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Abstract: Castration can significantly enhance fat deposition in pigs, and the molecular mechanism
of fat deposition caused by castration and its influence on fat deposition in different parts of pigs
remain unclear. RNA-seq was performed on adipose tissue from different parts of castrated and
intact Yorkshire pigs. Different ceRNA networks were constructed for different fat parts. GO
and KEGG pathway annotations suggested that testosterone elevates cell migration and affects
differentiation and apoptosis in back fat, while it predisposes animals to glycolipid metabolism
disorders and increases the expression of inflammatory cytokines in abdominal fat. The interaction
between M-7474, novel_miR_243 and SGK1 was verified by dual fluorescence experiments. This
ceRNA relationship has also been demonstrated in porcine preadipocytes. Overexpression of M-7474
significantly inhibited the differentiation of preadipocytes compared to the control group. When
100 nM testosterone was added during preadipocyte differentiation, the expression of M-7474 was
increased, and preadipocyte differentiation was significantly inhibited. Testosterone can affect
preadipocyte differentiation by upregulating the expression of M-7474, sponging novel-miR-243, and
regulating the expression of genes such as SGK1. At the same time, HSD11B1 and SLC2A4 may also
be regulated by the corresponding lncRNA and miRNA, which ultimately affects glucose uptake by
adipocytes and leads to obesity.

Keywords: ceRNA; castration; lncRNA; fat deposition; testosterone

1. Introduction

Epidemiological data show that the testosterone level of middle-aged and elderly
men gradually decreases with age, while the body fat content obviously increases [1]. It is
believed that the sex hormones (mainly testosterone) secreted by the male gonads affect the
growth and development of muscle, bone, fat and carcass quality [2–4]. The predominant
and most active androgen is testosterone, which is produced by the male testes [5]. Animal
experiments show that testosterone deficiency can increase fat accumulation in mice,
leading to obesity [6]. Serum testosterone levels were significantly higher (p < 0.01), and
fat content was significantly lower in intact boars than in barrows [7]. Castration affects
the chemical composition of muscles, increasing the fat content and decreasing the water
content [8,9]. A previous experiment in our group also revealed that castration promoted
fat deposition and obesity in pigs fed a normal diet [10], which indicates that castration-
induced obesity is significantly associated with testosterone deficiency.

Testosterone plays a pivotal role in the regulation of body fat distribution in ani-
mals [11]. Adipose tissue is an important site of androgen action, and testosterone can affect
adipocyte proliferation and differentiation, thereby affecting body fat fraction adipocyte
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function and lipid metabolism [12]. Adipose tissue has been identified as an endocrine
organ secreting adipokines involved in metabolic and inflammatory pathways, and testos-
terone plays an extremely important role in fat metabolism [13]. The distribution area of
adipose tissue is closely related to disorders of glucose metabolism and lipid metabolism.
There are obvious differences in phenotypic structure, metabolic pathway and function
between visceral adipose tissue and subcutaneous adipose tissue deposited under the back.
Visceral adipocytes have a higher fat content, a wider distribution of blood vessels and
nerves, a weaker preadipogenic differentiation ability, and a higher proportion of mature
adipocytes [14]. At the same time, due to higher levels of adrenocortical hormone and
androgen receptors in visceral fat [15], the fat catabolism activity, insulin resistance and
glucose uptake capacity are higher than those in subcutaneous fat [16], which is more sensi-
tive to testosterone stimulation. The absorption capacity of subcutaneous fat for circulating
free fatty acids and triglycerides is stronger [16]. Therefore, it is particularly important to
study the regulatory factors of adipose tissue aggregation and distribution to control the
development of obesity. The regulation of hormones, especially testosterone, with respect
to the accumulation and distribution of adipose tissue has attracted increasing attention
from researchers.

Long noncoding RNAs (lncRNAs) are noncoding RNAs with a length of >200 nt that
can regulate the expression of target genes at the levels of transcription, posttranscription
and apparent modification and thus regulate life activities. In recent years, research on
lncRNAs has gradually increased, and their scope of action has been revealed to cover
almost every aspect of life activity. Some lncRNAs have been shown to play an important
regulatory role in the process of fat development: for example, brown fat lncRNA1 (Blnc1)
can regulate the differentiation and thermogenic processes of brown and beige adipose tis-
sues by forming a feedback loop with the transcription factor EBF2. This complex can also
work with early B-cell factor 2 (EBF2) to enhance the expression of thermogenic genes, such
as uncoupling protein 1 (UCP1) [17]. Lnc-BATE 1 is a regulatory factor needed for brown
adipose tissue formation and thermogenesis by combining with heteronuclear ribonu-
cleoprotein U (hnRN-PU) to produce the regulatory factors required for thermogenesis;
ncRNA SRA can bind to peroxisome proliferator-activated receptor γ (PPARγ) and enhance
PPARγ activity. There are many other ways to promote the differentiation of preadipocytes
into adipocytes and further regulate the function of fat [18–20]. However, the molecular
mechanisms of lncRNAs involved in fat deposition after castration in pigs remain unclear.

Although some studies [10,21–23] have shown that castration can significantly enhance
fat deposition in pigs, the molecular mechanisms of fat deposition caused by castration
and its influence on fat deposition in different parts of pigs are still unknown. Our research
group compared 180-day-old whole-sib-derived castrated pigs with intact pigs and found
that the backfat thickness and abdominal fat weight of castrated pigs were significantly
increased. This study established an animal model of testosterone deficiency regulating pig
obesity and observed the effects of castration on fat accumulation in the back and abdomen
of Yorkshire pigs. The present study aimed to comprehensively investigate the alterations
in the expression levels of long noncoding RNA (lncRNA), microRNA (miRNA/miR) and
mRNA in adipose tissue in different parts of Yorkshire pigs after castration to provide a
reference for elucidating the molecular mechanisms by which testosterone affects adipose
deposition and the specific mechanisms by which testosterone affects fat deposition in
different parts by constructing a ceRNA network. Our main purpose is to explore the
effects of testosterone on fat deposition in pigs, which affects meat quality as well as pig
production benefits. It also provides reference for obesity caused by testosterone deficiency
in humans.
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2. Materials and Methods
2.1. Animal Sample Collection and RNA Isolation
Tissue Samples

