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Compounds targeting microtubules are widely used in cancer therapy with a

proven efficacy. However, because they also target non-cancerous cells, their

administration leads to numerous adverse effects. With the advancement of

knowledge on the structure of tubulin, the regulation of microtubule dynamics

and their deregulation in pathological processes, new therapeutic strategies are

emerging, both for the treatment of cancer and for other diseases, such as

neuronal or even heart diseases and parasite infections. In addition, a better

understanding of the mechanism of action of well-known drugs such as

colchicine or certain kinase inhibitors contributes to the development of

these new therapeutic approaches. Nowadays, chemists and biologists are

working jointly to select drugs which target the microtubule cytoskeleton

and have improved properties. On the basis of a few examples this review

attempts to depict the panorama of these recent advances.
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Introduction

Microtubules (MTs) were first observed under a polarizing microscope in the mid-

1960s as the birefringent fibrils, which constitute the mitotic spindle responsible for the

correct segregation of chromosomes into the two daughter cells [for an historical review

see (Inoué, 1981)]. In addition to this central role in cell division, MTs are also crucially

involved in other cellular functions such as the establishment and maintenance of cell

morphology and motility. They are central players of intracellular trafficking and serve as

rails for molecular motors of the dynein and kinesin families that transport protein

complexes or vesicles over long distances (Barlan and Gelfand, 2017; Lee Sweeney and

Holzbaur, 2018). These movements are responsible for the characteristic distribution of

the endoplasmic reticulum, the Golgi apparatus and other organelles in the cytoplasm.

More recently, a role of MTs in neuronal polarity and synaptic plasticity has been revealed

(Hoogenraad and Bradke, 2009; Jaworski et al., 2009). Because of their involvement in

these key cellular activities, compounds that interfere with the function of the microtubule

cytoskeleton have been developed as cytotoxic agents to combat parasites and cancer.

Moreover, the discovery of their contribution to synaptic plasticity opens the door to new

therapeutic opportunities in the field of neuronal diseases (Andrieux et al., 2006; Baas and
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Ahmad, 2013; Eira et al., 2016; Brunden et al., 2017; Sferra et al.,

2020; Jamenis et al., 2022).

Given the multiple cellular functions of MTs and their

presence in all cell types, their therapeutic targeting

consequently induces, unfortunately, numerous undesirable

side effects such as peripheral neuropathies, neutropenia, gut

toxicity, alopecia. Moreover, the potency of clinically used

microtubule inhibitors is limited by the emergence of

resistances (Dumontet and Jordan, 2010; Yang and Horwitz,

2017).

With regard to cancer treatment, despite therapeutic

innovations such as immunotherapies or targeted therapies

(i.e., therapies that target the mechanisms by which cancer

cells develop or spread), the importance of microtubule-

targeting drugs (MTD) remains however undiminished. Given

that MTs are essential for the process of mitosis, the long-held

idea was that clinically used MTD act mainly by decreasing the

rate of excess proliferation which has been described as an

important feature of cancer progression (Komlodi-Pasztor

et al., 2011). With the hope to lower the neurotoxicity, which

is a common undesirable side-effect of these drugs, considerable

efforts have been made to develop drugs targeting proteins other

than tubulin, that are essential for mitosis. Thus, potent and

selective inhibitors of mitotic kinases, such as AurkA, AurkB, and

Plk1, or mitotic motors such as kinesin-5, CenpE, have been

developed. Unfortunately, these drugs proved to be a clinical

failure, as they induced severe neutropenia or had intestinal

toxicity at doses well below the therapeutic dose (Komlodi-

Pasztor et al., 2012; Marzo and Naval, 2013).

The clinical failure of mitosis-specific drugs contrasts sharply

with the continuing clinical success of drugs that target

microtubules, which include the vinca alkaloids, taxanes,

ixabepilone (a semi-synthetic analog of epothilone B) and

eribulin (Dumontet and Jordan, 2010; Steinmetz and Prota,

2018).

Many research efforts are being undertaken to understand

the therapeutic mechanism of action of these MTD. In particular,

proliferation measurements of cancer cells in tumors indicate

that they divide much more slowly than previously thought. The

selective targeting of cells in mitosis is therefore not compatible

with a therapeutic action: the proliferation rate paradox has been

mentioned (Mitchison, 2012). Do MTD act by targeting dividing

cancer cells and the dying cells in turn induce an environmental

change leading to the destruction of neighboring cancer cells, a

so-called bystander effect, which would allow to target more

tumor cells (Mitchison, 2012)? Do these drugs perturb other MT

functions, especially in interphase (Wang et al., 1998;

Giannakakou et al., 2000; Stone and Chambers, 2000; Ogden

et al., 2014; Mitchison et al., 2017; Smith et al., 2021)?

Other important research efforts focus on the mechanisms

leading to the adverse effects of MTD, particularly peripheral

neuropathies. In fact, not only agents targeting MTs, but also

antitumor agents with very different mechanisms of action, such

as DNA cross-linking, proteasome inhibition and

immunomodulation, induce peripheral neuropathies. Is this

the result of a shared convergent or of a different mechanism

of action?

The detailed characterization of the mechanisms leading to

tumor resistance against MTD is another current field of

research. Clearly, the more finely we dissect the role of

microtubules and the cytoskeleton in cellular functions, the

more we will be able to target diseases differentially and avoid

side effects.

With the emerging knowledge, chemists and biologists are

now working jointly to select drugs which target the MT

cytoskeleton and have improved properties. The aim of this

review is not to give an exhaustive summary of all current

developments, but rather to paint a picture of recent advances

on the basis of a few examples (Table 1).

Characterization of tubulin drug
binding sites: Targetingmicrotubules,
but differently

At first, there were six different drug
binding sites

MT-targeting agents can be broadly divided into

microtubule-stabilizing, for instance taxanes and epothilones,

and microtubule-destabilizing agents, for instance vinca

alkaloids, colchicine and eribulin. Six different binding sites

on the αβ-tubulin heterodimer have been described: four sites

(Vinca, Taxane, Maytansine and Laulimalide/Pelorusite sites) on

the β-subunit, one site (Colchicine site) at the tubulin intradimer

interface (Giraudel et al., 1998; Ravelli et al., 2004; Dorléans et al.,

2009) and one site (Pironetin site) on the α-subunit (Usui et al.,
2004; Yang et al., 2016b). Although these compounds all target

tubulin, they have different therapeutic applications, reinforcing

the interest in finding new tubulin-targeting drugs.

