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Abstract

Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when
summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as
horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets.
Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To
address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we
introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree
alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized
to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical
datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life
project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule
consensus tree analyses can be understood in more detail within the context of a graph structure, using measures
incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed
from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent
comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and
where the underlying source information can be updated. The methods presented here are tractable for large scale analyses
and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these
graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.
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Introduction

Evolutionary biologists use phylogenetic trees to conceptualize,

visualize, and analyze the relationships among biological lineages.

However, when examining trees from individual datasets (e.g.,

posterior distribution of trees, bootstrapped trees, individual gene

trees) or multiple partially overlapping datasets, topological

conflict is inevitably present. Conflict resulting from incomplete

lineage sorting, horizontal gene transfer, and hybridization, as well

as uncertainty due to lack of phylogenetic signal, provide reasons

to consider alternatives to strictly acyclic data structures for

analysis and/or visualization [1–3]. While trees perform well for

many analytical purposes, practical and biological reasons exist to

explore other potential models for encoding information about

evolutionary relationships [4]. Here, we examine methods for

combining trees into a graph datatype while retaining all of the

original information from the source phylogenies.

The need to visualize and analyze variability among phyloge-

netic trees has fostered the development of many methods,

including consensus trees, cloudograms, concordance analysis,

bipartition support, splits graphs, and supertree algorithms [4–10].

Huson and Scornavacca [11] review a number of phylogenetic

network methods that make use of graphs of higher complexity

than strictly-bifurcating trees. Many of these attempt to infer a

network structure from a sequence alignment instead of aligning

source trees into a common structure. Other methods, used to

identify hybridization and recombination events, recognize

conflict in source trees. However, like network methods, they

explicitly assume specific biological events to be the source of the

conflict. Although many of these methods continue to be useful in

exploring certain events, they do not fully retain the structure of

the original source trees in the output statistics or summary

networks.

Phylogenies can also be combined to construct a synthetic tree

from source trees with partially overlapping taxon sets. Supertree

methods are commonly used for this purpose [5,12,13]. These

methods often produce a tree or trees (the supertree) intended to

represent the relationships supported by the input trees. Although

this has been demonstrated to be useful in many studies [14–16],

one drawback of supertree methods is that the identifiability of the

source trees themselves is lost in the supertree-building process.

Furthermore, supertree methods can reconstruct relationships that

are not found in any of the input trees [17] making it difficult to

interpret the source for such relationships. In addition to these
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criticisms, supertree methods are not explicitly targeted toward the

exploration of variability among the input trees. One recent

supertree method [18] makes explicit use of a graph to construct a

supertree from source trees that sample nodes from different

taxonomic levels. The graph structure in this method functions as

an temporary intermediate step. In the Berry et al. [18] graphs,

nodes and edges from source trees are mapped in a way that

facilitates the extraction of the supertree from the graph, but the

semantic identity of nodes and edges is different in the graphs than

it is in the source trees (for instance, sibling nodes in source trees

are directly connected by edges in the graph). In addition to

addressing supertree analyses and bootstrap or posterior proba-

bility summaries, the benefit of more generalized data structures

for combining trees can simplify practical exercises such as tree

grafting [19] and comparisons among trees with fully or partially

overlapping tip sets.

Existing solutions to both the tree synthesis and exploration of

conflict problems involve analyses that result in a tree or set of

trees that contain nodes and edges that are difficult to trace back to

the source. Whether because of lack of available database

technology or somewhat different goals, the problem of mapping

a set of trees, while retaining all of the original information, into a

common structure is not often addressed.

We present a set of methods intended to facilitate generalized

analyses involving potentially conflicting phylogenetic trees with

fully or partially overlapping sets of taxa. These methods address

the problem of identifying common nodes and edges across sets of

phylogenetic trees and constructing a data structure that efficiently

contains this information while retaining original source informa-

tion. We achieve this with algorithms that align trees into a graph

structure called a tree alignment graph (TAG) and stores this

information so it can be queried. These methods, which align and

identify equivalent nodes across trees or graphs, fall within a class

of methods known as graph alignment, and are analogous to the

alignment methods of other domains [20–22]. The goals achieved

by aligning trees into a TAG are distinct from the amalgamation

of sets of trees into a single tree (e.g. supertree methods), though, in

addition to many other analyses, TAGs can be used to facilitate

supertree and grafting exercises. As mentioned above, Berry et al.

[18] have also examined placing trees into graphs for the specific

purpose of constructing supertrees. The methods presented here

are intended to be more generally applicable and provide

additional means for storing and querying. Other uses of TAGs

include mapping uncertainty across trees, synthesis and extraction

of a diverse set of summary trees, and more extensive queries that

have previously been difficult to address.

Mapping trees into a TAG exploits the fact that rooted

phylogenetic trees are in fact a specific type of graph: they are

directed, acyclic, and require that each node has, at most, one

parent. By relaxing these requirements, we can combine multiple

trees into a common graph, while minimizing changes to the

semantic interpretations of nodes and edges in the trees. Because

they contain nodes and edges directly analogous to those from

their source trees, TAGs have the desirable quality of retaining the

full identifiability of the original source trees they contain.

Additionally, because they are not restricted to the bifurcating

model of evolution, TAGs may represent conflict among source

trees as reticulations in the graph. Despite having higher

complexity than trees, the graphs we present are amenable to

fast traversals and straightforward interpretations regarding the

evolutionary relationships they imply. In addition to the extraction

of synthetic trees by customizable queries, TAGs also support the

extraction of the original source trees themselves for the purposes

of further analysis or updating.

Here we provide a description of the TAG datatype and some

associated analyses. We also demonstrate the alignment of

disparate phylogenetic trees with partially overlapping sets of

terminal nodes into a graph, the exploration of conflicting and

complementary hypotheses of ancestry defined by the input trees,

and the extraction of synthesized trees summarizing compatible

relationships from multiple input source trees.

