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Abstract

Background: Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation
of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-
positive rates that occur when only sequence conservation at the core binding-sites is considered.

Results: To improve this situation, we have quantified the performance of several Position Weight Matrix (PVWM)
algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-
medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune,
and antiviral responses (NF-kB, ISGF3, IRFI, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of
the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method,
entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic
algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.

To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison,
it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and
optimized PWNMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting
SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.

Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant
correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less
significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA
and optimized PWM models were applied together, this substantially reduced false positives at least at higher
stringencies.

Conclusion: Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered
for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led
to a list of genes which appear to be regulated by the above TFs.
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Background

Transcription factors (TFs) function by binding to the rec-
ognition sites in gene regulatory regions. TF binding to
DNA is mediated through base-dependent hydrogen
bonds and other structural propensities that are the result
of dinucleotide stacking: salt bridges to the phosphate
backbone, Hydrogen bonds and Van der Waal's interac-
tions [1]. TFs are also often members of multimolecular
complexes to which the DNA binds through further
sequence and structural features. Where TFBS sequences
are known, one can try to search for similar sequences
computationally. These binding sites are often repre-
sented by a consensus, which is just a pattern of bases that
occur at specific positions in a site. Because the sites are
often degenerate, mismatches to the consensus are often
admissible. But consensus presentation has limited use
for even moderately variable BSs, because it preserves too
little or no information about nucleotide variability.

TFBS prediction is usually attempted using position
weight matrices (PWMs) [2-4]. This method implies that
there are some contributions from each base at each posi-
tion and that the sum of all these contributions is above a
certain threshold. However, this is inadequate for three
reasons. The core sequence-specific positions are so few
that the matrices have a high false positive rate. Many
TFBSs have too few functionally characterised sequences
to populate, to a statistically meaningful extent, a dinucle-
otide PWM of sufficient length to capture the long-range
structural propensities. Finally, they are severely limited
by the assumption that positions in a site contribute addi-
tively to the total score. Experimental evidence suggests
that this assumption of independence is not always true
[5-7]. This assumption may be just a good and useful
approximation, which however does not fit data perfectly
and is therefore not quite correct [8].

The high false-positive rates in TFBSs prediction using
PWMs of the core motifs have led to various attempts to
draw in extra information to improve performance [9,10].
One is to look for conservation of predicted BSs between
homologous genes of different species taking into account
the evolutionary distances [11,12], though this will result
in the potential elimination of species-specific TFBSs.
Given that TFs usually act through multi-protein com-
plexes, another has been to search for pairs or higher mul-
tiples of TFBSs [13]. This approach is restricted either to
known or presumed TFBS pairs.

The simplest way to increase performance of conventional
PWM is the calculation of dependencies between adjacent
positions. This model is represented by a dinucleotide
PWMSs (or weight array model) [14,15]. Besides the obvi-
ous advantage of involving higher-order statistics, they
certainly may capture the longest lengths of motifs.
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Another tool for TFBSs prediction used PWMs constructed
on the basis of degenerate oligonucleotide motifs [16].
This approach may represent more than two non-adjacent
positions together, but still the motif structure is prelimi-
nary restricted. Additional statistical features in the flank-
ing regions of sites may also support TFBS recognition
[17]. This analysis uses many types of features, for
instance oligonucleotide content, structural and chemical
context-dependent parameters like helical twist or melting
temperature. A similar approach, based on discriminant
function of retrieved features to E2F BSs, appears to be
very promising [18]. Namely, the false positive rate of
PWM may be substantially decreased and this especially
refers to revealing high scoring sites.

Another successful approach for PWM improvement
incorporated position-dependent information content
and pairwise correlations [19]. In this work the notion of
scope delimited the correlating nucleotides (e.g. a scope
of two considers both adjacent and separated by an inter-
mediate nucleotide pairs). Recently, other approaches
have been reported for PWM improvement by the
consideration of dependencies between distant positions
[20-25].

The interaction of distant site positions can be important
for the formation of DNA secondary structure that aids TF
recruitment, its interaction with DNA duplex and stable
TF-DNA complex formation. Therefore correlations
between arbitrary BS positions are expected to be impor-
tant. These correlations provide long-range structural
rather than sequence-specific interactions. Some TFs func-
tion through association with nucleosomes [26-29],
which do not bind to any sequence-specific motif but
rather through quaternary structures of the duplex
DNA [30].

In this work we have further developed a new method,
entitled SiteGA [31], using a genetic algorithm (GA)
involving a discriminant function of locally positioned
dinucleotides (LPDs) and applied it to clinically impor-
tant TFBSs. It is derived from the analysis of local dinucle-
otide context [32,33], and provides the subtlety of
discriminant analysis [34-36,18] with the speed of a GA in
detecting significant features. To evaluate the performance
of our approach, we compared it with optimized PWMs,
whose lengths were adjusted until they performed at their
best and also compared mono- and dinucleotide matrices.