Here, I present recent approaches that have identified new

binding sites on tubulin, and methods to identify drugs that

target these binding sites.

And then, there were seven

The first approach (Matthew et al., 2021), carried out by

Hendrik Luesch’s team in the Department of Medicinal

Chemistry at the University of Florida in the United States,

looked for new drugs by exploring the variety of natural

substances. They collected several samples of the prolific

marine cyanobacterium Lyngbya cf. confervoides off the coast

of Florida. They then made extracts from these cyanobacteria,

which they fractionated by HPLC and the fractions were tested

for antiproliferative properties on colon cancer cells. This

Frontiers in Pharmacology frontiersin.org02

Lafanechère 10.3389/fphar.2022.969183

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.969183


TABLE 1 Chemical compounds cited in this article, listed (alphabetically) according to their mode of action.Regarding therapeutic indications, a
distinction has been made between drugs approved or in clinical trials (no question mark, source PubChem, https://pubchem.ncbi.nlm.nih.gov/)
and drugs with potential applications (question marks) according to experimental data on cells or animal models.

Compounds Target(s) Effect on
microtubules

Specific features Therapeutic
indication(s)

Main references
cited in
this review

Tubulin is the target

Benzimidazoles Tubulin (colchicine site) Destabilization Many of these compounds
show selectivity for βVI
tubulin isotype

Hematologic cancers? Montecinos et al. (2022)

Carba1 Tubulin (colchicine site) Destabilization Synergizes with paclitaxel Cancer? Peronne et al. (2020)

Colchicine Tubulin (colchicine site, at the
intradimer interface)

Destabilization Accumulates in
hepatocytes, where MT are
depolymerised

Inflammatory diseases Steinmetz and Prota, (2018);
Giraudel et al. (1998); Ravelli et al.
(2004); Dorléans et al. (2009);
Weng et al. (2021)

Dolastatin Tubulin (vinca site on β-
tubulin)

Destabilization Used in cancer treatment,
as antibody-drug conjugate

Cancer Chen et al. (2017)

Eribulin Tubulin (vinca site on β
-tubulin)

Destabilization Cancer Dumontet and Jordan, (2010);
Steinmetz and Prota, (2018)

Gatastatin γ-tubulin Inhibition of
nucleation

Only cytotoxic when in
combination with
PLK1 inhibitors

Cancer? Chinen et al., 2015 Shintani et al.,
2020; Ebisu et al. (2021)

Gatorbulin-1 Tubulin (gatorbulin site, at
the intradimer interface)

Destabilization First ligand of a new site on
tubulin

Cancer? Matthew et al. (2021)

Ixapibelone Tubulin (taxanes site on β-
tubulin)

Stabilization Active on cells
overexpressing b-III
tubulin

Cancer Dumontet et al. (2009)

Laulimalide/
Peloruside

Tubulin (laulimalide/
peloruside site on β-tubulin

Stabilization Cancer? Steinmetz and Prota, (2018)

Maytansine Tubulin (maytansine site on
β-tubulin)

Destabilization Used in cancer treatment,
as antibody-drug conjugate

Cancer Steinmetz and Prota, (2018);
Nicoletti et al. (2015)

Paclitaxel Tubulin (taxanes site on β-
tubulin)

Stabilization Cancer Dumontet and Jordan, (2010);
Steinmetz and Prota, (2018);
Perone et al. (2021)

Pironetin Tubulin (pironetin site on α-
tubulin)

Destabilization Only known pure α-tubulin
ligand. The binding is
covalent

Cancer? Usuis et al. (2004); Yang et al.
(2016b); Steinmetz and Prota,
(2018)

Todalam Tubulin (todalam site, located
partly on α- and β-tubulins,
between two longitudinally
aligned dimers

Destabilization First ligand of a new site on
tubulin

Cancer? Mühlethaler et al. (2022)

Vinca alkaloids Tubulin (vinca site on β-
tubulin)

Destabilization Cancer Dumontet and Jordan, (2010);
Steinmetz and Prota, (2018)

Selective targeting of parasite tubulin

Parabulin Tubulin of Apicomplexa Destabilization Toxic for apicomplexan
parasite T. gondii, without
harming the human host
cells

Malaria? Toxoplasmosis? Gaillard et al. (2021)

Kinase inhibitors with tubulin as an independent off-target

Buparlisib PI3K and tubulin (at the
colchicine site)

Destabilization Cancer Bohnacker et al. (2017)

LIMKi 2,
LIMKi5

LIM Kinase and tubulin Destabilization Ross-Macdonald et al. (2008)

Masitinib TKR and tubulin (indirectly) Stabilization Amyotrophic lateral
sclerosis, Mastocytosis

Ramirez-Rios et al. (2020)

Pancreatic cancer
Gastrointestinal stromal
tumor

Dog mast-cell tumors

(Continued on following page)
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allowed to isolate a cytotoxic compound, of which they

determined the structure to be a cyclodepsipeptide, that they

named Gatorbulin-1. The concentration of Gatorbulin-1 that

inhibits cell viability by 50% (IC50) was found to be in the sub-

micromolar rang (0.80 μM). Then, to prove the structure and

overcome the supply issue, which is a common problem for

natural substances, they embarked on total synthesis of the

compound and succeeded to obtain Gatorbulin-1 from

epoxysuccinic acid in 20 steps, with an overall yield of 5.6%.

After overcoming these initial obstacles of identifying and fully

synthesizing the active compound, they took on the major

challenge of identifying the compound’s target and

mechanism of action, through a rigorous “funnel” strategy,

starting from the analysis of the effect of the compound on a

large number of cell lines, indicating a cytotoxicity profile mainly

related to antimitotic agents/tubulin, then with the analysis of its

effect on cellular microtubules by immunofluorescence and

finally using pure tubulin for in vitro assembly assays. They

demonstrated that Gatorbulin-1 directly inhibits tubulin

polymerization in vitro. Then, in collaboration with the

Madrid team of F. Diaz, they obtained the structure of tubulin

in association with the compound, which revealed a new drug

binding site on tubulin, at the intradimer interface of tubulin, as it

is the case for colchicine. Thus, this integrated approach allowed

not only to enrich basic knowledge on the structure of tubulin,

with the discovery of a new, unexplored, binding site, but also the

discovery of a promising small-molecule, with a distinct

chemotype, drug-like properties and translational potential.