Methods

The goals of aligning trees into a common graph are to 1)

efficiently store potentially conflicting hypotheses about evolution-

ary relationships and 2) provide a framework by which informa-

tion encoded in the source trees can be synthesized to test and

develop evolutionary hypotheses. There are potentially many ways

in which trees can be aligned into a graph. Here we describe ways

to align trees into a TAG for partially and fully overlapping taxa.

We will use Figure 1 as a motivating example. First, showing the

mapping of fully overlapping taxa (Figure 1A), then partially

overlapping taxa (Figure 1B), and finally synthesis of the graph

into a tree (Figure 1C).

Definitions
The procedures discussed below require as input a set of rooted,

acyclic, n-furcating source trees X~fx1,x2,:::,xag, whose terminal

nodes are labeled according to a common convention (see below).

A source tree, xi, may typically be a phylogenetic tree but can be

any hierarchy implying ancestry (e.g. a taxonomic classification).

The complete set of source tree nodes from X is defined as V , with

each tree xi containing a set of nodes Vi~fvi1,vi2,:::,vibg. A

branch extending from node vij to parent node vik in source tree xi

is defined as bijk. The set of all branches in the set of all sources

trees X is defined as B.

The graph Y (Q,E) defines a common data structure into which

the complete set of trees X are aligned. We define the set of nodes

Q~fq1,q2,:::,qkg in the graph Y to represent the set of realized

hypothetical ancestors for the lineages exemplified in the set of all

source tree nodes V . Each node vij from a source tree xi is aligned

Author Summary

Phylogenetic trees are the most common datatype by
which we examine evolutionary patterns. However, bio-
logical and practical considerations require the exploration
of other models. Here, we address a problem concerning
the representation of conflicting and partially overlapping
datasets in phylogenetics. We examine the problem of
aligning many source trees from independent phyloge-
netic analyses into a structure that can be analyzed and
synthesized but retain all of the original structure and
source information. We present methods to map trees into
a common graph structure using a graph database. This
allows the information in the trees to be stored and
synthesized in several ways. Specifically, we demonstrate
how these graphs can be used to construct enormous
trees as an alternative to labor-intensive grafting exercise
and other methods that make the synthetic tree difficult to
update. We also show how examination of the relation-
ships in the graph allows patterns to emerge concerning
support and information that are difficult to discern with
existing methods. Because these methods scale well into
the millions of nodes, these techniques should lead to the
construction and maintenance of even larger phylogenies
and new techniques for analyzing graphs that maintain
the structure of the underlying trees.

Synthesizing Phylogenies with Graphs
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to at least one node in the graph qo. The edges connecting nodes

Q in Y are enumerated in the set E~fe1,e2,:::,edg.
A least inclusive common ancestor (LICA) is an internal graph

node to which internal source tree nodes can be aligned (Figure 1).

Taxonomic requirements
For multiple trees to be combined, they must all subscribe to a

consistent taxonomic naming convention. For simplicity we use

labels on the trees as identifiers, though the use of node labels as

unique identifiers introduces potential problems regarding lineage

identifiability when data from sources using different naming

conventions (i.e. taxonomies) are combined. To alleviate these

problems, one could use defined identifiers (e.g., global unique

identifiers). When using labels to match nodes, all node labels in

each input tree are required to be unique. Before source trees are

added, the TAG will be loaded with a taxonomy, either with a

hierarchy or with no additional information (i.e. where each

terminal node is connected to a root node). This provides the

graph with the complete set of node labels.

Overlapping taxon sets
Suppose we want to combine three trees each with the same

four taxa: a,b,c, and d (Figure 1A). First, each terminal node in

each input source tree is aligned to a graph node based on the

node labels. The taxonomy is not shown in Figure 1A to reduce

clutter, but is shown as the grey tree in Figure 1B.

After terminal nodes are aligned, internal nodes of each source

tree are aligned to nodes identified as LICAs in the TAG. When

the taxa are completely overlapping in source trees, a TAG node is

a LICA for an internal node in a source tree if the descendants of

the graph node (a) include all terminal descendants of the source

tree node and (b) does not include any terminal descendants of the

Figure 1. Mapping schematic. A basic schematic of the results of mapping and synthesis. A) Three source trees with completely overlapping
taxon sets (left) mapped into a graph (right). The colored edges in the graph correspond to the source trees on the left, with graph nodes
represented as gray circles. Internal graph nodes represent least inclusive common ancestors (LICAs), and are labelled with their descendant terminal
taxa. B) A grey taxonomy hierarchy and additional green source tree added to the black, blue, and orange trees from A. The relationships presented in
the black, blue, and orange trees are in light grey to cut down on clutter. C) A synthetic tree resulting from preferring source blue, green, and
taxonomic source trees.
doi:10.1371/journal.pcbi.1003223.g001

Synthesizing Phylogenies with Graphs
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source tree excluding those contained within the current source

tree node. To state that more technically, we need to define some

terms. Let Aj be the set of all subtending nodes arising from an

internal source tree node vij . Let Aj’ be the set of nodes in the

source tree xi that are not descended from vij . Let Aq be the set of

all subtending nodes arising from a TAG node q. A TAG node in

the set of TAG nodes Q will be a potential LICA if Aj(Aq and

Aj’\Aq~1. An alternative LICA mapping technique is

described below. If no graph node represents a valid LICA for a

given source tree node vij , then a new graph node is created and vij

is aligned to it. When mapping the first input tree x1 into an empty

TAG, a new graph node will be created for every node in x1,

leading to the exact duplication of x1 in the graph Y . If a LICA is

not found a new one is created.

As the set of all input source tree nodes V are aligned to LICA

graph nodes in Q, appropriate edges E are created. Edges in E are

directed, from children to parents, and individual input branches

are mapped directly to one edge (that is, an identical branch from

two input trees will be represented by two parallel graph edges).

Upon these edges, any amount of branch- or tree-specific

metadata may be stored (e.g., branch lengths, branch labels,

bibliographic citations, dataset information, inference techniques).