Duplex-DNA quaternary structures result from the DNA
bending and flexibility, which arise from the stacking
interactions of successive dinucleotides [37]. Such struc-
tural approaches could be defined by a dinucleotide
PWM, but this would require hundreds of sites to develop
a statistically meaningful 16 x (L-1) matrix (where L
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denotes site length). Discriminant analysis provides an
approach to determining which dinucleotides and posi-
tions appear to be significant.

The pattern beyond the canonical footprint reflects the
genome nucleotide context of neighbour regulatory regions
around BSs. Consideration of these regions helps to
increase the recognition accuracy. Subtle context features
besides the site footprint may be related to the presence of
other still unknown features within the overall regulatory
element (for example other TFBSs). Finally we combined
the SiteGA and optimized PWM models together and
applied them to the human promoters from EPD [38]. This
reveals the most reliable potential BS targets.

Results

PWMs: window lengths and performance

Figure 1 depicts modified receiver operating characteristic
(ROC) plots computed by jackknife resampling tests [39]
for different PWM models of 9 TFBSs (E2F, NF-kB, ISGF3,
IRF1, PPAR, SF-1, HNF4, SREBP and STAT1). At any given
true positive (TP) rate, better performance is indicated by
a lower false positive (FP) value. The general impression
is that the NLG algorithm (developed here) performs at
least as well as and often better than the other algorithms,
with optimized matrices doing better still. This is substan-
tiated by average rankings for mono- and diPWM shown
in Table 1 and Table 2, correspondingly.

Detailed values for the optimized PWM models are in
Table 3, with Figure 2 showing FP rates for the optimized
models according to model length. We found that motif
lengths should be greater than 20 bases long for lower FP
rates, and generally that dinucleotide slightly outper-
formed mononucleotide PWMs, for all except SREBP. One
might have expected that the structural information
implicit in dinucleotide stacks would have resulted in a
generally much better performance. We attribute this
meagre improvement to the shortage of sequences availa-
ble to populate a 16 x (L - 1) matrix needed for dinucle-
otides (where L denotes site length).

PWMs and SiteGA: performance comparison

SiteGA represents a radically different approach to PWMs
in that the Genetic Algorithm has discovered the dinucle-
otide interactions that are most significant, with probabil-
ities assigned to their ability to discriminate between
genuine and false sites. The significant dinucleotide pairs
may be very far apart, and the intrinsic information not
detectable using PWMs. Its parameters for the nine TFBSs
are also shown in Table 3, and Figure 3 shows the ROC
plots for SiteGA and PWM models.

The most striking feature of these results is that the SiteGA
approach often performed close to and sometimes better
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Recognition performance for different PWMs. Each
vertical block shows the performance of five different PWM
algorithms: BVH (Berg and von Hippel) [2], LOD (log-odds)
[63], MCH (MATCH) [62], NLG (natural logarithm) and
OPT (natural logarithm, optimized matrix length) for each
TF. The vertical axis shows the false-positive rate (logarith-
mic scale) for that algorithm at true-positive rates defined in
the caption at the top of the figure. The upper and lower
plots compare the algorithms using 15 nt mononucleotide
and 20 nt dinucleotide PWMs respectively.

Table I: Average ranking of 5 monoPWM models (BVH, LOD,
MCH, NLG and optimized NLG (OPT)) calculated for
corresponding FP rates (matrix length 15 nt).

TP rate, BVH LOD MCH NLG OPT
%
50 3.78 2.00 4.78 2.78 1.67
60 3.1 2.44 4.67 2.44 2.33
70 4.11 2.89 4.22 222 1.56
80 3.1 2.78 4.56 3.00 1.56
90 4.11 3.00 2.89 3.00 2.00
100 3.44 3.22 3.67 2.44 222

The average ranks calculated on the basis of nine TFBS types (see
methods, Sequence data)
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Table 2: Average ranking of 5 diPWM models (BVH, LOD, MCH, NLG and optimized NLG (OPT)) calculated for corresponding FP

rates (matrix length 20 nt).

TP rate, % BVH LOD MCH NLG OPT
50 3.44 3.00 422 3.00 1.33
60 3.1 3.78 3.89 2.44 1.67
70 3.78 3.44 4.11 222 |.44
80 3.56 422 3.89 2.00 1.33
90 3.89 4.33 3.00 2.00 1.78
100 3.1 3.89 3.67 2.44 1.89

The average ranks calculated on the basis of nine TFBS types (see methods, Sequence data)

Table 3: Details for PWM and SiteGA models of TFBS recognition

General parameters

Specific parameters

TF type No. of training sequences Window length, nt PWM Type of matrix! SiteGA Number of LPDs
E2F 40 38 DI 60
HNF4 29 17 DI 140
IRFI 28 33 DI 38
ISGF3 27 34 DI 36
NF-xB 43 30 DI 150
PPAR 37 25 DI 90
SF-1 53 30 DI 90
SREBP 37 18 MONO 10
STATI 32 20 DI 150

I — DI — dinucleotide PWM, MONO — mononucleotide PWM.