And now there could be twenty or more

The second approach was conducted in M. Steinmetz’s team,

at the Paul Scherrer Institute in Switzerland. Using molecular

dynamics simulation with a high-resolution crystal structure of

the αβ-tubulin heterodimer, coupled to a computational analysis,

this team identified several pockets (i.e., predicted binding sites)

on the β-subunit and on the α-subunit. Interestingly, by tracking
the exchange of atoms between adjacent pockets during the

course of the simulation, they identified communication

networks between these pockets, that predict crosstalk

between different sites.

TABLE 1 (Continued) Chemical compounds cited in this article, listed (alphabetically) according to their mode of action.Regarding therapeutic
indications, a distinction has been made between drugs approved or in clinical trials (no question mark, source PubChem, https://pubchem.ncbi.nlm.
nih.gov/) and drugs with potential applications (question marks) according to experimental data on cells or animal models.

Compounds Target(s) Effect on
microtubules

Specific features Therapeutic
indication(s)

Main references
cited in
this review

Nintedanib TKR and tubulin (indirectly) Stabilization Idiopathic pulmonary
fibrosis Recurrent non-small
cell lung cancer (with
docetaxel)

Ramirez-Rios et al. (2020)

Nocodazole ABL, c-KIT, BRAF, MEK and
tubulin (at the colchicine site)

Destabilization Mainly used as a tool to
study microtubule
functions

Park et al. (2012)

Rigosertib PLK1 and tubulin (at the
colchicine site)

Destabilization Cancer Jost et al. (2017)

Selonsertib ASK1 and tubulin (indirectly) Stabilization Non-alcoholic
steatohepatitis

Ramirez-Rios et al. (2020)

Tivantinib MET receptor tyrosine kinase
and tubulin (at the colchicine
site)

Destabilization Hepatoblastoma Basilico et al. (2013); Katayama
et al. (2013); Aoyama et al. (2014);
Wang et al. (2016)

Other drugs with tubulin as an independent off-target

Bortezomib 26S proteasomal subunit and
tubulin

stabilization 26S proteasomal subunit
and tubulin are
independent targets

Multiple myeloma Mantle
cell lymphoma

Staff et al. (2013); Meregalli et al.
(2014); Malacrida et al. (2021);
Pero et al. (2021)

Clozapine Monoamine receptors and
tubulin

destabilization Monoamine receptors and
tubulin are independent
targets

Schizophrenia Hino et al. (2022)

Drug that targets MT regulators

Pyr1 LIM Kinase (LIMK) stabilization MTs stabilization results
from LIMK inhibition

Cancer? Schizophrenia? Prudent et al. (2012); Prunier et al.
(2016a); Gory-Fauré et al. (2021)
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Since this team has developed a robust and well-

established αβ-tubulin heterodimer crystallization system

(Prota et al., 2013), they then conducted an X-ray

crystallography-based screen, by soaking individual crystals

with a library of several hundred of different small chemical

entities, called fragments. After X-ray diffraction, they solved

the structure of most of these complexes and were able to

identify 56 chemically diverse fragments that target a total of

10 different sites in tubulin. Thus, they were able both, to

experimentally validate part of their computational

predictions and to identify new potential ligands. The

whole approach, i.e., computational and crystallographic

fragment screening, identified a total of 27 distinct binding

sites on tubulin, including the major binding sites of known

tubulin-drugs. This analysis revealed 11 novel sites (four on α-
tubulin and seven on β-tubulin), that are not targeted by any

of the structurally characterized tubulin-binding drugs or

protein partners (Mühlethaler et al., 2021).

Unlike natural substances, which account for a large

proportion of anti-tubulin drugs and are often chemically

complex, fragments may represent favorable starting points

for the rapid generation of synthetic anti-tubulin lead-like

small molecules. Based on different criteria such as the novelty

of the binding site, structural considerations and the

importance of the molecular interactions between the

fragment and the site, as well as the feasibility of

synthesizing chemical derivatives, they produced different

derivatives, so as to ‘grow’ the fragments with the objective

of occupying the site cavity as well as possible. They then

tested these derivatives for their ability to affect cell viability.

While the fragments selected as starting points were not

cytotoxic, some of the derivatives showed cell toxicity at

micromolar concentrations. They further conducted a

second round of chemical optimization and obtained an

active fluorinated derivative, with a molecular weight of

377 Da, which they called Todalam. Todalam has a

particular binding site located between two longitudinally

aligned tubulin dimers, part of the Todalam binding site

being located on α−tubulin, the other on β-Tubulin.
Todalam has an inhibitory effect on in vitro tubulin

assembly, disrupts microtubule networks in cells and

arrests cells in G2/M. Thus, using a multidisciplinary

approach combining structural biology, computational

modelling, fragment screening, bio-guided and structure-

guided chemical synthesis, the proof of concept that it is

possible to synthesize a small molecule tubulin inhibitor

that binds to a new, not yet described tubulin site has been

achieved (Mühlethaler et al., 2022). Although this approach

gave promising results, it remains to be explored whether all

the identified sites represent targets for drug development.

And then, united they stand

What if, instead of targeting a single tubulin site, it were

interesting to target two different sites in order to increase

therapeutic efficacy?

This is what our team has demonstrated. We were

searching for agents capable of acting in synergy with

paclitaxel (PTX) with the goal of reducing PTX doses and

thereby its toxicity and the emergence of resistance. To that

aim, we have screened an original collection of several

thousand compounds using a cytotoxicity assay and

selected a derivative of the carbazolone series (Carba1)

able to sensitize cells to a low, non-toxic dose of PTX.

While searching for the Carba1 mechanism of action, we

were surprised to discover that this compound was able to

bind tubulin at the colchicine site and, in vitro, to induce a

dose-dependent decrease of the rate of tubulin

polymerization (Peronne et al., 2020). How is it, then, that

a MT depolymerizing agent synergizes with a MT stabilizing

agent? The answer came from studies conducted in A.