Given this structure, the TAG provides lossless storage of all

source data. Tree-wise metadata about a source tree may be stored

as a property of the source tree root node in the graph. This

includes, at a minimum, the set of all terminal node labels that

occur in that source tree, but could also include any other

information such as provenance, taxonomic scope, authorship, etc.

These properties may be queried to return information about (and

handles to) source trees stored in the graph, thus providing lossless

storage and queryable access to the source trees themselves (within

the TAG). With this framework, as demonstrated in Figure 1A, we

can align multiple trees with overlapping taxon sets into a graph.

Partially overlapping taxon sets
In addition to aligning trees with completely overlapping taxon

sets, we may align trees with partially overlapping taxon sets

(Figure 1B). This example includes a taxonomy (the gray tree) with

two internal node names (x and y), the three source trees from

Figure 1A, as well as an additional green source tree. For partially

overlapping taxon sets, depending on the nature of the overlap

and conflict, we can use the procedure described above, or we can

align source tree nodes to LICAs in the TAG using slightly

modified criteria. This modified criteria includes recording the

bipartion, including the information on the taxa subtending the

TAG node, as well as the taxa that must be excluded. Therefore

the bipartition LICA requirement is as follows. As with above, let

Aj be the set of all subtending nodes arising from an internal

source tree node vij and Aj’ be the set of nodes in the source tree xi

that are not descended from vij . Let Aq be the set of all subtending

nodes arising from a TAG node q and Aq’ is the set of nodes that

are recorded to not be descended from q. A TAG node is then a

potential LICA if Aj\Aq=1, Aq\Aj’~1, and Aq’\Aj~1.

This procedure also requires that all lineages from the source tree

be represented in the set of source trees that make up the TAG

LICA. The procedure for overlapping taxon sets assumes that any

taxa not within a clade are in the other partition. That is not the

case for this procedure and so we record what members of the

other bipartition have been realized. When there is incomplete

overlap in taxa sampled among the source trees the LICAs may

partially overlap (e.g., the LICA for a,d in the green tree is the

same graph node as the LICA for a,b,c,d in the black, blue and

orange trees). It may be the case, with partially overlapping taxon

sets, that a node in set of graph nodes Q and its parent are both

LICAs. In these cases, the LICA is mapped to the shallowest node.

It is also possible that multiple LICAs will be found, in which case,

each will be mapped. For a specific source tree node this can occur

when multiple LICAs contain all of the subtending nodes for the

source tree node, but also contain sets of additional nodes that are

not present in the source tree.

For partially overlapping taxon sets, the order of trees can

influence the alignment of trees into the TAG because of the order

of new nodes created. As source trees are aligned into the TAG,

graph nodes may be created which represent new LICAs for nodes

from previously imported source trees, and in some cases may

invalidate LICA mappings for previously added nodes. For

example, this can occur when an input tree node vij in a source

tree xi is aligned to a graph node whose subgraph contains

terminal nodes not aligned to any nodes in xi. So, vij contains a

subset of the taxa that are associated with the current LICA(s). A

source tree may be added later that necessitates the creation of a

new graph node that is aligned to all the descendant terminal

nodes of vij , but which is nested shallower than the current LICA

of vij . In this case, vij should be re-aligned to the new TAG node.

This order-dependence can be overcome, however, by re-aligning

the nodes from a source tree. We do this by re-processing source

trees once all have been added to determine if there are better

LICA mappings, and the final structure is independent of the

order of addition. This final graph is what is seen in Figure 1B.

TAG synthesis techniques
Many operations and queries can be conducted on a graph with

trees aligned as shown in Figure 1. One common operation is

synthesis of the TAG. By synthesis, we mean the selection of

relationships in the graph either by filtering or other procedure to

produce a synthetic or composite tree. There are a number of

different ways to synthesize the TAG and here we describe a few

including (1) preference for specific source trees, (2) preference for

more highly supported nodes, and (3) routes with a maximum

number of taxa using a branch-and-bound optimization. In

Figure 1C, we show the result of one synthetic analysis on the

graph where we prefer source trees and specifically (in order) blue,

green, and taxonomy source trees.

In each case, synthesis begins by identifying a starting node. For

example, this may be a particular clade identified by name or by

its set of descendant terminal nodes (i.e. the identification of a

LICA). To make a tree from an entire TAG the procedure starts at

the root node. From this focal node, it proceeds breadth-first in

determining which nodes to include in the synthesis as we traverse

the TAG. At each node, the procedure examines the subtending

nodes, and determines if any of them conflict. For synthesis,

downstream conflict is determined by comparing the LICAs for

each child. If the LICAs from nodes subtending the current node

overlap, then these descendant subgraphs define incompatible

subtrees, and are said to be in conflict (see the sections on

measurements of support and conflict for an alternative method of

detecting such conflict). In such cases, the procedure must make a

decision about which path to prefer. In Figure 1C, we prefer

specific source trees, but there are many criteria that can be used

to inform these decisions. The resulting synthetic tree in Figure 1C

is a composite of the source trees stored in the TAG. Because of

the mapping of the source trees to common graph nodes, the

synthetic tree includes the internal node names that originate from

the taxonomy. Although we present a tree as the result of synthesis,

there is no requirement that the synthetic product be a tree.

However, a tree will likely be a more common product.

Synthesizing Phylogenies with Graphs
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Preferring certain source trees. One of the simplest but

most useful methods for constructing a synthesized tree is to prefer

paths from specific source trees included in the graph. This

procedure can generate a tree that is entirely congruent with the

most-preferred source tree, but which may contain more lineages.

In fact, the synthetic tree will contain terminal lineages from all

other source trees in the TAG that are compatible with the

preferred set. This procedure requires the identification of a

preferred list of source trees, sorted by preference. The trees in the

preferred list are consulted in order, and any conflicts among them

are resolved in favor of those with higher positions in the list. This

procedure could easily be extended to use any kind of source tree

metadata, such as pre-calculated node support (e.g. posterior

probabilities, bootstrap proportions), presence or absence of

branch lengths, or other properties.