In this experiment, ten full-sibling male Yorkshire piglets were selected and divided
into five pairs according to the principle of pairing design. The initial conditions of the
test individuals were kept consistent as much as possible, and each pair of male piglets
was composed of two full-sib individuals from the same source in the same litter and
with similar body weights. At one week old, one piglet was randomly selected from each
pair for surgical castration, and the other noncastrated individual was subjected to sham
treatment (i.e., an incision with the same size as the castration operation was made in the
abdomen on the premise of not damaging the gonads to produce the same stress effect) as
the control. All pigs were bred under the same conditions, with free access to water and
feed. All pigs were slaughtered, and phenotypes were recorded at 180 days of age. Three
each of the castration and complete groups were used as biological replicates, and the same
tissues were selected for RNA extraction and RNA-seq. The backfat was collected from the
6th–7th ribs of castrated and intact male pigs. Their suet was also collected as abdominal
fat tissue. All tissue samples were frozen in liquid nitrogen for further use. There were
significant differences in backfat thickness and abdominal fat weight between the castrated
and intact males (p < 0.05) (Supplementary Materials File S3 Figure S1). More details
about phenotype information are described in Supplementary Materials File S1 Table S1.
Yorkshire pigs were raised by Beijing Zhongyu Pig Co., Ltd. (Beijing, China).

Total RNA was isolated using TRIzol Reagent (Invitrogen, San Diego, CA, USA)
according to the manufacturer’s instructions. RNA quality was assessed using 1% agarose
gels. RNA purity was determined using a K5500 Spectrophotometer (Kaiao, Beijing, China).
RNA integrity and concentration were assessed using the RNA Nano 6000 Assay Kit and
the Bioanalyzer 2100 system (Agilent Technologies, Foster, CA, USA).

2.2. Library Preparation for Long Noncoding RNA Sequencing and Data Analysis

Sequencing libraries were prepared using 3 µg of RNA per sample. Total RNA
removes ribosomal RNA using an Epicenter Ribo-Zero Gold Kit (Epicenter, Madison,
WI, USA) to retain all ncRNA to the maximum extent, randomly breaking the obtained
product into short segments, synthesizing a cDNA first chain by using a sequence after
the segments as a template by using a random hexamer (random hexamers), and adding
a buffer solution, dNTPs, RNase H and DNA polymerase I to synthesize a cDNA second
chain. The second strand was purified by a QIAquick PCR kit (Qiagen, Chatsworth, CA,
USA) and eluted with EB buffer after end repair, the addition of base A, and the addition
of sequencing linker, and then degraded by UNG (uracil-N-glycosylation) enzyme. Then,
the fragment size was selected by agarose gel electrophoresis, and PCR amplification was
performed. Products were purified using the AMPure XP system, and library quality was
assessed with an Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA,
USA). The last constructed sequencing library was sequenced using Illumina HiSeq4000
(Illumina, San Diego, CA, USA), and 150 bp paired-end reads were generated. Raw data
(raw reads) were processed using Perl scripts to remove reads containing an adapter,
reads containing poly-N and reads of low quality. A low-quality read was defined as
one in which more than 15% of bases had Phred quality scores less than or equal to
19. The remaining reads were mapped to the porcine reference genome (Sscrofa 11.1,
Ensembl, ftp://ftp.ensembl.org/pub/release-92/fasta/sus_scrofa/dna/, accessed on 18
January 2020) using HiSAT2 (http://ccb.jhu.edu/software/hisat2/index.shtml, accessed
on 18 January 2020) [24]. Mapped reads from each adipose tissue sample were assembled
using StringTie [25] in a reference-based approach. After this, we evaluated the assembled
transcripts using five criteria to identify lncRNAs: (1) transcripts with exon number <2 were
removed; (2) transcripts with length ≤ 200 bp were removed; (3) known nonlncRNA
annotations were removed; (4) transcripts with Fragments Per Kilobase of exon per Million
fragments mapped (FPKM) < 0.5 were removed; (5) coding-noncoding-index (CNCI)

ftp://ftp.ensembl.org/pub/release-92/fasta/sus_scrofa/dna/
http://ccb.jhu.edu/software/hisat2/index.shtml
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v2 [26], coding potential calculator (CPC) 0.9-r2 [27], PFAM-scan v1.3 [28], and coding
potential assessment tool (CPAT) [29] were used to distinguish mRNAs from lncRNAs.
Transcripts predicted to have coding potential by all four tools described above were
excluded, and those without coding potential were classified as lncRNA candidates. The
transcripts excluded above were used as candidate mRNAs. PHAST v1.3 [30] was used for
conservation analysis for coding genes and lncRNAs [31].

DESeq2 [32], EBSeq [33], NOISeq [34] and PoissionDis were used for differential gene
expression analysis of lncRNAs and mRNAs between intact and castrated adipose tissue.
LncRNAs and mRNAs with p < 0.05 and |log2 fold change| > 1 were identified as being
differentially expressed between the two groups. We searched for potential cis targets
(i.e., coding genes) 100 kb upstream and downstream from each lncRNA. Potential trans
targets were identified by examining RNA data for coordinated expression using Pearson’s
correlation coefficients (r > 0.90 or r < −0.90) as a classifier.

2.3. Library Preparation for Micro RNA Sequencing and Data Analysis

Three micrograms of RNA per sample was used as the input material for the small
RNA library. Sequencing libraries were generated using the NEBNext Multiplex Small RNA
Library Prep Set for Illumina (NEB, Ispawich, MA, USA) following the manufacturer’s rec-
ommendations. The library preparations were sequenced on a HiSeq 2500/2000 platform (Il-
lumina), and 50 bp single-end reads were generated. Raw data (raw reads) were processed
with Python scripts to remove defective reads. Clean reads with lengths in the desired
range were used in all downstream analyses. The small RNAs were mapped to the porcine
reference genome (Sus scrofa 11.1) using Bowtie [35] (no mismatches permitted) to analyze
the expression and genomic distribution. Bedtools (https://bedtools.readthedocs.io/, ac-
cessed on 18 January 2020) was used to search for known miRNAs by matching them to
entries in miRBase21 (http://www.miRbase.org/ftp.shtml, accessed on 18 January 2020).
After excluding reads that were mapped to known miRNAs, miRDeep2 [36] was used to
analyze the remaining reads to predict novel miRNAs. The prediction of miRNA target
genes was performed using miRanda [37]. The levels of miRNA expression were estimated
by RPM (reads per million total reads). Differential expression of miRNA between sam-
ples was analyzed using DEGseq2. miRNAs with significant differences (p < 0.05) and
|log2 fold change| > 1 were classified as differentially expressed (DE) miRNAs.