Akhmanova’s lab, in Utrecht. Using fluorescent PTX

analogs, this team has identified the presence of taxane

accumulation zones at MT ends that are transitioning

from growth to depolymerization. They found that low

non-saturating concentrations of a MT depolymerizing

agent, which enhances catastrophes, promote taxane

binding to growing MT tips (Rai et al., 2020). In

collaboration with this team, we found that such a

mechanism is at work with Carba1, thus explaining the

observed synergy (Peronne et al., 2020).

Interestingly, the synergistic effect of Carba1 with PTX on

tumor cell viability was also observed in vivo in xenografted mice

(Peronne et al., 2020).

What happens at the structural level is not completely

understood and is probably complex. It has been shown that

taxanes bind to microtubules preferentially at their growing

ends and that this binding is highly dependent on the

conformational state of these ends. Notably, taxanes would

preferentially bind to incomplete microtubule structures

present at the ends. It thus can be assumed that the

binding of a few molecules of a depolymerizing drug to the

end of the MT induces conformational changes of this end,

such as the formation of incomplete tubulin structures, e.g.,

tubulin sheets, promoting taxane-site PTX binding and MT

stabilization (Rai et al., 2020). Nonetheless, we have

demonstrated that this new mechanism favoring paclitaxel

binding to dynamic MT can be transposed to in vivo mouse

cancer treatments, paving the way for optimizing MTD-based

cancer therapies, combining low doses of MT targeting agents

with opposite mechanisms of action.
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In search of isotype-specific ligands

Several α- and β-tubulin genes exist producing different

tubulin isotypes, which are very similar but non-identical

(Little and Seehaus, 1988; Khodiyar et al., 2007; Kavallaris,

2010). These isotypes are expressed in different levels in

different tissues, and at different stages in development.

Moreover, altered tubulin isotype composition of

microtubules is emerging as a feature of aggressive and

teatment-refractory instead of treatment refractory cancers

(Kavallaris et al., 1997; Kavallaris, 2010; Parker et al., 2017).

For instance, it is well known that the upregulation of the β-
III tubulin isotype is an important resistance mechanism that

emerges in all chemotherapies employing MTDs (Dumontet

and Jordan, 2010; Prassanawar and Panda, 2019). A possible

molecular explanation of this mechanism has been provided

by Susan Horwitz’s team. They conducted a comparative

analysis of the binding of a radioactive paclitaxel analogue to

different tubulin isotypes and identified a unique Ala218 in

βIII-tubulin. Additional molecular dynamics simulations

indicated that this residue could influence the ability of

PTX to interact with its binding site (Yang et al., 2016a).

Ixabepilone, an analog of epothilone B, that

preferentially suppresses βIII-tubulin dynamics has been

reported to be more potent against cells expressing

elevated βIII-tubulin and to be active in taxane-resistant

metastatic breast cancer cells (Dumontet et al., 2009). The

recent co-crystallization of this compound with tubulin has

not yet explained its preferential action on βIII-tubulin (Xiao

et al., 2021).

An attempt to selectively target the most divergent β
tubulin isotype, known as β1 class VI (β VI-tubulin isotype),

has been recently described. This isotype is found in

megakaryocytes and platelets as well as in other blood

cells. Using a fluorescence-based competition assay the

authors compared the binding of different colchicine-site

ligands to chicken brain tubulin and chicken erythrocyte

tubulin, that contain almost exclusively chicken βVI tubulin.
They found that many of the benzimidazole class of ligands

have increased affinity for erythrocyte tubulin relative to

brain tubulin and concluded that these findings may

contribute to the development of drugs for cancers of

various hematologic tissues (Montecinos et al., 2022).

In addition to the α/β tubulin heterodimer and the

different isotypes, another member of the tubulin

superfamily is γ-tubulin, which forms a ring-like template

that initiates MT nucleation in vivo. Several studies have

suggested that γ-tubulin might be a good candidate for the

development of new anticancer drugs [for review see (Dráber

and Dráberová, 2021)]. Because γ-tubulin is structurally

quite similar to β-Tubulin, several teams have attempted

to develop specific inhibitors of γ-tubulin from known drugs

that bind to the colchicine binding site on β-Tubulin. This

approach identified gatastatin as an inhibitor with higher

affinity toward γ-tubulin compared with αβ-Tubulin
(Chinen et al., 2015; Shintani et al., 2020). However, the

cytotoxicity of gatastatin to cancer cells was relatively weak

compared with that of conventional MTD, such as paclitaxel

or vinblastine. Improved cytotoxicity was obtained when

gatastatin was given in combination with polo-like kinase

1 (PLK1) inhibitors, suggesting that this combination may

have therapeutic efficacy in cancer treatment (Ebisu et al.,

2021).

Towards evolutionary medicine:
Targeting microtubules, but
differentially

When exploiting differences in tubulin
structure allows targeting a parasite
species while protecting the human host.

Although α- and β-tubulin are highly conserved proteins, the

effects of microtubule-binding drugs vary in organisms

belonging to distinct evolutionary groups. For example, plant

tubulin and Apicomplexan tubulins have a much lower affinity

for colchicine than animal tubulin (Morejohn and Fosket, 1991).

In contrast, small synthetic molecules such as dinitroanilines

bind specifically plant and Apicomplexa tubulins but not

vertebrate or fungi ones (Morejohn et al., 1987; Hugdahl and

Morejohn, 1993; Fennell et al., 2008; Lyons-Abbott et al., 2010).

These observations imply that some structural differences do

exist in the architecture of drug-binding sites on tubulin from

plants and Apicomplexa on the one hand and mammalian

tubulin on the other hand. These differences could be

theoretically exploited to develop Apicomplexa (such as the

parasites P. falciparum and T. gondii) -specific anti-tubulin

drugs. The development of such drugs has been long

hindered, however, by a lack of structural information on

Apicomplexa and plant tubulins.

Focusing on conserved regions in plants, our team, in

collaboration with modelling scientists, attempted to predict

the structure of P. falciparum tubulin by homology modelling,

using the crystal structures of bovine and porcine tubulins as

models. We identified a “dockable” cleft corresponding to the

oryzalin binding site. A virtual library of more than

300,000 chemical compounds was then screened for its ability

to dock into the identified cleft. This approach allowed the

selection of 3,023 compounds. We then picked 82 out of these

3,023 molecules and tested them directly on tobacco BY2 cells for

their ability to depolymerize plant cell MTs, while having no

detectable effect on mammalian MTs. We selected three

compounds, that were also able to inhibit whole plant growth.