Preferring better-supported nodes. Properties such as

node and edge support can also be used to resolve conflict. In

the examples below, node support sq is measured as the proportion

of source trees in which the given node is observed. In a TAG

constructed from source trees with completely overlapping

terminal node sets, the proportion of trees exhibiting a node is

the number of outgoing branches (these point to the parent of the

specified node). In TAGs containing source trees with incom-

pletely overlapping terminal node sets, node support for a given

node q must be corrected to reflect (1) the number of source trees

containing any node that may be mapped to q, and (2) the

potential that the parent of q in some source tree could have been

aligned to more than one LICA. In this case, sq is the number of

source trees associated with the set of outgoing edges of q, divided

by the number of source trees containing any terminal node

aligned to any descendant of q (these are the source trees that

could be aligned to q).

In a support-based tie-breaking procedure, preference is given

to the node with the highest support. In datasets with completely

overlapping taxon sets, the nodes chosen by this procedure are

frequently the same as those chosen by a traditional consensus tree

analysis. However, this is a greedy procedure and does not

guarantee that the resulting synthetic tree is the best supported

tree. Differences between a majority-rule consensus and a best-

support synthesis tree will lie mostly in poorly supported areas of a

tree.

Preferring complete trees using branch and bound

optimization. When constructing a synthetic tree from a

TAG containing conflict, one challenge lies in maximizing the

number of the terminal nodes that will be present in the final

synthetic tree. The worst-case for this problem is presented when

no additional information is provided to break conflicts. In a

general sense, this is related to a classic set cover problem (Aho et

al., 1974), and is likely to be NP-complete. The solution can be

greatly simplified by specifying other properties (such as those

mentioned in the previous two sections) with which to break

conflicts. In lieu of such specified properties, however, we present a

branch-and-bound approach to attempt to maximize the number

of terminal nodes in the synthesized tree. There are two

implementations of this algorithm: in the first, the bound is based

on minimizing cost; in the second, it is based on maximizing

scores. The algorithms are presented in the supplemental

materials.

Measuring support and conflict within a TAG
In simple examples as in Figure 1, conflict and support is easy to

observe. For more complex TAGs, such as the angiosperm TAG

described below, we can calculate node- and edge-based statistics

on the graph Y to describe support and conflict throughout. Node

support is calculated as the number of source trees aligned to the

focal graph node, scaled by the number of source trees that could

be aligned to that node (i.e. contain overlapping taxon sets). Edge

support, sq0 Dq1
for the edge between the child node q0 and its

parent q1, is calculated in a similar fashion to node support: it is

the number of times that edge is observed (i.e. the number of

exactly parallel graph edges between the same parent and child

nodes) scaled by the number of source trees in which that edge

may be observed.

Complementary to edge-based metrics of support, node-

degree (the number of nodes adjacent to a focal node) reflects

node-based conflict and uncertainty. As a TAG is a directed

graph, we partition node-degree into 1) child- and 2) parent-

node relationships. Simple child- or parent-degree counts are

not directly informative, as node relationships can be supported

to different extents (i.e. by the number of source trees exhibiting

the relationships). Because all node relationships from all input

source trees are preserved in the graph (even identical

relationships), we can instead calculate the effective number ( ~NN)

of directed node relationships. Consider a focal graph node q
with n parent nodes, but m § n parent-node relationships (that

is, q is present in m source trees, all of which may potentially

differ in taxon overlap). Each parent node ni is supported by

some proportion pi of the m trees. The effective number of

parent nodes for q is given by:

~NNparents(q)~
1Pn

i~1 p2
i

ð1Þ

The effective number of child nodes ~NNchildren(q) is calculated

similarly, dealing with the number of child nodes and child-node

relationships. This metric corresponds to the inverse Simpson

diversity index (Simpson, 1949), and is larger when directed node

relationships are more evenly supported. For example, a graph

node with two parent nodes each supported by 500 trees will have

2 effective parents, whereas another graph node with one parent

supported by 999 trees and another parent supported by 1 tree will

have 1.002002 effective parents. Note that terminal graph nodes

possess no children, and the root graph node has no parent. In

general, ~NNchildren reflects phylogenetic uncertainty (or lack of

information), while ~NNparents reflects immediate topological conflict

(e.g. when a node has 2 or more parent nodes; Figure 1A). In a

fully bifurcating TAG, each internal node will have ~NNchildren~2

and ~NNparents~1. Note that in the tree synthesis procedures above,

an overlap of LICA descendants indicates that one or more

topological conflicts (that is, ~NNparentsw1) resides somewhere within

the subtending graph.

While the effective number of parents indicates the degree of

immediate topological conflict, it ignores the frequency at which a

given node q occurs across a set of source trees. We therefore also

define a measure of destabilization, which is the number of

effective parents for node q scaled by its support:

dq~ ~NNparents(q)
:sq ð2Þ

Destabilization measures the contribution of a given LICA to

the conflict in the neighboring nodes. Graph nodes with high

values of d are frequently observed in source trees but rarely in the

same topological position. These nodes contribute heavily to the

collapse of clades in traditional consensus methods.

Synthesizing Phylogenies with Graphs
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For each internal node q in the graph we also calculate the

average d for all n descendant nodes:

zq~

Pn
i~1 di

n
ð3Þ

A zq value greater than 1 indicates that the subgraph of q

contains conflict. This statistic has the useful property of being

directly comparable among TAGs constructed from different data

sets.

It is also useful to quantify how average downstream conflict z
changes with the inclusion of a graph node q and its descendant

subgraph. We therefore compute a metric of resolution, which

quantifies the difference in average downstream conflict between a

node q and its n immediate parent node(s):

cq~sq
:
Xn

i~1

zq{zri

� �
:sqDri

ð4Þ

where sq is the node support for node q, sqDri
is the edge support

connecting node q to its parent node ri, and zri
is the average

downstream conflict experienced by parent node ri. High values of

c indicate clades that are frequently observed but whose inclusion

in the graph contributes heavily to overall conflict within their

parent clade.