2.4. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis

Gene ontology enrichment analysis of differentially expressed genes (DEGs) or DE
lncRNAs and DE miRNA target genes was conducted using the GO-seq R package [38],
correcting for gene length bias. GO terms with p < 0.05 were considered to be significantly
enriched among DEGs. We used KOBAS v3.0 (http://kobas.cbi.pku.edu.cn/, accessed on
18 January 2020) [39] to test the statistical significance for the enrichment of DEGs or targets
of DE lncRNAs and DE miRNAs in KEGG pathways.

2.5. Construction of LncRNA–miRNA–Gene Regulatory Networks

To construct the lncRNA–miRNA–target gene network, we first used BLASTN (https:
//blast.ncbi.nlm.nih.gov/, accessed on 18 January 2020) to identify and remove pre-
microRNAs based on high levels of homology. Subsequently, miRanda was used to predict
the target relationships between miRNAs and lncRNAs (we required an alignment score
N = 160 and minimum free energy of −20 kcal/mol). As a competing endogenous RNA
(ceRNA), a lncRNA can competitively bind miRNA with mRNA.

lncRNA–miRNA–gene pairs were further analyzed based on the common miRNA-
binding sites [40]. We used miRanda and TargetScan (http://www.targetscan.org/, ac-
cessed on 18 January 2020) [41] to screen lncRNAs and genes for MRE sequence motifs and
then constructed a lncRNA–miRNA–gene interaction network. The lncRNA, miRNA and
mRNA interactions were constructed and visualized using Cytoscape v3.6.1 [42].

https://bedtools.readthedocs.io/
http://www.miRbase.org/ftp.shtml
http://kobas.cbi.pku.edu.cn/
https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
http://www.targetscan.org/
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2.6. Quantitative Polymerase Chain Reaction

To detect DE lncRNAs and DEGs, total RNA (1 µg) from adipose tissue was transcribed
into cDNA using the Fast Quant RT Kit (with gDNase) (Tiangen Biotech Co., Ltd., Beijing,
China) according to the manufacturer’s instructions. After detecting DE miRNAs, total
RNA (1 µg) from adipose tissue was transcribed into cDNA using the TaqMan MicroRNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s instructions. The expression levels of six lncRNAs, six genes and six
miRNAs were quantified with quantitative PCR (qPCR) using SYBR Green Real-time PCR
Master Mix (Tiangen Biotech Co., Ltd., Beijing, China). Gene and lncRNA primers for
qPCR were designed using Primer Premier 5.0 (Premier Biosoft International, Palo Alto,
CA, USA) and were subsequently synthesized (Sangon Biotech, Beijing, China). MiRNA
primers were designed and synthesized by RiboBio (Guangzhou, China). Primer sequences
are listed in Supplementary Materials File S1 Table S2. The cycling parameters used for
qPCR amplification were as follows: initial heat denaturation at 95 ◦C for 15 min, 40 cycles
at 95 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min.
A melting curve analysis was performed to exclude genomic DNA contamination and to
confirm primer specificities. Gene and lncRNA expression levels were normalized using
the 2−∆∆Ct method with β-Actin (the expression of β-Actin was identified as stable in
backfat and abdominal samples by semiquantitative reverse transcription (RT)-PCR) as an
internal standard. Relative miRNA expression was normalized using the 2−∆∆Ct method
with U6 small nuclear RNA as an internal control. Each biological duplicate consisted of
three technical replicates.

2.7. Vector Construction

Vectors required for double fluorescence experiments and preadipocyte differentiation
experiments were constructed.

According to the sequence of targeted binding sites, psiCHECK-2 vectors (Promega,
Madison, WI, USA) containing targeted binding sites (wild type) and mutation sites (mu-
tant type) were synthesized by Qingke (Beijing, China). For example, M-7474 wild-type
(p-M-7474) and mutant (p-mut-M-7474), SGK1 wild-type (p-SGK1) and mutant (p-mut-SGK1)
reporter vectors were constructed. The miRNA mimic NC was synthesized by Qingke
(Beijing, China). The sequences of those vectors were as follows: novel-miR-243 mimic
5′ CGGGGAGGCUGUGCAGCGCGGCC 3′.

To stabilize the overexpression of M-7474 in porcine preadipocytes, according to the
data obtained by our sequencing, the PCDH (YouBao, Chongqing, China) overexpression
vector containing the full-length fragment of M-7474 was synthesized by 100 nmol vectors
and transfected into cells using Lipofectamine 2000 (Invitrogen, 81 Wyman Street, Waltham,
MA, USA).

2.8. Dual-Luciferase Reporter Analysis

HEK293T, a human cell line of renal epithelial cells, was used to validate the miRNA
target. Cells were seeded into 24-well plates. Cotransfection with 200 ng of target mRNA-
WT or target mRNA-MUT and 10 µL of miRNA mimic or mimic-NC was performed
using Lipofectamine 2000 (Invitrogen). Subsequently, luciferase activity was measured
using the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA) at 48 h
posttransfection. The assays were performed in triplicate.

293T cells were purchased from the Cell Bank of the Chinese Academy of Sciences
and cultured in RPMI-1640 (Gibco, Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS; Gibco), 100 units/mL penicillin (Gibco) and 100 mg/mL streptomycin
(Gibco) at 37 ◦C in an incubator containing 5% CO2 and 95% air.

2.9. Overexpression and Differentiation of Preadipocytes

Preadipocytes were obtained from the Jingdong Yin group. After growing to 7 days
of age, Yorkshire boars were slaughtered and primary preadipocytes were isolated from
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dorsal adipose tissue. Preadipocytes were cultured in DMEM/F12 (HyClone, Logan, UT,
USA) supplemented with 10% fetal bovine serum (FBS) (Gibco), 100 mg/mL streptomycin
(Life Technologies, Waltham, MA, USA) and 100 U/mL penicillin (Invitrogen).

To induce differentiation, primary preadipocytes were inoculated in 6-well plates
until cell fusion. Subsequently, the cells were cultured in a medium containing 1 µM
dexamethasone (Sigma, Ronkonkoma, NY, USA), 0.25 mM IBMX (Sigma), and 50 µg/mL
insulin (Sigma). Culture medium was changed every 2 days, and the cells were frozen
for future studies. The cells were further incubated for 48 h, after which the medium
was replaced with maintenance medium (growth medium supplemented with 50 µg/mL
insulin) and incubated for an additional 48 h. Then, the cells were cultured in growth
medium until maturation at 6 days.