These compounds did not show any significant effect on the

assembly kinetics of bovine brain tubulin whereas they affected
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the assembly of commercially available soybean tubulin

(Cytoskeleton Inc, Denver, CO, United States). In addition,

these compounds exhibited a moderate cytotoxic activity

towards T. gondii and P. falciparum, highlighting the potential

of such novel herbicidal scaffolds in the design of future

antiparasitic drugs (Soleilhac et al., 2018).

Recently, a more direct approach has been conducted by the

Swiss team of the structural biologist M. Steinmetz and N.

Morrissette (Irvine, California, United States), a specialist of

apicomplexan parasites. Reasoning that the abundant tubulin

of the Tetrahymana thermophila ciliate had a sequence very

similar to that of the Apicomplexa, they used X-ray

crystallography and cryo-electron microscopy to resolve the

structure of the tubulin of T. thermophila. The comparison of

the details of all six known drug-binding sites on mammalian

tubulin with the equivalent regions of T. thermophila tubulin

allowed them to observe that the most prominent differences

between T. thermophila and human tubulin were located in the

colchicine site. They thus tested three well-characterized

colchicine site ligands, known to bind to distinct zones of the

large colchicine site (colchicine, combretastatin A4, and

plinabulin), for their ability to inhibit T. thermophila growth.

Colchicine was found to have no effect on the growth of T.

thermophila, whereas combretastatin A4 showed a partial growth

inhibition activity and plinabulin had the strongest effect. This

information and structural modeling guided them to identify

candidate drugs that could discriminate between protozoan and

vertebrate tubulins, from a commercially available ligand library.

The molecules showing the most favorable binding poses were

selected for in vivo testing. Among the various compounds tested,

only one compound, which they named parabulin, inhibited T.

thermophila growth. Finally, they showed that parabulin also

inhibited the growth of the apicomplexan parasite T. gondii in

human cells with an IC50 in the micromolar range, without

harming the human host cells (Gaillard et al., 2021).

Thus, based on the structural differences between human

and parasite tubulin, these two approaches have

demonstrated the possibility of targeting only parasite

tubulin, paving the way for the development of much-

needed new parasite inhibitors.

All roads lead to microtubules:
Targeting microtubules, but
unintentionally

Over the years, several enzymes have emerged as key factors

implicated in human diseases. Cellular kinases, for instance,

regulate various cell functions, and deregulation of some

kinase activities have been involved in the etiology of

numerous diseases, such as malignant, inflammatory or

neurodegenerative disorders. Thus, kinases are the focus of

intense drug discovery research, and the US Food and Drug

Administration (FDA) has so far approved 68 small-molecule

kinase inhibitors (Roskoski, 2022).

During the development of kinase inhibitors, in vitro

profiling of adverse drug reactions is routinely performed.

Panels of kinases are screened to get insight into the

selectivity of the inhibitor and targeting several kinases is

often indicative of potential toxicities leading to adverse

reactions. However, the non-kinase targets that could

contribute to the desired activity are rarely explored. Such

non-kinase targets might cause or contribute to the cytotoxic/

antiproliferative effects of anti-cancer kinase inhibitors. These

non-kinase targets often remain undiscovered, as the

antiproliferative effect of the kinase inhibitor is attributed to

the inhibition of the targeted kinase (Munoz, 2017). The advent

of automated microscopy methods, such as high content

screening, allowed pharmaceutical companies to identify such

off-targets during the process of drug development. Thus, the

biopharmaceutical company Brystol Myers Squibb (BMS), while

developing a series of LIM Kinase (LIMK) inhibitors based on an

aminothiazole scaffold, found that some of these compounds

(LIMKi 2 and LIMKi 5) depolymerized MTs, independently of

their effect on LIMK, which was responsible of their cytotoxicity

(Ross-Macdonald et al., 2008).

Such “off-target” effect has also been described after clinical

trials have begun. Indeed, an increasing list of anticancer kinase

inhibitor drugs, many of them in clinical trials, also turned out to

bind tubulin at the colchicine site, acting as MT depolymerizing

agents (reviewed in (Munoz, 2017; Tanabe, 2017; Steinmetz and

Prota, 2018)). In 2013 for instance, Tivantinib, a non-competitive

ATP inhibitor of the receptor tyrosine kinase MET, was also

found to induce microtubule depolymerization in cells. This

explains why Tivantinib was cytotoxic for cancer cells

regardless of MET expression levels (Basilico et al., 2013;

Katayama et al., 2013; Aoyama et al., 2014). Later, a structural

analysis confirmed that this compound binds to tubulin at the

colchicine site (Wang et al., 2016). Similarly, tubulin was found to

be the prime target of several kinase inhibitors such as Rigosertib,

originally identified in a screen for inhibitors of PLK1 (Jost et al.,

2017) or Buparlisib, a highly selective inhibitor of the class I

phosphoinositide 3-kinases (PI3K) (Bohnacker et al., 2017).

Why do so many kinase inhibitors also bind to tubulin? An

explanation proposed by Steinmetz and Prota is that the

colchicine site is a fairly deep, large binding pocket on

tubulin, predominantly hydrophobic in nature, which could

explain that several different types of anticancer drugs can

also bind to tubulin (Steinmetz and Prota, 2018). There may

indeed be some similarity between the binding site of drugs on

kinases and on tubulin, as nocodazole, a tubulin depolymerizing

agent that binds to the colchicine site, has also been shown to

have high affinity for several kinases (Park et al., 2012).

It is remarkable that kinase inhibitors with such dual activity,

i.e., also targeting microtubules, are all depolymerizing agents.