Implementation
These methods have been implemented in the software

treemachine, which makes use of the NoSQL graph database

Neo4j (http://www.neo4j.org/). Treemachine is an open source

application developed for the Open Tree of Life project (http://

opentreeoflife.org/). The source code and executable used for the

examples presented here are available from the treemachine

repository on GitHub https://github.com/OpenTreeOfLife/

treemachine.

Results/Discussion

Empirical example datasets
We demonstrate the methods described above using two

empirical datasets. First, we use bootstrap trees for 640 species

representing the majority of known seed plant lineages from the

Angiosperm Tree of Life analyses [23]. These bootstrap samples

are used to demonstrate the utility of TAGs for exploring conflict

within a dataset of completely overlapping taxa. Second, we

explore a bird dataset analyzed in Jetz et al. [19] that includes

source trees for individual clades of birds, a backbone phylogeny,

and taxonomic information. We use this to show how TAGs may

be employed for tree-grafting procedures that can combine less-

inclusive trees to create more-inclusive ones. Data used in this

study has been deposited in Dryad (http://datadryad.org/).

Mapping uncertainty in seed plant phylogeny
The methods discussed here can be useful for exploring conflict

and congruence among source trees with completely overlapping

terminal nodes (e.g. a bootstrap or posterior distribution of trees).

We explore this on the Angiosperm Tree of Life dataset [23]. This

dataset is one of the most comprehensive phylogenetic datasets

available for flowering plants, and represents confidence, or lack

thereof, in flowering plant relationships. Although relationships in

many clades have been well described, relationships within some

have proven difficult to resolve. The conflict introduced by these

unresolved clades provides an ideal case for the exploration of

TAGs as a datatype to investigate uncertainty.

The TAG was constructed by loading one hundred bootstrap

trees constructed with the full dataset of all 17 gene regions and

640 taxa included in the original study. No additional structural

information (e.g. a taxonomy tree) was given. Figures 2–4 depict

this graph. Much of the structure of the graph is resolved (denoted

by the large proportion of blue nodes in Figure 2), in accordance

with the consensus tree presented in the original publication.

Though some areas have significantly more complex structure

(denoted by the large complex reticulate structures).

To characterize conflict within this TAG we use several statistics

described above including node support (s) and the effective

number of parent nodes ( ~NNparents). Highly supported nodes with a

low number of effective parents (i.e. high s, low ~NNparents), represent

nodes that are frequently recovered and confidently placed in the

source trees (large blue nodes in Figure 2). Highly supported nodes

with high ~NNparents (large, orange to pink) are nodes that are

frequently resolved in source trees but their placement varies

among bootstrap replicates. We calculated destabilization statistics

(d ) for this TAG as well. Nodes with high support and low

confidence have high d and represent major sources of conflict,

whereas nodes with low d contribute little to overall conflict.

Table 1 presents the nodes with the highest d values in the dataset.

Note that a high proportion of destabilizing nodes are from the

order Malpighiales.

We also summarize the information regarding destabilization

for descendent subgraphs. Figure 3 presents the same information

as in Figure 2, except that color corresponds to the average

destabilization for all descendant nodes (z). z is large (orange to

pink color) when the descendant subgraph has a large amount of

conflict, and small (blue) when the descendant subgraph has little

conflict. This statistic is helpful for identifying when a clade

originating from a particular node contains significant conflict.

These graph visualizations facilitate a rapid assessment of

patterns of phylogenetic conflict, and can reveal details that are

not as easily discerned with traditional consensus methods.

Regions of the tree that are characterized by high conflict are

indicated in the graph as highly reticulated subgraphs or ‘hairballs’

(Figures 2 and 3). The three largest of these problem areas in this

dataset correspond to the clades Malpighiales, Lamiales, and

Ericales. Other, smaller areas of conflict include regions in the

Apiales, Asparagales, Asterales, Dipsacales, Escalloniales, Caryo-

phyllales, Fabales, Ranunculales, Santalales, and Solanales. In

Figure 2, these areas are characterized by the presence of bright

orange to pink (high ~NNparents) nodes, whose placement is uncertain.

When nodes of uncertain placement are observed in a large

proportion of trees (i.e. highly supported nodes; large orange to

pink nodes in Figure 4), the differences in their phylogenetic

position cause a proliferation of relationships, leading to the

reticulated regions. In typical consensus trees, these areas are

indicated by the presence of polytomies and overall low support

values. However, typical consensus trees display only edges

occurring in some minimal proportion of input trees (e.g. 50%

in majority-rule consensus trees). In such summary trees, equally-

supported but conflicting edges in the source trees, as well as

bipartitions slightly less frequent than the minimum threshold (e.g.

node 9 from Table 1), are never displayed.

To assess overall conflict within clades, we calculated c, a

measure of phylogenetic conflict within the descendant subgraph,

scaled by its support, s. This differs from the d statistic in

incorporating the conflict within the subgraph. High values of this

statistic indicate nodes that contribute heavily to the overall level
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Figure 2. Graph of Angiosperm Tree of Life with effective parents. A graph showing the mapping of the Angiosperm Tree of Life project
bootstrap dataset of 100 trees that includes 640 taxa with chloroplast, mitochondrial, and ribosomal data [23]. Larger node size indicates higher node
support. Node color indicates the number of effective parents ( ~NNparents) of each node, with blue nodes having relatively small values of ~NNparentsv1:5,

orange nodes with values between 2v ~NNparentsv8 and red to pink nodes with values of ~NNparentsw8.
doi:10.1371/journal.pcbi.1003223.g002
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Figure 3. Graph of Angiosperm Tree of Life with average effective parents. A graph showing the mapping of the Angiosperm Tree of Life
project bootstrap dataset of 100 trees that includes 640 taxa with chloroplast, mitochondrial, and ribosomal data [23]. Larger node size indicates
higher node support. Node color indicates the average subgraph destabilization (z) of each node, with blue nodes having relatively small values of
zv0:5, orange nodes with values between 1vzv4 and red to pink nodes with values of zw4.
doi:10.1371/journal.pcbi.1003223.g003
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Figure 4. Graph of Angiosperm Tree of Life with nodes having the highest amount of conflict highlighted. A graph showing the
mapping of the Angiosperm Tree of Life project bootstrap dataset of 100 trees that includes 640 taxa with chloroplast, mitochondrial, and ribosomal
data [23]. Large purple nodes are those corresponding to nodes in Table 2.
doi:10.1371/journal.pcbi.1003223.g004
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of conflict within their parent clade. This statistic is useful for

identifying putative clades with the highest overall levels of conflict

in the tree. Table 2 identifies the 25 nodes with the highest values

for c. Figure 4 identifies the precise location of these nodes within

the graph.