Based on previous studies from our laboratory [43], 100 nM testosterone was used
to measure the effects on genes involved in preadipocyte differentiation. Testosterone
(Sigma) (0.288 g) was dissolved in 10 mL methanol (Jingke, Changsha, China) to create a
1 mg/mL stock solution. In the process of preadipocyte differentiation, 20 µL of storage
solution was added to 19.98 mL of differentiation medium to make a working solution with
a concentration of 100 nM.

All preadipocyte experiments were performed in 6-well plates, and each treatment
had three biological replicates. Four control experiments were designed by varying the
testosterone content of the preadipocyte differentiation medium, including M-7474 + NC,
NC + NC, M-7474 + 100 nM, and NC + 100 nM. In parallel, induced differentiation experi-
ments in preadipocytes were performed, and cells were collected on day 6 of differentiation
for relevant gene quantification and oil red O staining.

2.10. Statistical Analysis

Data are expressed as the means± standard deviation (SD). Significance was analyzed
using one-way analysis of variance (ANOVA) to test homogeneity of variances via Levene’s
test, followed by Student’s t test. Calculations were conducted using SAS version 9.0 (SAS,
Cary, NC, USA). Differences were considered to be statistically significant at p < 0.05.

3. Results
3.1. Overview of the Fat Deposition-Related Long Noncoding RNA, Messenger RNA and
microRNA Transcription Profiles

The lncRNA libraries generated a total of 96–97.5 million remaining reads (clean reads)
after excluding lower quality data. Approximately 80% of the clean reads were mapped
to the reference genome (Supplementary Materials File S1 Table S3), and the correlation
coefficients of gene expression for the three biological replicates in each group were greater
than 0.80 (Supplementary Materials File S3 Figure S2). After additional filtering (Figure 1A)
and removal of potential coding transcripts that were identified using CNCI and CPC
(Figure 1B), a total of 1378 lncRNAs and 22,990 mRNAs were obtained. The predicted
lncRNA molecules met the general characteristics of lncRNAs. lncRNAs were typically
shorter than mRNAs (Figure 1C) and tended to contain only two or three exons, in contrast
to the mRNAs (Figure 1D). lncRNAs also appeared to be expressed at lower levels than
mRNAs (Figure 1E). The obtained ORF sequence was converted into a protein sequence,
and the length distribution diagram is shown in Figure 1F.

miRNA libraries were analyzed. More than 23,004,493 (71.04%) clean reads in each
sample were aligned with pig reference sequences. Most reads were 18–25 nt in length,
which was the expected size for miRNAs. The MiRBase database was used to compare
the miRNA information of pigs. The statistical data of known miRNAs in each sample
are shown (Supplementary Materials File S2 Table S1). A total of 331 annotated mature
miRNAs were identified (Supplementary Materials File S2 Table S2), while 708 novel
mature miRNAs were identified (Supplementary Materials File S2 Table S3).



Genes 2022, 13, 668 7 of 22
Genes 2022, 13, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 1. Identification of long noncoding RNAs (lncRNAs) and their comparison with mRNAs at 
the genomic structure and expression levels. (A) Workflow for lncRNA identification. (B) Candidate 
lncRNAs were identified by using two applications: CNCI (coding-noncoding-index) and CPC (cod-
ing potential calculator), which detect and remove putative protein-coding transcripts. (C) Distri-
bution of lengths of lncRNAs and mRNAs. (D) Distribution of the number of exons of lncRNAs and 
mRNAs. (E) Expression levels of lncRNAs and mRNAs, calculated as log10(FPKM + 1). FRKM: Frag-
ments per kilobase of exon per million fragments mapped. (F) The ORF sequence is converted to the 
length of the protein sequence. 

miRNA libraries were analyzed. More than 23,004,493 (71.04%) clean reads in each 
sample were aligned with pig reference sequences. Most reads were 18–25 nt in length, 
which was the expected size for miRNAs. The MiRBase database was used to compare 
the miRNA information of pigs. The statistical data of known miRNAs in each sample are 
shown (Supplementary Materials 2. Table S1). A total of 331 annotated mature miRNAs 
were identified (Supplementary Materials 2. Table S2), while 708 novel mature miRNAs 
were identified (Supplementary Materials 2. Table S3). 

3.2. Differentially Expressed mRNAs and lncRNAs between Castrated and Intact Male Pigs 
A total of 90 DEGs were identified (Supplementary Materials 2. Table S4) in the back-

fat, including 51 upregulated and 39 downregulated (Figure 2A), which were found to 
have more than 2-fold differential expression between the castrated and intact male pigs 
(p < 0.05). The largest difference was exhibited by PDE12 (phosphodiesterase 12) (log2-
fold change = 5.27) 

Nine annotated lncRNAs and eight novel lncRNAs had significantly different levels 
of expression in backfat between castrated and intact male pigs (Supplementary Materials 
2. Table S5), with more than 2-fold differential expression between the castrated and intact 
male pigs (p < 0.05). Compared with castrated pigs, there were eight lncRNAs expressed 
at higher levels and nine expressed at lower levels in intact male pigs (Figure 2C). Several 
DE lncRNAs were specifically expressed in intact pig backfat tissue, such as 
MSTRG.19943, MSTRG.13164 and NONSUSG000058.1, in castrated pigs, such as NON-
SUSG000375.1, NONSUSG000597.1 and MSTRG.12779. 

A total of 20 known miRNAs and 349 novel miRNAs had significantly different levels 
of expression in backfat between castrated and intact male pigs (Supplementary Materials 
2. Table S6). A total of 144 miRNAs (7 known and 137 novel) were expressed at lower 

Figure 1. Identification of long noncoding RNAs (lncRNAs) and their comparison with mR-
NAs at the genomic structure and expression levels. (A) Workflow for lncRNA identification.
(B) Candidate lncRNAs were identified by using two applications: CNCI (coding-noncoding-index)
and CPC (coding potential calculator), which detect and remove putative protein-coding transcripts.
(C) Distribution of lengths of lncRNAs and mRNAs. (D) Distribution of the number of exons of
lncRNAs and mRNAs. (E) Expression levels of lncRNAs and mRNAs, calculated as log10(FPKM + 1).
FRKM: Fragments per kilobase of exon per million fragments mapped. (F) The ORF sequence is
converted to the length of the protein sequence.