Certainly, the most likely cause is that the colchicine site is large
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and can accommodate the binding of many molecules. Another

possibility is that while the high content screening approaches

mentioned above can easily detect depolymerization of cellular

microtubules (Ross-Macdonald et al., 2008; Hoque et al., 2018),

they are much less suitable for detecting a stabilized MT network

on the basis of its morphology. Indeed, with the exception of

stabilization by PTX which, at high doses, induces the formation

of characteristic MT bundles, a stabilized MT network has a

morphology similar to that of a normal network. To solve that

problem, our team has developed a luminescent quantitative cell-

based assay, suitable for automation, which allows the detection

of stabilized microtubules without the need of microscopic

examination (Ramirez-Rios et al., 2020). Using this assay to

screen a kinase inhibitor library we found that several known

kinase inhibitors have the ability to potently stabilize cellular

microtubules. This includes for instance, selonsertib, an

apoptosis signal-regulating kinase 1 (ASK1) inhibitor (Loomba

et al., 2018) indicated for the treatment of non-alcoholic

steatohepatitis (NASH), nintedanib and masitinib, which are

both inhibitors of tyrosine kinase receptors (Dubreuil et al.,

2009; Papadopoulos and Lennartsson, 2018). Masitinib is

currently being investigated for the treatment of lateral

amyotrophic sclerosis and various cancers (Trias et al., 2016;

Scott, 2017; Waheed et al., 2018; Mora et al., 2019). Nintedanib is

clinically indicated to treat idiopathic pulmonary fibrosis

(Richeldi et al., 2014; Crestani et al., 2019). It is also currently

approved for use in combination with docetaxel for treating

advanced lung cancer that has progressed after first-line

chemotherapy (Reck et al., 2014). Although we further

demonstrated that none of the compounds interact directly

with tubulin, their potent stabilizing effect on cellular MTs

may account for their therapeutic effect as well as for some of

their adverse side effects (Ramirez-Rios et al., 2020).

That MTs may be an off-target or even a primary target is

true for other drugs than those targeting kinases. For example, it

has recently been shown that the antipsychotic drug clozapine,

the only effective drug for treatment-resistant schizophrenia, not

only targets a wide range of monoamine receptors, but can also

bind to tubulin and induce the depolymerization of cellular

microtubules. This could contribute to the serious non-

neurological effect, observed after treatment with clozapine,

such as the development of agranulocytosis (Hino et al.,

2022). Furthermore, this discovery reinforces the idea that

microtubules represent an interesting therapeutic target for

the treatment of schizophrenia (Marchisella et al., 2016).

It has now been demonstrated that bortezomib, a widely used

26S proteasomal subunit inhibitor, with anti-tumor activity in

hematological malignancies, also has a stabilizing effect on MTs

(Staff et al., 2013; Meregalli et al., 2014; Malacrida et al., 2021).

This effect can account for bortezomib anti-cancer activity.

Moreover, one major side effect of bortezomib is peripheral

neuropathy, a painful axonal sensory–predominant and axon

length-dependent peripheral neuropathy that affects ~40% of

bortezomib-treated patients (Meregalli et al., 2014; Kishimoto

et al., 2019). The pathogenic mechanisms leading to such

peripheral neuropathies were largely unknown until the recent

work of F. Bartolini’s team at Columbia University (Pero et al.,

2021). They showed that bortezomib caused axonopathy and

disrupted mitochondria motility by increasing a post-

translationally modified form of tubulin, delta2-tubulin, which

is a marker of hyper-stable microtubules (Paturle-Lafanechere

et al., 1994; Lafanechere and Job, 2000).

Hence, a whole range of drugs initially developed to target a

specific mechanism, turn out to have a more general action

through their effect on microtubules which may contribute to

their therapeutic effect. Clearly, as with any drug, the effects on

the organism depend on the dose, pharmacokinetics and

pharmacodynamics of the drug administered. However,

knowledge about the off-targets of these drugs is obviously

useful for interpreting the results of clinical studies, for

anticipating possible adverse effects and for the process of

designing drug combinations.

Targeting different mechanisms simultaneously to increase

the therapeutic efficacy of a drug can also be an intentionally

implemented approach. For example, given the synergistic effect

observed in combination therapies used in cancer treatment,

involving tubulin-targeted drugs and other antitumor agents

such as histone deacetylases inhibitors, DNA-damaging

agents, or topoisomerase inhibitors, many efforts are now

made to design of dual-target tubulin inhibitors [(Huang

et al., 2019; Wu et al., 2020; Noha et al., 2021; Hauguel et al.,

2022); and for a recent review see (Shuai et al., 2021)]. Compared

to combination therapies such dual drugs may theoretically offer

some advantages such as overcoming drug-resistance, superior

treatment compliance, and lower risk of drug-drug interactions.

Towards a surgical strike of diseased
cells only

Addressing the drug to the tumor

One way to address MTD directly to the tumor is to

conjugate them to monoclonal antibodies targeting antigens

expressed by cancer cells. The ultimate goal of such

antibody–drug conjugates (ADCs) is to increase the

therapeutic index of cytotoxic drugs, by the selective delivery

of the chemotherapy to the tumor, whilst sparing the healthy

tissues, thus avoiding undesired side effects. ADCs are a rapidly

expanding class of anticancer therapeutics. The ideal properties

sought for ADCs, the obstacles encountered, the solutions found

are outside the scope of this review and have been the subject of

several reviews to which the reader may be referred (Donaghy,

2016; Chen et al., 2017; Abbas et al., 2021; Dean et al., 2021).

Of the ADCs approved by the FDA for clinical use, the Ado-

trastuzumab emtansine (Kadcyla®), also called T-DM1, is a
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conjugation of a tubulin depolymerizing agent, derivative of

maytansine, to the anti-HER2 antibody trastuzumab. T-DM1

has been approved for the treatment of HER-2 positive metastatic

breast cancers (Nicoletti et al., 2015). SGN-35 is also an approved

ADC, which consists of the drug MMAE, a dolastatin-derivative

targeting the vinca alkaloid site, coupled to an antibody

recognizing the tumor marker CD30 (Chen et al., 2017).

However, these ADCs are still far from the concept of an ideal

targeted therapy and resistances to these ADCs remains a

challenge, as well as undesirable specific toxicities (ocular,

hepatic). These ADCs also often suffer from issues associated

with intratumor heterogeneity.

Thus, several other ADCs, potentially more potent and

selective are currently under development or in clinical trials

(Chen et al., 2017; Dean et al., 2021). These approaches include

the development of ADCs with dual payloads that could tackle

tumor heterogeneity and the occurrence of resistances (Yamazaki

et al., 2021).