Specific patterns within areas of conflict differ among major

clades. In Malpighiales, for instance, the relatively low frequency

of nodes in Table 2 compared to Table 1, as well as the high

proportion of blue nodes in this clade in Figure 5, indicates that

despite the relatively high level of conflict regarding the placement

of several Malpighialean nodes (Table 1), relationships within this

clade are better known than those in other areas of the tree. Only a

few large, pink nodes in Malpighiales in Figure 2 appear to be

driving the conflict within the clade as a whole. This contrasts with

the patterns in Lamiales and Ericales, where little agreement exists

among source trees regarding the placement of most nodes, as

indicated by the high proportion of orange to pink nodes in

Figure 3. Many of these nodes have support values of less than 0.5

(Table 2), indicating that they will never appear in majority-rule

consensus trees. Indeed, overall support values throughout these

clades are low, suggesting little to no clear phylogenetic signal

within these groups. Numerous other areas with relatively high

levels of phylogenetic conflict can be identified with the TAG

(Table 2; smaller reticulated subgraphs with orange to pink nodes

in Figure 3) and represent uncertain regions of the dataset and that

may benefit from additional sampling.

TAGs provide a means for analysis and visualization of

uncertainty and alignment of trees. As demonstrated, in addition

to edge-based indices of support (analogous to consensus tree

bipartition support), TAG-specific metrics (e.g. ~NNparents) can more

extensively quantify phylogenetic conflict. The information

presented in Figures 2 and 3, and Tables 1 and 2 reveals a

detailed picture of the patterns of conflict within the seed plant

phylogeny. The high proportion of large blue nodes in both

Figures 2 and 3 indicates that the major structure of the graph is

well resolved, but several areas of high conflict are easily noted and

can be explored in great detail (Figures 2–4 and Tables 1 and 2).

The clades identified in Table 2 based on the c statistic represent

the areas of angiosperm phylogeny in which we are least confident,

and as such are those regions with the highest potential for

improvement. Their identification should inform future sampling

efforts to target these groups.

The information summarized by the statistics calculated on the

TAG is challenging to obtain with traditional consensus methods

Table 1. Twenty-five destabilizing plant clades.

rank order taxon s ~NNparents d

1 Malpighiales Lophopyxidaceae + Putranjivaceae 1.00 18.38 18.38

2 Malpighiales Pandaceae 1.00 18.25 18.25

3 Malpighiales Salicaceae + Lacistemataceae 0.99 17.22 17.05

4 Malpighiales Picodendraceae + Phyllanthaceae 0.99 15.43 15.28

5 Malpighiales Malpighiaceae + Elatinaceae 1.00 15.02 15.02

6 Malpighiales clade 1 1.00 9.75 9.75

7 Ericales clade 2 0.98 9.42 9.23

8 Malpighiales Linaceae 1.00 7.52 7.52

9 Malpighiales clade 3 0.48 15.16 7.28

10 Malpighiales clade 4 1.00 6.95 6.95

11 Malpighiales Euphorbiaceae + Ochnaceae 1.00 6.79 6.79

12 Bruniales Columelliaceae 1.00 5.26 5.26

13 Bruniales Bruniaceae 1.00 5.25 5.25

14 Oxalidales Cunoniaceae 1.00 5.21 5.21

15 Lamiales Martynia + Sesamum 0.61 8.40 5.12

16 Escalloniales Escalloniaceae 0.91 5.47 4.98

17 Solanales Solanales 1.00 4.78 4.78

18 Malpighiales Ochnaceae 1.00 4.74 4.74

19 Asterales clade 5 1.00 4.69 4.69

20 Gentianales Gentianales 1.00 4.66 4.66

21 Lamiales Lamiales 1.00 4.44 4.44

22 Malpighiales Manihot + Hevea 1.00 4.34 4.34

23 Malpighiales clade 6 0.96 4.42 4.24

24 Oxalidales Elaeocarpaceae 0.97 4.20 4.08

25 Apiales Apiales 1.00 4.03 4.03

Top twenty-five nodes with the highest d scores, representing destabilizing clades. These clades are relatively well-supported but their placement in the tree is
uncertain. Clades that are too large for the table are listed here. Clade 1: Tetrorchidium + Omphalea + Endospermum. Clade 2: Ericaceae + Clethraceae+ Cyrillaceae +
Sarraceniaceae + Actinidiaceae. Clade 3: Rhizophoraceae + Erythroxylaceae + Ctenolophonaceae. Clade 4: Chrysobalanaceae + Euphroniaceae + Dichapetalaceae +
Trigoniaceae + Balanopaceae. Clade 5:Asteraceae + Calyceraceae + Goodeniaceae + Menyanthaceae + Stylidaceae + Alseuosmiaceae + Argophyllaceae + Phellinaceae +
Campanulaceae + Rousseaceae. Clade 6: Homalanthus + Euphorbia + Pimelodendron + Hura.
doi:10.1371/journal.pcbi.1003223.t001
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but is easily browsed and queried within a TAG. Although, the

results from the TAG analyses agree with the interpretation of

these data in Soltis et al. [23], the TAG and the graph-based

statistics allow for a more flexible, detailed, and targeted

exploration of these patterns. The use of TAGs provides a

complementary approach to traditional consensus methods,

facilitating the analysis and visualization of this information in

powerful and detailed new ways. In particular, as demonstrated,

measures such as destabilization and other subgraph summaries

can assist in identifying nodes that need more attention or data

collected. Although not explored here, researchers could load tree

sets from different analyses, and even partially overlapping taxon

sets, to explore the same statistics and perform similar analyses.