3.2. Differentially Expressed mRNAs and lncRNAs between Castrated and Intact Male Pigs

A total of 90 DEGs were identified (Supplementary Materials File S2 Table S4) in
the backfat, including 51 upregulated and 39 downregulated (Figure 2A), which were
found to have more than 2-fold differential expression between the castrated and intact
male pigs (p < 0.05). The largest difference was exhibited by PDE12 (phosphodiesterase 12)
(log2-fold change = 5.27) .

Nine annotated lncRNAs and eight novel lncRNAs had significantly different levels of
expression in backfat between castrated and intact male pigs (Supplementary Materials File S2
Table S5), with more than 2-fold differential expression between the castrated and intact
male pigs (p < 0.05). Compared with castrated pigs, there were eight lncRNAs expressed at
higher levels and nine expressed at lower levels in intact male pigs (Figure 2C). Several
DE lncRNAs were specifically expressed in intact pig backfat tissue, such as MSTRG.19943,
MSTRG.13164 and NONSUSG000058.1, in castrated pigs, such as NONSUSG000375.1,
NONSUSG000597.1 and MSTRG.12779.
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Figure 2. Hierarchical clustering analysis was performed based on the FPKM values of differentially
expressed genes under different experimental conditions. (A). Cluster analysis of gene levels in
castrated and intact pig backfat tissues. (B). Cluster analysis of gene levels in castrated and intact pig
abdominal tissues. (C). Cluster analysis of lncRNA levels in castrated and intact pig backfat tissues.
(D). Cluster analysis of lncRNA levels in castrated and intact pig abdominal tissues. Quantitative PCR
validation. Differentially expressed genes (E,F), lncRNAs (G,H) and miRNAs (I,J) were confirmed by
quantitative PCR. The results are shown as the means± standard deviation of triplicate measurements.
AF indicates intact backfat, BF indicates castrated backfat, ALF indicates intact abdominal fat, BLF
indicates castrated abdominal fat. * indicates p < 0.05, ** indicates p < 0.01.
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A total of 20 known miRNAs and 349 novel miRNAs had significantly different levels
of expression in backfat between castrated and intact male pigs (Supplementary Materials
File S2 Table S6). A total of 144 miRNAs (7 known and 137 novel) were expressed at lower
levels, and 225 miRNAs (13 known and 212 novel) were expressed at higher levels in
castrated pig backfat than in intact pig backfat.

In abdominal fat, a total of 188 DEGs were identified (Supplementary Materials File S2
Table S7), including 81 upregulated and 107 downregulated genes (Figure 2B), with more
than 2-fold differential expression between the castrated and intact male pigs (p < 0.05).

Twenty-eight annotated lncRNAs and 22 novel lncRNAs had significantly differ-
ent levels of expression in abdominal fat tissue between castrated and intact male pigs
(Supplementary Materials File S2 Table S8) and were found to have more than 2-fold dif-
ferential expression between the castrated and intact male pigs (p < 0.05). In castrated
male pigs, 20 lncRNAs were expressed at higher levels, and 30 lncRNAs were expressed
at lower levels than in intact male pigs (Figure 2D). Several DE lncRNAs were specifi-
cally expressed in intact pig backfat tissue, such as MSTRG.19943, NONSUSG004879.1,
MSTRG.13438, NONSUSG000360.1, NONSUSG015834.1, MSTRG.20051 and MSTRG.20148,
or in castrated pigs, such as NONSUSG018491.1, NONSUSG010573.1, NONSUSG001288.1,
and MSTRG.12779. A total of 32 known miRNAs and 338 novel miRNAs had signifi-
cantly different levels of expression in the abdomen between castrated and intact male
pigs (Supplementary Materials File S2 Table S9). A total of 157 miRNAs (14 known and
143 novel) were expressed at lower levels, and 213 miRNAs (18 known and 195 novel) were
expressed at higher levels in castrated pig abdominal fat tissue than in intact pig abdominal
fat tissue.

To verify our RNA-seq data, we randomly selected DEGs, DELs and DEMs for qRT–
PCR analysis (Figure 2E–J). The results showed that the differentially expressed RNAs had
the same gene expression trends in qRT–PCR and RNA-seq.

3.3. Functional Analysis of Differentially Expressed Transcripts

In the backfat, a total of 147 pathways were enriched (Supplementary Materials
File S2 Table S10), seven of which were related to fat production and hormone synthesis
metabolism. These include the p53 signaling pathway, thyroid hormone signaling pathway,
inositol phosphate metabolism, PI3K-Akt signaling pathway, metabolism of xenobiotics by
cytochrome P450, ECM-receptor interaction, and PPAR signaling pathway. These pathways
have been reported to be associated with fat deposition. These pathways include several
key genes, such as CYP1B1, PIK3C2G, COL13A1, OLR1, and GK (Supplementary Materials
File S1 Table S4).

A total of 215 genes were predicted to be targets of 16 DE lncRNAs, including 8 cis
and 207 trans target genes. GO analysis suggested that target genes are mostly involved in
the regulation of biological, metabolic and cellular processes (Figure 3A). KEGG pathway
analysis indicated that the genes targeted by DE lncRNAs were involved in pathways
related to endocrine and metabolic diseases, lipid metabolism, and energy metabolism
(Figure 3B). In addition, further analysis showed that the 215 genes were mainly involved in
the immune system, sensory system, signal transduction, signaling molecules, interaction
and metabolic pathways.

A total of 72,991 target genes were identified, of which 27,816 and 45,175 genes
were predicted to be targets of 20 known miRNAs and 349 novel miRNAs, respectively.
GO analysis suggests that known DE miRNAs target the genes that are predominantly
involved in biological processes, such as biological adhesion, biological regulation, cell
killing, cellular component organization or biogenesis and cellular process (Figure 3C).
Glycerophospholipid metabolism, insulin resistance and the thyroid hormone signaling
pathway were significantly enriched in the KEGG analysis (Figure 3D).

In abdominal fat, a total of 196 pathways were enriched, nine of which were related to
fat production and hormone synthesis metabolism (Supplementary Materials File S2 Table S11),
such as the adipocytokine signaling pathway, insulin resistance, calcium signaling path-
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way, pyruvate metabolism, AMPK signaling pathway, PI3K-Akt signaling pathway, ECM-
receptor interaction, metabolism of xenobiotics by cytochrome P450, and PPAR signaling
pathway. These pathways have been reported to be related to fat production and hormone
synthesis and decomposition. These pathways include several key genes, such as HSD11B1,
PCK1, SLC2A4, LEP, and SGK1 (Supplementary Materials File S1 Table S5).