5 E03 FP rate Length, nt 50
et B FP(TP=50%)
I FP(TP=70%)

8.E-04 & Length 40

6.E-04 +|

4.E-04

2.E-04 +

HNF4 SREBP STAT1 PPAR NF-xB SF-1

Figure 2

IRF1

ISGF3 E2F

FP rates for the optimized matrices. The FP rates for
each optimized PWM are plotted for 50% and 70% TP rates.
The PWMs have also been arranged from left to right in
order of sequence length, with the length axis provided on
the right-hand side of the plot.

type

than the optimized PWMs. For the latter, the jackknife
versus the bootstrap techniques gave closely similar plots,
whereas for the former, there was a wider disparity

between the two. It might be an artefact of the procedure,
but the jackknife technique tended to give a step-wise
series of steeper curves. The plots have been ordered
according to sequence length and it is clear that the
shorter sites (HNF4, SREBP, and STAT1) performed the
least well by either method, i.e. at 50% TP rates, the FP
rate was >1.E-04. Of the remainder, SiteGA did not per-
form as well as the optimized PWMs for IRF1 and ISGF3,
but this can be accounted for by the comparatively low
number of sites in the set (28 and 27 respectively) leading
to the low number of discriminatory LPDs (38 and 36
respectively). Larger datasets could improve this perform-
ance. By contrast, SiteGA outperforms PWMs at most TP
rates for E2F, which has the longest sequence length and
the third highest number of representative sequences.

SiteGA: patterns beyond the canonical core sequences

One of the most interesting questions in our study was to
clarify the nature of context patterns both within and out-
side of the well-known site core region. For this we looked
in detail at SF-1, for which we have the largest dataset (see
Figure 4). We found that the most significant context fea-
tures were inherent to the consensus [10;19] and footprint
(approximately [5;25]) regions. Locations of dinucle-
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ROC plots of SiteGA and PWM models. The plots compare performance of the two approaches for the 50-80% TP
region. a) HNF4, b) SREBP, c) STAT I, d) PPAR, e) NF-kB, f) SF-1, g) IRFI, h) ISGF3, i) E2F. In this instance, better performance
is marked by higher values and plots positioned further to the left. FP rates (X axis) are in logarithmic scale.

otides were defined with respect to dinucleotide posi-
tions. For example, the second bottom pair of LPDs in
Figure 4c show a 'positive correlation between [16;16] GT
and [17;17] TC'. It means mutual occurrence of dinucle-
otides GT and TC at 16 and 17 positions correspondingly.
This positive correlation means that there is a frequent
occurrence of trinucleotide GTC spanning nucleotides16-
18. Indeed, it belongs to the consensus sequences gtcaag-
GTCa [40].

The first bottom pair of LPDs is the negative correlation
between [12;13] GA and [12;12] CA. This means that
when CA is found commencing at position 12, GA is
never found at position 12 and rarely if ever found at posi-
tion 13. Furthermore, the second bottom line in Figure 4d
presents the negative correlation between dinucleotide
GC and GT resided to the coincident location [16;16].
This corresponds to 50 out of 53 sites having C or T and
position 17.
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5 10 15 20 25

Figure 4

5 10 15 20 25

Significant correlations between frequencies of locally positioned dinucleotides (LPDs) for SF-1 BSs. Each hori-
zontal strip depicts one correlation between two LPDs. a) Positive correlations, 0.001 < p < 0.01; b) negative correlations,
0.001 < p <0.0l; c) positive correlations, p < 0.001; d) negative correlations, p < 0.001. Whole analyzed 30 bp long region cor-
responds to [1;30] window of 29 dinucleotide positions. Also note that the SF-1 consensus sequence GTCAAGGTCA [39]

located within region [10;19].

Note that the locations of regions corresponding to signif-
icant correlations are not restricted to the core consensus
region. In general, the majority of the most significant cor-
relations (p < 0.001) located within consensus region
[10;19], less significant correlations (0.001 < p < 0.05)
covered both consensus and flanking regions ([1;9] and
[20;30]). There are also more positive rather than negative
correlations, perhaps indicative of co-operative structural
binding propensities.