Synthesizing the avian TAG
The methods discussed here are not only useful for examining

uncertainty in datasets with fully overlapping taxon sets, but also

can be used for exploring trees with partially overlapping taxon

sets. In particular, the graph procedures described perform well on

datasets with very hierarchical strucuture. One of the most

ambitious manual tree grafting exercises performed to date

involved the recent complete phylogeny of birds [19]. Combining

a set of partially-overlapping clade-specific trees with a compre-

hensive taxonomy, Jetz et al. [19] were able to construct a

phylogeny of all extant bird species, despite many taxa lacking

genetic data. This type of analysis can be very useful when

conducting evolutionary analyses at large taxonomic scales, as

sampling in molecular phylogenies is often incomplete. The type of

grafting used by Jetz et al. [19] not only allows for the inclusion of

taxa not sampled in molecular phylogenies, but also takes

advantage of the phylogenies constructed at deeper phylogenetic

levels to join phylogenies constructed at shallower levels. One

challenge of manual tree grafting exercises is the process of

updating based on new or different source trees as well as

repeatability of the synthesis of the generated trees. Another

challenge is, when there is conflict, communicating the specific

algorithmic decisions for repeatability or updating with new data

[24]. The Jetz et al. [19] dataset serves to demonstrate the strength

of the methods presented here in automating the alignment and

synthesis of trees with different taxonomic levels, and with different

levels of completeness.

To construct the TAG we first used the taxonomy defined by

the original publication that consists of species names and their

placement within broader clades (genera, families, orders, and

higher). These species are meant to represent all known extant

bird diversity. For the 6800 taxa that possess some genetic data, we

constructed maximum clade credibility (MCC) trees for each of

the 129 clade-specific datasets defined by Jetz et al. [19] (available

at http://birdtree.org/). The entire posterior distribution, or

samples thereof, could be added instead of a MCC tree; however,

Table 2. Twenty-five plant clades with low resolution.

rank order taxon s ~NNparents z c

1 Ericales Sapotaceae + Pentaphylacaceae 0.18 8.53 10.19 1.32

2 Asterales Calyceraceae 1.00 1.13 2.08 0.97

3 Ericales Theaceae + Pentaphylacaceae 0.13 3.45 9.59 0.92

4 Malpighiales Suregada + Moultonianthus 0.18 4.91 7.13 0.90

5 Ericales Theaceae + Ebenaceae 0.27 6.45 5.76 0.86

6 Escalloniales Polyosma + Tribeles 0.35 1.00 3.51 0.82

7 Malpighiales Caryocar + Octhocosmus 0.16 8.53 6.84 0.78

8 Caryophyllales Phytolaccaceae + Sarcobataceae 0.36 1.48 3.74 0.74

9 Asparagales Asparagus + Beaucarnea 0.50 2.13 3.11 0.69

10 Lamiales Martynia + Sesamum 0.61 8.40 2.58 0.68

11 Ericales Diapensiaceae + Styracaceae 0.41 3.68 3.93 0.65

12 Lamiales clade 1 0.28 1.24 3.00 0.62

13 Ericales clade 2 1.00 1.11 1.23 0.62

14 Lamiales Scrophulariaceae + Stilbaceae 0.19 1.36 4.26 0.62

15 Fagales Juglandaceae + Myricaceae 0.58 1.07 2.04 0.59

16 Oxlidales Brunelliaceae + Cephalotaceae 0.44 2.35 3.05 0.57

17 Malpighiales Caryocaraceae + Putranjivaceae 0.16 9.14 5.14 0.55

18 (asterids) Garryales + Icacinaceae 0.69 1.66 1.46 0.53

19 Brassicales Caricaceae + Tropaeolaceae 0.42 1.00 2.40 0.53

20 Dipsacales Dipsacus + Pterocephalodes 0.54 1.00 2.26 0.52

21 Santalales Santalaceae + Opiliaceae 0.28 1.00 3.42 0.52

22 Malpighiales Irvingiaceae + Ixonanthaceae 0.38 1.69 2.51 0.51

23 Aquifoliales Cardiopteridaceae 0.97 1.00 1.54 0.50

24 Ericales Sarraceniaceae + Actinidiaceae 0.73 1.00 1.68 0.49

25 Malpighiales Acalypha + Spathiostemon 0.54 1.50 2.63 0.47

Top twenty-five nodes with the highest c scores, indicating clades with relatively low phylogenetic resolution compared to surrounding parts of the tree. Clades that are
too large for the table are listed here. Clade 1: Plantaginaceae + Scrophulariaceae + Stilbaceae. Clade 2: Tetrameristaceae + Balsaminaceae + Marcgraviaceae.
doi:10.1371/journal.pcbi.1003223.t002
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to allow for a simpler graph presentation in this proof-of-concept

exercise, we restricted consideration to MCC trees. As in the

original study, in addition to the clade-specific source trees, we also

employ the backbone phylogeny based on the Hackett et al. [25]

study. The backbone phylogeny and each of these 129 clade-

specific MCC trees were added to the graph of the taxonomy

(Figure 5). We then updated the mapping of the source trees based

on the addition of potentially new least inclusive common

ancestors.

The final TAG (Figure 5) represents the taxonomy, backbone

tree, and all 129 clade-specific MCC trees. To demonstrate the

ability to construct a grafted tree from this final TAG, we

constructed a synthetic tree (Figure 6). In order to construct a

synthetic tree on the TAG, the criteria for resolution of conflict

needs to be established. The criteria used for this example

favored (in order) the Hackett et al. [25] backbone, each of the

trees based on genetic trees where available, and taxonomy.