A total of 348 genes were predicted to be targets of 50 DE lncRNAs, including 24 cis and
328 trans target genes (four were shared). GO analysis suggested that cis and trans target
genes are mostly involved in the regulation of biological, metabolic and cellular processes
(Figure 3E). KEGG pathway analysis indicated that the genes targeted by DE lncRNAs were
involved in pathways related to signal transduction, global and overview maps, signaling
molecules and interactions, and the endocrine system (Figure 3F). In addition, our further
analysis showed that 328 genes were mainly involved in the immune system, sensory
system, signal transduction, signaling molecules, interaction and metabolic pathways.
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Figure 3. Crucial pathways were clustered from DE lncRNA trans-related genes. (A). Gene ontology
(GO) function of differentially expressed lncRNA-related mRNAs was classified and analyzed accord-
ing to trans effect analysis in castrated and intact pig backfat tissues. (B). KEGG enrichment analyzed
according to trans effect analysis in castrated and intact pig backfat tissues. (C). Gene ontology (GO)
function of differentially expressed known DEmiRNA target mRNAs in castrated and intact pig
abdominal tissues. (D). KEGG enrichment analysis according to known DEmiRNA target mRNAs
in castrated and intact pig abdominal tissues. Gene ontology (GO) function was classified, and
KEGG enrichment was analyzed according to related mRNAs. (E). Gene ontology (GO) function of
differentially expressed lncRNA-related mRNAs was classified and analyzed according to trans effect
analysis inS castrated and intact pig abdominal tissues. (F). KEGG enrichment analyzed according to
trans effect analysis in castrated and intact pig abdominal tissues. (G). Gene ontology (GO) function
of differentially expressed known DEmiRNA target mRNAs in castrated and intact pig abdominal
tissues. (H). KEGG enrichment analysis according to known DEmiRNA target mRNAs in castrated
and intact pig abdominal tissues.
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A total of 73,255 target genes were identified, of which 28,100 and 45,155 genes were
predicted to be targets of 32 known miRNAs and 338 novel miRNAs, respectively. GO
analysis suggests that DE known miRNAs target the genes that are predominantly involved
in biological processes, such as biological adhesion, biological regulation, cell killing,
cellular component organization or biogenesis and cellular process (Figure 3H). Insulin
resistance, the thyroid hormone signaling pathway and bile secretion were significantly
enriched in the KEGG analysis (Figure 3I).

3.4. lncRNA–miRNA–mRNA Network Construction and Visualization

In the backfat, the network shows possible interactions among 7 DE lncRNAs, 19 DE
miRNAs and 12 DE mRNAs (Figure 4A, Supplementary Materials File S2 Table S12). For
example, COL13A1, PIK3C2G, MSTRG.12779, and NONSUSG012255.1 can form a ceRNA
network through novel_miR_332, and CYP1B1 and MSTRG.20066 can form a ceRNA
network through novel_miR_130.
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Figure 4. Construction of the ceRNA network. (A). The ceRNA network is composed of miRDEl-
ncRNAs, DEmiRNAs and DEmRNAs from castrated and intact pig back adipose tissue. (B). The
ceRNA network is composed of miRDElncRNAs, DEmiRNAs and DEmRNAs from castrated and
intact pig adipose tissue. Circle indicates DE lncRNAs, rhombus indicates DE mRNAs, V shape indicates
DE miRNAs.
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In abdominal fat, the network shows possible interactions among 40 DE lncRNAs,
47 DE miRNAs and 40 DE genes (Figure 4B, Supplementary Materials File S2 Table S13).
Novel_miR_461, novel_miR_474, and novel_miR_243 linked HSD11B1, SGK1, PCK1 and the
corresponding lncRNAs, such as MSTRG.19818, NONSUSG010039.1, NON-SUSG003945.1,
NONSUSG000360.1, NONSUSG014231.1, MSTRG.32, MSTRG.7474, NONSUSG004879.1,
NONSUSG016168.1, MSTRG.12775, and MSTRG.11513.

Among these studies, in backfat, genes (such as COL13A1 and PIK3C2G) and path-
ways (PI3K-Akt signaling pathway, metabolism of xenobiotics by cytochrome P450, ECM-
receptor interaction, etc.) were identified to play roles in signaling pathways involved
in cell proliferation, cell survival, cell migration, and intracellular protein trafficking. In
abdominal fat, common genes (such as HSD11B1, PCK1, SLC2A4 and SGK1) and pathways
(insulin resistance, adipocytokine signaling pathway, etc.) were identified which participate
in the regulation of fat deposition and androgen metabolism. We analyzed the protein
interaction relationships among these genes through STRING (Figure 5A) and found that
they had protein interactions with each other. At the same time, through the construction
of the ceRNA network, we found that these genes could build an interrelated network
relationship through common miRNAs and lncRNAs (Figure 5B).
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Figure 5. (A). Some of the differentially expressed genes were analyzed by protein interactions
with STRING. (B). LncRNAs regulate the ceRNA network of related genes through miRNAs. Circle
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3.5. Double Fluorescence Binding Verification Experiment

Through a ceRNA network, we selected novel-miR-243, M-7474 and SGK1 to verify
their interaction. The results of the double luciferase reporter gene detection system
showed that SGK1 and M-7474 mutant vector plasmids were transfected and cloned. In the
experiment, the novel-miR-243 group was compared with the negative control group, and
there was no significant difference in the luciferase activity (p > 0.05). In the transfection
experiment with the SGK1 and M-7474 vector plasmids, the luciferase activity of the
novel-miR-243 group was significantly inhibited, and there was a significant difference in
luciferase activity compared with the negative control group (p < 0.05). Novel-miR-243 and
M-7474 were predicted to have two binding sites, but only the second site could bind after
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our double fluorescence verification. The predicted binding position and dual fluorescence
results are shown in Figure 6.
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3.6. Functional Verification of Overexpressed M-7474