Figure 5 shows the analysis of significant correlations
between LPDs for all the SiteGA models. Firstly, we sepa-
rately considered close and distant dependent dinucle-
otides, then we partitioned close locations into
coincident, overlapping and adjacent. Namely, for loca-
tions [a;; b;] and [a,; b,] of two LPDs only four types of
mutual location were possible: (1) coincident, if a,= a,
and b,=b,; (2) overlapping, if a, <a, <b, or a, <b, <b, or a,
<a, <b, or a, <b, <b,; (3) adjacent, if b;+ 1=a,o0rb,+ 1 =a,,
(4) distant - in all remaining cases, i.e. b;+1 <a, or b,+1

<a,. Generally, we found comparable portions of distant
and close (sum of coincident, overlapping and adjacent)
dependencies among the more significant correlations
(p < 0.001). In some cases, the number of close depend-
encies was larger than number of distant ones. The oppo-
site trend was observed for the less significant correlations
(0.001 < p < 0.05). Namely, the distant correlations are
prevailing over the close ones.

PWMs, SiteGA and their combination applied for EPD
promoter analysis

Figure 6 shows the results of searching the Eukaryotic Pro-
moter Database (EPD) with optimized PWMs, SiteGA and
the two together. To make the evaluation more straight-
forward to interpret, the numbers of potential sites were
counted for only three stringencies, corresponding to 50,
60 and 70% TPs calculated during the training and testing
above. At lower stringencies, predicted sites were found
more than once in a given promoter sequence, but these
cases were very seldom.
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Figure 5

Analysis of significant correlations (p < 0.05) between locally positioned dinucleotides frequencies calculated
for SiteGA models. a) HNF4, b) SREBP, c) STATI, d) PPAR, e) NF-kB, f) SF-1, g) IRFI, h) ISGF3, i) E2F.

Without exception, for a given TF and search method, the
number of sites predicted increased with higher TP rates.
This is as expected, since a greater number of TPs will add
an increasing proportion of FPs, and, as a crude guide,
higher numbers correspond to greater numbers of FPs
being found. As expected from observations above, HNF4,
SREBP and STAT1 predicted many sites, which almost cer-
tainly reflect the weak consensus leading to a higher pro-
portion of FPs. In these cases, SiteGA consistently found
fewer sites, perhaps indicative of better performance.
IRF1, ISGF3 and to a lesser extent PPAR had smaller train-
ing sets, which resulted in fewer sequences retrieved from
EPD, though SiteGA found more than PWMs probably
because the former models were still poorly defined. For
the remainder (E2F, NF-xB and SF1), PWMs returned
fewer sequences at the highest stringency (which might
reflect a genuine failure to identify functional sites) but
more at the lower stringencies (more indicative of a higher
FP rate).

The combined search approach returned still fewer
sequences, indicative of this being the most stringent
approach and any given stringency. In order to confirm

that this refinement was a consequence of discounting
FPs, rather than just a proportional reduction of TPs and
FPs, we computed the ratios TP/FP for all TFBSs for
SiteGA, PWM and the combined approach (Figure 7).
TP rates were estimated on the basis actual recognition
rates for the training data and FP rates were evaluated as
actual frequencies of predictions for background shuffled
training sequences.

These calculations finally confirmed that:

(1) SiteGA models generally have higher ratios TP/FP than
PWMs, indicating that the former may discriminate better
between true and false sites;

(2) For any TFBSs TP/FP ratios are considerably larger for
combined approach than for any separate model, thus the
combination indeed is superior with respect to any single
models.

The EPD genes retrieved by the combined approach are
presented in Table 4. NF-xB was excluded from this study
because the detected genes had a broad range functional
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Figure 6

Analysis of TFBSs predictions in EPD promoters by SiteGA, PWMs and combined PWM & SiteGA approach.
X-axis — TF types and stringencies in terms of fixed TP rates (50, 60 and 70% for SiteGA and PWMes); Y-axis — no. of predicted
sites (data labels are marked for each point). Combined approach implied that both PWM and SiteGA models recognized a

potential site.

roles that appeared contradictory [41], while SREBP was
discounted for similar reasons and because it might still
have a high number of FPs. Predicted sites for the remain-
ing seven TFBSs were sorted by several criteria. Apart from
the genes known and strongly suspected of being
regulated by the TFs, the "possibly regulated" column
includes genes that might be part of the physiological
response mediated by the TF. The unrelated and unknown
genes might also, but we have no evidence to support
their involvement. Some TFs belong to gene families
whose binding sites are similar, these genes might be reg-
ulated by the TF in question, or their identification might
be the accidental result of sequence similarity.

Analysis of whole human genome

Finally to estimate a FP rate on a real genome sequence we
evaluate potential SF1 site density for whole human chro-
mosomes (Figure 8). The stringency was the same as for
EPD analysis, i.e. TP rate fixed at 60% for SiteGA and opti-
mized PWM). Obviously, whole genome sequences have

a very small portion of functional sites, even if some
sequences may bind TF in vitro, the did not bind TF in
vivo. There are several alternative explanations for this
(see Discussion section below).