The synthetic tree (Figure 6) contains some taxa that are only

present in the taxonomy and are represented as large

polytomies. Unlike the original publication, we do not resolve

these branches. This could be done but is not specifically part

of the graph procedure, and so we do not conduct that

additional analysis here. The alignment and synthesis analyses

takes a relatively short amount of time despite the number of

Figure 5. Avian tree alignment graph. A graph showing the relationship of birds using input source trees from Jetz et al. [19]. Each edge color is
a different source tree with the red being taxonomy. The names at the internal nodes are scaled by the number of edges and refer to those in the
taxonomy from the original reference.
doi:10.1371/journal.pcbi.1003223.g005
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trees and the size of the dataset (,2 minutes on a quad-core

Xeon 2.67 GHz desktop). This relatively simple analysis

demonstrates the ability of the methods discussed here to be

applied to the problem of constructing large phylogenies based

on source trees with only partially overlapping taxon sets. The

automated nature of this analysis makes for easy updating with

new source tree information, accommodation of uncertainty,

and a regular and repeatable way to construct additional

synthetic trees based on different criteria.

In addition to helping visualize and analyze conflict among sets

of trees, the avian example demonstrates the utility of TAGs for

automated synthesis of trees. The synthesis performed can be

communicated easily, performed algorithmically, and repeated.

Unlike some supertree methods, it is also easy to trace each branch

that is recovered in the final synthesis to the original source tree(s)

that supports it. Furthermore, in both synthesis and conflict

analysis, the graph can continue to be updated with additional

source trees (e.g., from additional bootstrap, Bayesian analyses, or

other sources).

Comparison to existing methods
There is a rich literature of methods and approaches for

accommodating reticulation events in phylogenetics that fall under

the title phylogenetic networks [11]. A large number of these

approaches are implemented in the program SplitsTrees [4] and

Dendroscope [26]. Many of these procedures are intended to use

Figure 6. Synthetic avian phylogeny. The synthetic tree produced from processing the graph of bird source trees and taxonomy from Jetz et al.
[19] presented in Figure 3. Names at the internal nodes represent the larger taxonomic groups as recognized by the original publication. The tree is
the product of each of the source trees and the taxonomy. The large blocks represent species that are unresolved but present in the taxonomy.
doi:10.1371/journal.pcbi.1003223.g006
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the sequence data to infer structures other than trees. This is

notably different than the methods presented above where we aim

to align trees into a common structure that may require the

creation of nodes that have conflict. The methods presented here

also differ from those generally considered to be rooted

phylogenetic networks [11]. Those methods are intended to infer

network structures instead of aligning trees into a general graph.

The graph methods presented here address a different problem

than existing phylogenetic network methods.

More recently, Berry et al. [18] introduced a graph solution to

combining trees of partially overlapping taxa at different

taxonomic levels. Our approach differs in key aspects. Their

MLS (MultiLevelSupertree) is restricted to returning a single

supertree compatible with all source trees. It is not presently

possible to ascertain the degree of topological conflict involved in

the production of a MLS supertree. In addition, graphs in the

MLS method exist only during runtime, and so cannot be

distributed or augmented without rerunning the amalgamation

steps as presented in their manuscript. MLS graphs also differ in

that they contain both descendant and non-descendant (sibling)

edges (the latter not represented in any of the source trees), and so

are not as amenable to interpretation, querying, or visualization.

Finally, unlike the MLS method, our approach retains all source

tree information (e.g. branch lengths, node support), including an

arbitrary number of tree annotations (e.g. genome, tree recon-

struction method, etc.). We believe such metadata will feature

prominently in many customized user queries of phylogenetic tree

graphs.

The graph framework presented here provides an accurate

representation of the input source trees, methods for identification

of congruence and conflict among source trees, methods for

synthesis of source trees, and efficient storage that can be queried

and scale adequately with the ever increasing number and size of

present-day phylogenetic trees. The set of algorithms described

here can be used to map any set of evolutionary trees or

hierarchies (source trees) into a common graph, while retaining all

of the phylogenetic information present in the source trees. The

methods discussed here are implemented in a graph database. By

utilizing a database for the storage of this information, queries,

visualizations, and synthesis using a large number of different

methods can take advantage of shortened runtime and frequent

updates. Importantly, each analysis does not require reanalysis of

the source trees.

Other applications
The methods presented here are agnostic to data source. The

underlying model assumes only that the input trees define

ancestor-descendant relationships. Neither do the source trees

need be derived from the same dataset, nor do their tip sets need

to extensively overlap. Terminal nodes in source trees represent

lineages (e.g. species, populations, alleles, etc.). However, the

terminal nodes need not be extant, nor reside at the same

hierarchical level-terminal nodes from a given input tree may

correspond to internal nodes in another. In the implementation we

present, the set of all labels must be pre-identified, and terminal

nodes from input trees with labels not in the pre-identified set are

not added to the graph. This constraint, however, is not inherent

in the procedures themselves. Individual applications of TAGs

could vary these requirements for specific purposes. As a result, the

methods presented here could potentially be applied and adopted

for a wide range of applications in evolutionary biology and

phylogenetics. For example, as demonstrated with the avian

dataset, taxonomic hierarchies can be combined with phylogenetic

datasets. Phylogenetic trees based on morphological data and/or

phylogenetic trees of extinct taxa can be easily combined with

phylogenies built using extant and molecular data. Other

hierarchies could be incorporated into these graphs for analysis

and synthesis.

Conclusion
TAGs provide a means to examine conflict, conduct phyloge-

netic synthesis, develop complex queries, and allow for detailed

visualization. The methods presented here can scale to millions of

nodes and can be extended in several ways. However, these

methods are not meant to be exhaustive. There are potentially

many ways of parameterizing a graph and aligning trees into a

graph. Nevertheless, by aligning sets of trees into a graph that can

be queried and that retains all the source tree information, we can

conduct powerful analyzes on enormous datasets.
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