To investigate the potential role of M-7474 in porcine preadipocyte differentiation,
m-7474-overexpressing preadipocytes were constructed (Figure 7A,B). At the same time,
the expression levels of SGK1, novel-miR-243 and other genes in M-7474-overexpressing
preadipocytes were determined. When preadipocytes were undifferentiated, novel-miR-243
expression was decreased and SGK1 was increased after overexpression of M-7474 (Figure 7C),
which is consistent with the ceRNA relationship. We found a significant reduction in the
expression of adipogenic differentiation markers in the M-7474 overexpression group by
RT-qPCR at day 6 after the induction of differentiation, and the oil red results showed
that the lipid droplet content was also reduced. Treatment with the addition of 100 nM
testosterone also resulted in a significant increase in M-7474, which similarly inhibited
adipogenesis. The expression of novel-miR-243 decreased with the overexpression of
M-7474. However, we also found that the expression of SGK1, a target gene of novel-miR-
243, decreased in the group overexpressing M-7474 as well as in the group supplemented
with 100 nM testosterone during differentiation (Figure 7D–I).
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Figure 7. Preadipocyte differentiation experiment of the M-7474-overexpressing group. (A). Bright
field image of preadipocytes overexpressing M-7474. (B). Fluorescent image of the anterior adipocytes
after overexpression of M-7474. (C–E). qPCR quantification of related genes. (F). Oil red O staining
was performed 6 days after differentiation in the NC group without testosterone addition. (G). Oil
red O staining was performed 6 days after differentiation in the overexpressed M-7474 group without
testosterone addition (H). The NC group was differentiated with 100 nm testosterone for 6 days after
oil red O staining (I). The overexpressed M-7474 group was differentiated with 100 nm testosterone
for 6 days after oil red O staining. NC indicates control group, M-7474 indicates lncRNA overexpression
group, Nc + 100 nM indicates NC group was added with 100 nm testosterone, M-7474 + NC indicates lncRNA
overexpression group was added with 100 nm testosterone. * indicates p < 0.05, ** indicates p < 0.01.

4. Discussion

This study analyzed, for the first time, the expression of lncRNAs, miRNAs and
mRNAs in the backfat and abdominal fat tissues of intact and castrated male pigs. The
aim was to identify potential lncRNA-miRNA–mRNAmiR networks related to adipogenic
differentiation and lipid metabolism after castration. The castration of domestic pigs has an
important effect on the accumulation of adipose tissues [44]. Recently, an increasing num-
ber of noncoding ribonucleic acids, including microribonucleic acid, cyclic ribonucleic acid
and cyclic ribonucleic acid, have been proven to serve important regulatory roles in gene
expression networks affecting many biological processes or diseases [45,46]. Noncoding
RNAs (ncRNAs) have evolved into epigenetic regulators of gene expression in eukary-
otes. MiRNAs and lncRNAs are the most abundant regulatory noncoding RNAs. Every
ncRNA class regulates gene expression by different mechanisms. LncRNAs, miRNAs and
mRNAs form a large-scale ceRNA crosstalk network through MREs, which is of exciting
significance for posttranscriptional gene regulation in various physiological and patho-
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physiological processes [47,48]. Long noncoding RNAs can regulate protein-coding gene
expression at both the transcriptional and posttranscriptional levels [49]. Among these dif-
ferentially expressed miRNAs (DE miRNAs), miR-122 [50], miR-4331 [51], miR-124a [52,53],
miR-206 [54], miR-224 [55] and miR-129a [56] have been reported to be involved in lipid
metabolism, obesity and metabolic diseases.

Some studies have shown that visceral fat contains higher levels of adrenocorticos-
teroids and androgen receptors and has higher catabolic activity, insulin resistance and glu-
cose uptake capacity than subcutaneous fat and is more sensitive to adrenosteroids [15,16].
Abdominal fat is more prone to insulin resistance than is backfat [57]. The distribution
of glucocorticoid receptors in visceral adipose tissue is significantly higher than that in
subcutaneous adipose tissue [14], which makes glucocorticoids more effective in visceral
adipose tissue. Activating glucocorticoid receptors promotes the differentiation of visceral
adipocytes and lipid accumulation and increases the viscera distribution of fat. In addition,
Starr et al. [58] showed that under obesity, chemokines secreted by adipocytes activated and
attracted various inflammatory cells into adipose tissue, which led to chronic low-grade
inflammation of the adipose tissue. This is consistent with the significantly increased
expression of inflammatory marker genes in adipose tissues after castration in our study,
which is especially true of abdominal fat. For example, SPP1 (secreted phosphoprotein 1) is
highly expressed in the abdominal fat of castrated pigs and is a cytokine that upregulates
the expression of interferon-gamma and interleukin-12 [59].

ECM-receptor interactions play an important role in tissue and organ morphogenesis
and the maintenance of cell and tissue structure and function. These interactions lead to
direct or indirect control of cellular activities such as adhesion, migration, differentiation,
proliferation, and apoptosis [60]. By analyzing the enrichment of differential RNA, miRNA
and lncRNA and constructing the ceRNA network, we found that the effects of testosterone
on backfat adipocytes are more related to adipocyte proliferation, differentiation, migration,
apoptosis and signal transduction. Adipose tissue can be used as an endocrine organ to
secrete adipokines to regulate glucose balance in the body, and leptin (LEP) can regulate
glucose and lipid metabolism, which can be regarded as a marker of insulin resistance [61].
In our study, LEP was highly expressed in the abdominal adipose tissue of castrated pigs.
These results indicated that insulin resistance in castrated pigs affected abdominal fat depo-
sition. The insulin resistance signaling pathway is closely related to diabetes, metabolic
syndrome and obesity and is also closely related to the activities of phosphoenolpyruvate
carboxykinase 1 (PCK1) and solute carrier family 2 member 4/GLUT4 (SLC2A4) [62,63].
The effect of testosterone on abdominal fat cells is more closely related to the effect of
hormones on cells, the metabolism of lipid-related products and the production of in-
flammatory factors. Our study has shown that testosterone-induced fat deposition works
differently in different body parts, with a greater effect on abdominal fat deposition, which
coincides with the results of a previous study.