Colchicine and inflammatory diseases:
When hitting liver cells alone generates a
systematic therapeutic effect.

An unexpected local pharmacology has been recently

described that explains the well-known anti-inflammatory

effect of colchicine. Colchicine was one of the very first drugs

identified as targeting tubulin. In fact, it was rather the opposite:

it was because tubulin behaved as a colchicine-binding protein

that it was isolated and identified as the constituent protein of

microtubules by G. Borisy and E. Taylor in 1967 (Borisy and

Taylor, 1967). Extracts of Colchicum autumnale have long been

used in traditional medicine. Pure colchicine is still used today

for the treatment of inflammatory diseases such as gout,

pericarditis or familial Mediterranean fever. More recently, it

has been shown that a low-dose of colchicine combines anti-

inflammatory action with a favorable safety profile in COVID-19

patients (Deftereos et al., 2020; Schlesinger et al., 2020). The

narrow therapeutic window of colchicine limits its use for the

treatment of other diseases such as cancers (Finkelstein et al.,

2010).

It has long been thought that colchicine acts by

depolymerizing the microtubules of circulating myeloid

cells, preventing their recruitment to the tissues where

inflammation occurs. However, this interpretation could

not be reconciled with the fact that only the microtubules

of myeloid cells are targeted; indeed, colchicine at safe

effective doses lacks anti-mitotic side effects, such as

neutropenia and alopecia. Moreover the concentration of

colchicine measured in the plasma of patients after

administration of an effective dose is much lower than the

concentration necessary in vitro to block neutrophil

chemotaxis (Weng et al., 2021).

An elegant explanation for this paradox was recently

provided by T. Mitchison’s team at Harvard Medical School.

They demonstrated, in mice, that colchicine accumulates

selectively in the liver where it depolymerizes the

microtubules of hepatocytes only. Indeed, hepatocytes are

specialized in the clearance of xenobiotic compounds and

express drug transporters that concentrate them. This selective

accumulation of colchicine in hepatocytes induces

Nrf2 activation, leading to secretion of hepatokines, which, via

the bloodstream, will exert a systemic anti-inflammatory action

(Weng et al., 2021). Thus, the locally occurring accumulation of

colchicine in the liver, is central to the colchicine therapeutic

action. Although this new, indirect mode of action of colchicine

has not yet been validated in humans, the concept that a molecule

can systemically modulate the immune system by inducing

hepatokines has broad implications for the pharmacology of

compounds which enter the blood and act in the liver (Shi et al.,

2021).

Perspective: Exploiting the differences
between diseased and normal cells/
organs

In cells, MT dynamics is tightly regulated by a balance

between the activities of MT stabilizing and destabilizing

proteins (Lieuvin et al., 1994; Andersen, 2000; Gache et al.,

2005; Komarova et al., 2005; Niethammer et al., 2007). For

instance, the interaction of the microtubule growing tip with

proteins such as CLIP-170 results in microtubule stabilization

(Small and Kaverina, 2003; Akhmanova and Hoogenraad, 2005).

The binding of such proteins to tubulin is tightly regulated either

by their phosphorylation/dephosphorylation (Cassimeris and

Spittle, 2001; Johnson and Stoothoff, 2004) or by tubulin

modifications such as the modifications induced by the

tubulin tyrosination cycle (Peris et al., 2006, 2009; Verhey and

Gaertig, 2007; Barisic and Maiato, 2016; Pero et al., 2021).

Targeting a regulatory protein of MT dynamics which is more

expressed or more active in diseased cells or in tumors represents

an interesting alternative therapeutic strategy. Indeed, this could

improve the selectivity of the drug towards diseased organs or

tumors and thus offer a significant therapeutic window.

LIM Kinases (LIMKs) are such regulatory enzymes. They

regulate the architecture of the actin cytoskeleton by

phosphorylation and inactivation of cofilin (Scott and Olson,

2007). LIMKs also regulate microtubule dynamics (Gorovoy

et al., 2005; Prudent et al., 2012; Ray et al., 2014; Mardilovich

et al., 2015), but whether this regulation occurs through a direct

binding of LIMKs to microtubules (Bhardwaj et al., 2014) or

through phosphorylation of an associated protein is still under

debate (Pleines et al., 2013; Prunier et al., 2017).When LIMKs are

inhibited, microtubules are stabilized and actin microfilaments

are severed and disorganized (Prudent et al., 2012; Mardilovich
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et al., 2015). Interestingly, expression of LIMKs or cofilin

phosphorylation are elevated in numerous tumors (Davila

et al., 2003; Okamoto et al., 2005; Bagheri-Yarmand et al.,

2006; Ahmed et al., 2008; McConnell et al., 2011; Manetti,

2012; Park et al., 2014). In breast cancer models, activation of

LIMKs is the last step of an integrin-linked machinery of

cytoskeletal regulation that enables tumor initiation and

metastatic colonization (Shibue et al., 2013). Thus, LIMKs are

enzymes whose activity is elevated in cancers compared to

normal tissue. Consequently, their inhibition could selectively

target tumors. Indeed, inhibition of LIMK activity using RNAi or

pharmacological inhibitors efficiently reduced the growth of

tumor cells and their pro-invasive properties in vitro (Li et al.,

2013a; Prunier et al., 2016a). Also, tumors expressing dominant-

negative LIMK1 growmore slowly and are less metastatic in mice

(Li et al., 2013a). However, contradictory results have been

obtained in animal models with different pharmacological

inhibitors of LIMKs. Thus, the Pyr1 inhibitor shows strong

anti-tumor activity in a leukemia model (Prudent et al., 2012)

and in various breast cancer models (Prunier et al., 2016a). In

contrast, a LIMK inhibitor developed by BMS (BMS3 or

LIMKi3), has no anti-tumor effect when administered in vivo

to mice bearing xenografted breast cancer tumors (Li et al.,

2013b). These differences may be explained by differences in

the selectivity profile of the inhibitors, by differences in the

pharmacokinetics and pharmacodynamics of the inhibitors, or

by differences of the sensitivity of the cell lines xenografted into

the mice.

Interestingly, the Pyr1 inhibitor did not induce detectable

adverse effects in these animal models, contrary to PTX, and was

found active also on PTX -resistant tumors (Prunier et al., 2016b;

2016a), indicating that such a therapeutic strategy could

represent a useful alternative for cancer treatment.

