such as ophthalmology and radiology.[66,67] 
Such FDA approval provides reassurance to both clinicians 
and patients that an AI app is trustworthy for clinical use. 
For clinicians, this implies less personal liability when using 
this tool, greater chance of receiving reimbursement, and in 
pathology less of a burden on the laboratory for self‑validation. 
However, for developers of deep learning algorithms destined 
to be submitted for regulatory clearance, greater documentation 
of their model and technical decisions is required. Furthermore, 
commercialization implications such as scaling and deployment 
of their tool will need to be taken into consideration. These 
factors, in turn, can drive up the cost of algorithm development. 
Unfortunately, the AI community has experienced several major 
setbacks in the past when promised performances could not 
be delivered leading to very pessimistic views on AI.[68,69] The 
danger of overselling AI is still omnipresent. Nonetheless, there 
is clear potential for breakthrough with AI in medical imaging, 
particularly in digital pathology, if we suitably manage the 
strengths and pitfalls.
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