SiteGA web tool

The SiteGA web tool [31] has undergone major revision
and rationalisation since it was first reported [33]. It now
allows the user to select a subset of recognition methods,
so that the output provides results for every TFBS in turn.
The input data for SiteGA (Figure 9, the sequence box)
should be in FASTA format. The web interface allows the
user to search for 9 TFBSs. The tool starts when the TF,
strand and thresholds options are specified. All threshold
settings are supplied with corresponding FN and FP rates.
The interface also provides TF full names and links to the
SWISSPROT data, the training-set sites and all sites in
TRRD [42]. An example output data is given in Figure 10.
First of all, the table denotes threshold settings for all pre-
dicted sites, and then sites are listed for which no hits were
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Figure 7

Ratios between true positive (TP) and false positive
(FP) rates calculated respectively on the basis of
training and background data for SiteGA, PWMs and
combined PWM & SiteGA approach. X-axis — TF types
and stringencies in terms of fixed TP rate (50, 60 and 70% for
SiteGA and PWNMEs); Y-axis (logarithmic scale) — ratios of fre-
quencies of predictions for the train (TP) to those for back-
ground set (FP). Combined approach implied that both PWM
and SiteGA models recognized a potential site.

found. The results for each sequence and predicted site in
turn are printed, specifying sequence name and total
length, then TF type, total hit count and the list of pre-
dicted sites sorted by position order. For each predicted
site, the output includes its score, strand and short
sequence containing the most conservative region (10-15
nt) in bold uppercase. Adding new TFBSs as sufficient
functional site sequences become available is constantly
refining the web tool.

Discussion

We propose a supplementary approach for TFBS predic-
tion, entitled SiteGA. It is based on the detection of locally
positioned dinucleotides, identified from known sites
using a GA with discriminant analysis. We have previously
applied this combination for computer analysis of nucle-
osome formation potentials, RECON [43,44], which has
been extensively validated and used to investigate a vari-
ety of genomic locations [45-50]. The approach has also
proved for the Drosophila melanogaster promoter recogni-
tion [32]. The techniques for modelling dependencies
between distant positions has been successfully used for
the recognition of splicing sites [51-53], recombination
sites [54] and genes [55].

Recently [33], we introduced the SiteGA method as one
among other alternatives to traditional PWM approach.
Now we propose a far more comprehensive study of TFBS
recognition, which includes a range of modifications/
improvements to the SiteGA method and web tool itself:

http://www.biomedcentral.com/1471-2105/8/481

(a) one window system for training instead three-window
system was used (in [33] - whole window was divided
into three overlapping regions of equal length of 25-35 nt
(center, left flank, right flank); then, a set of locally posi-
tioned dinucleotides was sought for each of the regions
separately, finally three recognition function combined);
(b) three new types of recombination in genetic algorithm
were applied and described (section Method, SiteGA,
genetic algorithm), in [33] only one operator was used
and described. Moreover, in comparison with the previ-
ous paper [33], the method is more carefully presented
here, with more details of the implementation and algo-
rithm. The careful comparison included jackknife (leave-
one-out cross-validations) and bootstrap tests for accu-
racy estimation. These tests were done for all the SiteGA
and optimized PWMs recognition models (9 TFBSs).
Among other conclusion from these tests, we demon-
strated that PWMs may be significantly improved by:

a) dinucleotide statistics (in contrast to mononucleotide
statistics, that usually applied; and

b) exhaustive search among different length and location
of PWM window.

Chen et al. [53] have studied selecting a window size for
the acceptor and donor splice site sequence. They sug-
gested an optimal length for the donor and acceptor splice
site, i.e. a window from 9 bases upstream to 9 bases down-
stream for the donor splice site, and a window from 27
bases upstream to 9 bases downstream of acceptor splice
site. Thus, a proper window size is among the most
important factors for performance improvement.

A similar effect of window size (motif width) on the accu-
racy was investigated in the comparison of five motif dis-
covery algorithms by Hu et al. [56]. From this comparison
we may conclude that very short motif width showed the
worst results. Finally, they suggested running algorithms
multiple times with different motif widths to get the best
result. Thus, we followed this advice and performed
exhaustive searches of window size for all 9 TFBSs.
Though, we should notice that motif discovery is not the
same as site recognition, but intrinsically the approaches
have many similar features.