Cytoskeleton-related neuronal defects are landmarks of

psychiatric disorders, in particular schizophrenia (Benitez-

King et al., 2004; Fromer et al., 2014; Marchisella et al., 2016).

Moreover, in patients with schizophrenia, LIMK was found to be

deregulated (Datta et al., 2015; Zhao et al., 2015), making this

enzyme a potential pharmacological target. This hypothesis has

been tested by administration of the Pyr1 inhibitor in MAP6 KO

mice, an animal model useful for the study of psychiatric

disorders, particularly schizophrenia (Andrieux et al., 2002;

Begou et al., 2008; Fournet et al., 2012; Volle et al., 2012;

Jonckheere et al., 2018). It was found that chronic LIMK

inhibition by long-term treatment with Pyr1 can restore

synaptic plasticity and alleviates some behavioral defects in

MAP6 KO mice, thus validating the hypothesis that

modulation of LIMK activity could represent a new

therapeutic strategy for neuropsychiatric diseases (Gory-Fauré

et al., 2021).

The detyrosination-tyrosination cycle of tubulin is another

regulatory mechanism of MTs (Barra et al., 1988; MacRae, 1997;

Janke and Bulinski, 2011; Nieuwenhuis and Brummelkamp,

2019). This cycle begins with the cleavage of the C-terminal

tyrosine of α-tubulin by a carboxypeptidase (TCP) and the re-

addition of this amino acid to the carboxy-terminus by a ligase,

the tubulin tyrosine ligase (TTL). The tyrosination reaction is

specific for tubulin, it has never been observed for any other

known protein. The enzymatic cycle generated by the successive

action of TCP and TTL generates two forms of tubulin,

tyrosinated tubulin and detyrosinated tubulin. A third form of

tubulin, delta2-tubulin, lacking the two last C-terminal amino

acids, is an irreversible tubulin post-translational modification

and a marker of hyperstable MTs (Paturle-Lafanechere et al.,

1991, 1994; Lafanechere and Job, 2000).

Tyrosinated tubulin and detyrosinated tubulin are

important regulatory signals for mitosis (Badin-Larçon

et al., 2004; Peris et al., 2006; Barisic et al., 2015), neuronal

physiology (Konishi and Setou, 2009; Marcos et al., 2009;

Gobrecht et al., 2016) and muscle mechanotransduction

(Belmadani et al., 2004; Kerr et al., 2015; Robison et al.,

2016). Consequently, abnormal levels of detyrosinated

tubulin are associated with cell transformation and tumor

aggressiveness (Lafanechere et al., 1998; Mialhe et al., 2001;

Kato et al., 2004; Soucek et al., 2006; Seve et al., 2008; Whipple

et al., 2010), neuronal disorganization, synaptic function and

neuronal disease (Erck et al., 2005; Peris et al., 2022), heart

failure and cardiomyopathies (Belmadani et al., 2004; Robison

et al., 2016). Thus, pharmacological inhibition of TCP, to

decrease the amount of detyrosinated tubulin and restore

normal levels of tyrosinated tubulin should interfere with

pathological processes (Chen et al., 2018). Previously,

parthenolide, a poorly selective (Hotta et al., 2021) TCP

inhibitor was discovered by screening a collection of a

chemical library of natural extracts using a cell-based assay,

which detects the abundance of detyrosinated tubulin

(Fonrose et al., 2007). However, the search for new, more

specific TCP inhibitors was hampered by a lack of knowledge

about the identity of this enzyme. After more than 40 years of

research, the molecular nature of this enzyme was recently

discovered (Aillaud et al., 2017; Nieuwenhuis et al., 2017) and

knowledge of its structure (Adamopoulos et al., 2019; Li et al.,

2019; Wang et al., 2019) should now facilitate the search for

more selective inhibitors. Yet, since then, another enzyme

with TCP activity (Landskron et al., 2022) has been described,

which broadens the field of research for such inhibitors and

will require clarification of their therapeutic applications.

Besides the above-described examples, the list of new

therapeutic targets is growing steadily - as for instance

disrupting the microtubule-dependent machinery

underlying cancer cell migration/adhesion to combat

metastasis (Rafiq et al., 2019)—with the detailed

knowledge of microtubule functions and their

dysregulation in pathologies. This should make it possible,

in the medium term, to offer doctors new, more targeted

treatments.
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Discussion and conclusion

In this review, I have illustrated, on the basis of examples,

the variety of pharmacological approaches currently in

development to target microtubules.

The direct targeting of microtubules, with new chemical entities

and at new sites, remains of major therapeutic interest, especially as

an alternative to the emergence of resistance in cancer treatment.

Moreover, the fact that different sites can interact may allow us to

imagine original therapeutic combinations, which remain to be

explored. Finally, having access to molecules with different,

possibly weaker, affinities for tubulin may represent a therapeutic

interest, both to limit the side effects and to be used in

combitherapies. Such combination therapies may also be of

interest for targeting tumor heterogeneity.

The discovery that some kinase inhibitors also target

microtubule dynamics may help to predict/understand

some of their adverse effects. These inhibitors may also

represent novel scaffolds for the synthesis of agents that

more selectively target tubulin. Moreover the develoment of

dual-drugs may lead to improved therapeutic efficacy.

However, the growing knowledge of the different

mechanisms by which microtubule functions are regulated

and how they are altered in disease now allows for more

targeted therapeutic strategies. In contrast to drugs that

directly target tubulin, these promising approaches should

reduce the adverse effects resulting from targeting other

microtubule functions. The pioneering approaches of this

type that we have carried out show increased therapeutic

efficacy in animal models and no detectable adverse effects

(Prudent et al., 2012; Prunier et al., 2016a; Gory-Fauré et al.,

2021). Given the limitations of animal models, and the many

pitfalls that drug development must overcome, one must

necessarily be cautious. In fine, only a therapeutic

improvement observed in the human clinic will validate

these approaches.

Finally, this review represents only a partial snapshot of

the current knowledge in this field. It is a landscape that is

constantly reshaping itself, offering new perspectives. For

instance, understanding not only how microtubules are

deregulated in diseased cells, but also how they respond to

changes in the diseased microenvironment should pave the

way for exciting new therapeutic avenues.
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