Testosterone can bind to the androgen receptor and activate gene expression in the
nucleus [64], which is considered the main pathway for testosterone to exercise its function.
However, some new studies have also found that there are two pathways through which
testosterone function is exercised, one being androgen receptor dependent and the other
being nonandrogen receptor dependent [65,66]. After inhibiting the androgen receptor,
testosterone can still exercise its related functions through other metabolic pathways, which
show extensive diversity [67]. Pregnenolone, synthesized from cholesterol, is the precursor
for the synthesis of testosterone, estradiol, and cortisol [68]. Testosterone can be converted
into estradiol in peripheral tissues by the action of P450-related genes in the aromatization
signaling pathway [69]. Cortisol, which is converted from pregnenolone, is one of the
most potent adrenocortical hormones affecting carbohydrate metabolism [70]. Therefore,
testosterone may affect body fat changes by affecting changes in cortisol content. Cortisol
can be converted by HSD11B1 (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1) to
inactive corticosterone [71]. It can promote the occurrence and development of insulin
resistance and obesity by increasing intracellular glucocorticoid levels [72]. Studies by
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London and Castonguay [73] have shown that 11β-HSD1 is more active in rodent omentum
adipose tissue. HSD11B1 is closely related to the accumulation and metabolic disorders
of abdominal fat [74–76]. SGK1 (serum and glucocorticoid-induced protein kinase 1) is
regulated by glucocorticoids and is involved in the development of obesity [77]. It has been
proposed that SGK1 promotes obesity by stimulating the Na+ glucose cotransporter SGLT1
(solute carrier family 5 member 1). SGLT1 can accelerate the intestinal uptake of glucose [78].
The rapid absorption of glucose in the intestinal tract leads to excessive release of insulin
and fat deposition, followed by a reduction in blood glucose concentration, resulting in
repeated glucose uptake and eventually leading to obesity [79]. SGK1 promotes glucose
transporter membrane abundance via SLC2A4 phosphorylation at Ser274. In unstimulated
muscle cells and adipocytes, SLC2A4 is distributed within vesicles in the cytoplasm and is
unable to function. After insulin stimulation, the activated insulin receptors phosphorylate
a variety of proteins in the cells and then trigger the translocation of SLC2A4 vesicles to the
cell membrane and their fusion with the cell membrane to increase glucose uptake [80,81].
After the stimulation disappeared, the cells transported SLC2A4 from the extracellular
membrane to the cells through endocytosis and stored it in vesicles [82]. Thus, SGK1 may
contribute to the insulin- and SLC2A4-dependent regulation of cellular glucose uptake [83].
In our study, the low expression of HSD11B1 in abdominal fat after castration suggests
its reduced ability to participate in the conversion of cortisol to corticosterone, which in
turn enables enhanced glucocorticoid activity in adipose tissue. HSD11B1, including its
ceRNA network, plays an important role in the involvement of testosterone in abdominal
fat accumulation by regulating the interconversion between cortisol and corticosterone.
However, in our study, the expression level of SGK1 in the castrated group was low,
which was inconsistent with the existing research. We speculate that the change in the
expression level may be related to the stage and other regulatory factors. The expression
level of SLC2A4 is consistent with the high expression in castrated pigs, which is consistent
with the promotion of glucose absorption and thus the increase in fat deposition. In other
words, after castration, the transformation of androgen and estradiol was regulated through
the cytochrome P450 signaling pathway, the activity of glucocorticoids was regulated by
changing HSD11B1 expression, and the expression of SGK1 was regulated by glucocorticoid
activity, which in turn regulated the expression of SLC2A4. This ultimately affects glucose
uptake by adipocytes and leads to obesity.

PCK1 is a rate-limiting enzyme that can regulate gluconeogenesis and participate
in maintaining blood glucose levels [84–86]. There are multiple cytokine pathways by
which inflammation inhibits PEPCK expression in adipose tissue, which could contribute
to the increased mobilization of fatty acids during inflammation [87]. A large number
of inflammatory cytokines are produced in the process of obesity caused by castration.
There are multiple cytokine pathways by which inflammation inhibits PEPCK expression
in adipose tissue, which could contribute to the increased mobilization of fatty acids during
inflammation [87]. In our study, the expression of PCK1 was lower in the castration group,
which indicates that adipose tissue lipolysis is markedly stimulated during inflammation
and that the expression of PCK1 in adipose tissue, which is essential for glyceroneogenesis,
would also be markedly suppressed to enhance the release of free fatty acids.

Our data found that testosterone could promote the expression of M-7474 to inhibit
preadipocyte differentiation during preadipocyte differentiation, and overexpression of
M-7474 could also inhibit preadipocyte differentiation. RT-qPCR revealed a ceRNA rela-
tionship between M-7474 and novel-miR-243 as well as SGK1 in preadipocytes. Based on
our analysis of the data, we concluded that castrated pigs are more likely to suffer from
insulin resistance and metabolic syndrome, especially in abdominal fat, and that the effect
of castration on backfat adipocytes is more related to cell migration, differentiation and
apoptosis. The occurrence of insulin resistance and metabolic syndrome in the body, in
turn, changes the expression of these genes and their regulatory factors, which further
intensifies the increase in inflammatory factors and fat in the body and places the body in a
pathological state. At the same time, the constructed ceRNA network indicated that after
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castration, the transformation of testosterone and estradiol was regulated through the cy-
tochrome P450 signaling pathway, the activity of glucocorticoids was regulated by changing
HSD11B1 expression, and the expression of SGK1 was regulated by glucocorticoid activity,
which in turn regulated the expression of SLC2A4. In this regulatory process, lncRNAs
such as M-7474 and corresponding miRNAs such as novel-miR-243 may play important
roles. This ultimately affects glucose uptake by adipocytes and leads to obesity. In this
study, testosterone was identified as the most important factor affecting fat deposition
after castration of boars. Studies have shown that testosterone can significantly inhibit the
production of fat [88,89], and testosterone is the most abundant androgen produced by the
testes of boars from fetal period to puberty [90,91]. Leydig cells of the boar testis are the
main site of testosterone production, however, other hormones such as the 16-unsaturated
steroids, the oestrogens and dehydroepiandrosterone (DHEA) can also be produced [92].
These hormones may also have important effects on lipid metabolism in barrows, their
specific effects remain to be further verified in the future experiments.

5. Conclusions

In this study, we established a pig model with obesity due to androgen deficiency and
compared it with normal pigs to screen genes that affect fat deposition. According to the
GO and KEGG results, the differentially expressed genes in backfat were mainly involved
in cell proliferation, differentiation, migration, apoptosis, signaling and other related
pathways. Abdominal fat differential genes are more often associated with hormonal
influences on cells, metabolism of lipid-related products, and generation of inflammatory
factors. Our study suggests that the effects of androgen on adipose tissues in different
body parts are inconsistent, and that abdominal fat is more vulnerable to testosterone
effects than is backfat. Castration can affect the migration, differentiation and apoptosis of
backfat adipocytes through COL13A1, PIK3C2G and their regulatory factors. Castration
further leads to glycolipid metabolic disorders and increased expression of inflammatory
cytokines by affecting the expression of HSD11B1, SGK1, PCK1, and SLC2A4 in abdominal
adipose tissues and their regulatory factors. LncRNAs such as M-7474 and corresponding
miRNAs such as novel-miR-243 may play an important role in testosterone regulation of
fat deposition in pigs, which affects meat quality as well as pig production benefits.
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