We applied the algorithms of Berg and von Hippel's [2],
MATCH [57] and log-odds [4,58], as well as our own var-
iant of the latter and compared these. For many types of
TFBSs, we have shown that our matrices perform better
(see Figure 1, Table 1, Table 2)

Nine TFBSs have been investigated in this study. E2F is a
key regulator of cell cycle. The good recognition perform-
ance achieved for this TF (Figure 3i) may be considered as
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Table 4: Ranking of EPD human promoters containing predicted TFBSs by target functionality
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TF type, Known targets Very possible Possible targets BSs of homologous  Possibly unrelated ~ Unknown
Stringency targets TFs
E2F, 60% MCM7, MCMS, MCM3 SLCIAS5, ALDOA MYLé, COX7B, CBARAI, AUPI,
MCM2, Cyclin DI, E3P2, GORASP2, COX8, YMEILI, SFRS10, PGD,
RADS5I, TYMS? BTGI, RAEI, MFGES, TPMT TARS, PRPSI,
ZNF9, CDC37 RNASE4,
PAPOLAZ, MRPS7
HNF4, 50%  hepatic lipase apolipop. B, HGD, HBXIP, histone H4-Al, CEA, FLJ13154,
apolipop. Al, CSTB, Cyclin DI, PRM2, STIPI,RPS8, FLJ10276,
glucagon, HPD, CCNBI, CCNB2, CASQ2, TOMM22, LOC57862,
GLUL UBL5, TAPBP, AUPI, SNX6, COPS4, BLCAP,
IFI27, NDUFA6 TRAPI, RPL23 SLC22A8
IRFI,80%  complementf. B, b'- BST2, B2M Haptoglob HplF, T CSF-1, PCNA APOL3, SRP54,
interferon, HLA C, haptoglob HpR, IL- GTF2H4, DNASE2,
HLA B, IFI27, 4 (BSF-1), TAPBP, NDUFB4
SP100, IFITI, IFI NDUFC2, PHGDH,
54K, IFl 6-162, ISG GLRX?,
I5K
ISGF3,70%  IFI272, IFI 54K, IFI Complement f. B, SSBPI, ATP5), TNPI, B4GALT4, MGC2714
6-162,1SG 5K IFITI SCARB2, ESRRBLI, KNS2, PPPICA,
CTNNBLI, STXI0,
PMAIPI
PPAR, 70%  ATIII apolipop. ClII, SDHD, CIR, histone H2B, CDWS52,
PCK2 LOC51064 BAP29, CHEKI, CSNKIAL,
HNMT, HLADPBI, KIAA0971, PCBP2,
MT-IB, MRPLI I, STIPI, TAF9,
SERPINAS3, SGT, TM4SF2, TMP21
TNPI, TAPBP,
TCLIA, UBLS,
VPS29, ARAFI
SF-1,60%  CG/LH/FSH/TSH-a, ACPP, PSMD8 gastrin, FXYD3, # CTRBI, PPGB, SAT, CNTF, PPAI2, ATP6VODI, IGF II
CYPI 1A, HSD3B2 CKMT2, MYL2, ATF4 RPLPI, FARSL, E3P3, ERH, OS,
TGFBI, FXRI, SERPINDI, HU, JM5
VAPA, TPII, CASQ2, TXN,
CDC42EP2, CCT7, SNRP70
MRPLI I, MRPS21,
S100A2
STATI, 60% complement f. B, TNF-b', C4BP b, MCP, BLCAP, DEK, 1 DDH hepatic, SAPI8, PRSSI, CG/LH/FSH/TSHa',
AGT3, CD14, ARHGDIB, DUT PGKI, PTTGI ALDHIALI,
FLJ20244, CTNNAI, CIS, LOC51231, PWPI,
CDKNIA SERPINB6 EIF3S6, TARS,
DCé, GGPSI

Prediction for potential targets of E2F, IRFI, ISGF3, HNF4, PPAR, SF-1 and STAT| were done by combined PWM & SiteGA approach. For each TFs
stringencies for SiteGA and PWM are in terms of the same fixed TP rate (50-80%). Known targets — experimentally confirmed targets; very
possible or possible targets — a lot of or some indirect evidence on the target functionality; BSs of homologous TFs — potential targets of
homologous TFs approved or may be supposed; possibly unrelated — presumably false positives, unknown — no information on the target
functionality. 2— gene have two predicted sites; 3 — gene have three predicted sites; T — potential targets of members of IRF family; # — potential
targets of LRH-I, that is homolog of SF-1; 1 — potential targets of members of STAT family.

a consequence of it participation in composite elements
and a number of additional context and structural features
in the flanking regions [18]. TFs ISGF3 and STAT1 are
strongly inducible TFs [59]. ISGF3 is activated by interfer-
ons type I. STAT1 may be activated by all interferons and
some other cytokines. The ISGF3 and STAT1 enhance
transcription of many interferon-inducible genes at early
stage of induction (1-2 hours), whereas IRF1 ensures
enhanced transcription of many interferon-inducible
genes for a long time in infected cells [60,61]. SF-1 is a key
regulator of the steroidogenic genes expression in gonads

and adrenals [62]. Moreover, SF-1 is required for develop-
ment and differentiation at all the levels of the hypotha-
lamic-pituitary-gonadal and adrenal axis [62]. There is
experimental evidence for the presence of the SF-1 BSs in
the regulatory regions of genes functioning within this
axis [40]. NF-«B is a factor involved in regulation of many
types of genes, being induced by cytokines, growth fac-
tors, and some other stimuli. NF-xB is involved not only
in regulation of the immune response, but also of many
other processes [41]. Nevertheless, the significance of
interactions between distant positions and their compe-
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Figure 8
Comparative analysis of predicted SF| BSs densities
for human chromosomes. X-axis — number of human
chromosomes (1-22, X, Y); Y axis (logarithmic scale) — ratio
of no. of predicted sites to the total no. of analyzed window
positions.

tence for recognition improvement was already confirmed
for NF-xB BSs [63]. The BSs of PPAR were already
found earlier as good examples of interactions between
distant positions [22]. Markov model application for
large HNF4a set (71 sites) revealed many dependent non-
adjacent positions [64]. Also this discovery confirmed
the importance of a large dataset for performance
improvement.

There is ample evidence to suggest that the duplex-DNA
quaternary structures in the TF-DNA complex and site
flanking regions are the main factors that explain the
observed differences between accuracy estimates of tradi-
tional PWMs and other models which consider distant
interactions. Taking into account the relations between
TFBSs recognition accuracy, potential involvement of TFs
in specific regulation or in processes in wide range of sys-
tems and tissues we may suppose that accuracy estimates
reflected the hidden context pattern of TFBSs. Most prob-
ably duplex-DNA quaternary structures, which we have
here interpreted as a set of mutually adjusted locally posi-
tioned dinucleotides, may be more strictly predefined if
we find a stronger pattern of these context features.

In the current work, the sophisticated method SiteGA was
developed for TFBS recognition. In order to evaluate the
efficiency of our approach, we developed special tech-
niques for traditional PWMs optimization. Namely, the
best of mononucleotide or dinucleotide PWMs and opti-
mal window lengths chosen using jackknife tests were
implemented for 9 types of TFBSs. We revealed that for six
TFBSs (E2F, ISGF3, IRF1, NF-«xB, PPAR and SF-1) perform-
ances are better and optimal lengths are longer (Figure 2)
than for HNF4, SREBP and STAT1. Maybe each of those

http://www.biomedcentral.com/1471-2105/8/481

six TFBSs has a stronger context pattern or they have a
more stable set of general co-factors. The latter case may
be for example if a quantity of genes, subjected to TF-spe-
cific regulation may be roughly functionally restricted.

In comparison with other well-known approaches for
weights calculation [2,4,61,62], the new formula developed
here (equation (1d), section Method, PWMs) performed on
a par if not better than the best of the others. We further
optimized our PWMs through the adjustment of lengths by
jackknife tests, which were mainly based on dinucleotide
statistics (Table 3). Thus we have captured the longest
lengths (17-38 nt, Table 3) than traditional widely used
PWMs (~10-15 nt) [2,4,58] and our PWMs have shown
very substantial performance improvement (Figure 1).

Performance estimates for all PWM models did not nota-
bly depend on the exact type of resampling tests (Figure 3,
jackknife or bootstrap). The same was observed in almost
all cases for SiteGA models. The possible exclusions are
SiteGA models for IRF1 and PPAR BSs (Figure 3g and 3d).
At least for the former, this may be related with small data-
set size (28, Table 3). For the latter, this effect is not so
notable. In all other cases the differences between jack-
knife or bootstrap tests for SiteGA models were not
observed. Additional sites for training cause the differ-
ences between jackknife and bootstrap tests, i.e. this may
be interpreted not only as a result of substantially small,
but rather not sufficient data. SiteGA algorithm in contrast
to PWM's is essentially stochastic, since SiteGA as all other
GAs do not guarantee the best solution. Since SiteGA
accuracies did not notably depend on the type of resam-
pling tests we may conclude that we achieved sufficient
stability for SiteGA algorithm convergence.

Generally, based on 9 types of TFBSs, optimized PWM and
SiteGA have shown similar performances (Figure 3). By
taking into account fuzzy local positioning of the dinucle-
otide context, one can possibly achieve considerable
increase in the recognition accuracy when compared to
that for PWMs. Recall that PWM cannot be quite correct
since it based on the assumption of additive contribution
of site positions to the total score [5-8,20-25]. Thereby
account of dependant contributions of different positions
may help to improve the recognition accuracy.

For E2F, PPAR, NF-xB, HNF4 BSs we found other evidence
for distant structural interactions [18,22,63,64]. For first
three of them SiteGA successfully competed with perform-
ance of PWMs (Figure 3i,d,e). The worse results for HNF4
(Figure 3a) may be related to a small dataset size (we used
only 29 BSs, against 71 declared in [64]), so even with
PWMs we were able to catch the shortest length (Figure 2).
Also we found SF-1 as a good example in SiteGA
comparison with PWMs (Figure 3f).
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Web interface of the SiteGA tool.

Worse results achieved for other TFBSs can probably be
attributed to two reasons. The first is a small and heterog-
enous dataset (this refers to ISGF3 and IRF1, Figure 3g and
3h). We may suspect that in terms of distant interactions
these sets were not representative. The solution space of
any complicated model (like SiteGA) is incommensurably
greater than that for simple (PWM) models. Hence only a
statistically large enough dataset size may allow a compli-
cated model to realise its potential advantages. Whatever
the case, the representative data are the result of a compro-
mise between their heterogeneity and their total amount.
The ISGF3 and IRF1 are very divergent among other train-
ing sets: firstly they are the smallest sets, secondly the total
count of dinucleotides exploited by their SiteGA models
are very small in comparison with all other SiteGA models
(Table 3, last column).

The second reason for worse accuracy of SiteGA in com-
parison with PWMs is a weak and "short" context pattern
(SREBP and STAT1, Figure 3b and 3c), since these TFBSs
are found among the worst among all PWM models, and
among the others they have nearly shortest lengths
(Figure 2). One may expect that for some TFBSs, distant
interactions may be substantially less important than
close ones, so that additivity assumption [8] supported by
observed context pattern.

Comparisons between the performance of PWM and
SiteGA models estimated by resampling tests (Figure 3)
lead us to conclude that PWMs perform better when only
smaller datasets are available (ISGF3 and IRF1, Table 3).
SiteGA models need more representative training sets
(> 25-30 sites) to achieve better results. The comparison
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42 0.525999 + getgteteccTTTCTGTTCTTCTetectgga
86 0.688537 - tettgtacaGTTTCACCAATTGC tggagea
Azl 0.639080 = cagttectcecCTTTCAGTTTTCCtetgteat
234 0.976856 - aatttecccaCTTTCAGTTCTCCotttoagt

TF name: NFKB (1 hits found)
Position Score Strand Seguence
248 0.978071 + ctgaaagtGEGAAATTCCTCTgaggcagaa

>Sequence 1
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For TF(s) PPAR, STAT1, E2F, HNF4, ISGF3 hits not found
TF nawe: SF1 (1 hits found)

Position Score Strand Sequence

522 0.890663 - ctttygaggagTCAGGGCCARgggCctagety

TF nawme: SREBP (3 hits found)

Position Score Strand Sequence

54 0.861473 - getecggagaCCTCACAGGAgetgocatty
128 0.854630 - gaatgeatggbGTCAATCCAgagtagagte
561 0.847373 - ctggtctageBATCACAACACCagCgggte
Figure 10

Example of the SiteGA tool output data.

of performances for datasets of different size suggests that
a subtle context pattern, which may increase the perform-
ance, might be successfully retrieved only from larger
training data [10,25].

Simulated data analyses have shown that performances of
mono- and dinucleotide PWMs, as well as of optimized
markov model (OMiM, [25]) are increased when dataset
size grows from 15 to 150 sequences. Moreover, the most
substantial growth of performance for OMiM was
observed when the dataset size was increased from 15 up
to 75 sites. This observation allows us to suppose that
nearly all our datasets (Table 3) still far from the optimal
size.

We realise, that as a quite sophisticated model, SiteGA in
comparison with PWMs may be prone to overfitting. In
the case of overfitting, the accuracy achieved by the train-
ing data should be quite good, but the independent con-
trol data do not confirm good performance. This effect
should be noticeable for a relatively small dataset and
careful resampling tests allow us to appreciate possible
overfitting effects. In our paper, we carried out two types
of resampling tests (jackknife and bootstrap), thus, the
crucial interference of overfitting is excluded.

http://www.biomedcentral.com/1471-2105/8/481

To conclude, we may note that increasing the number of
training sequences makes a sophisticated method like
SiteGA less prone to overfitting, thus in the case of larger
datasets SiteGA may successfully compete with optimized
PWMs.

We may emphasize at least three possible ways for further
improvement of SiteGA:

(1) Extension of all current TFBSs datasets up to at least
~40-60 sequences;

(2) Careful adjustment of SiteGA-specific parameters (e.g.
number of LPDs);

(3) Analysis of different lengths. That was extremely
important for PWMs (Figure 2), but still SiteGA models
have been implemented with predefined lengths. But
there is no guarantee that PWMSs and SiteGA have exactly
the same setting for optimal window length.

Next our task was to study the hidden context patterns
that allow better recognition performance. For example,
the SF-1 BS has been described by the motifs CCAAG-
GTCA [65], (C/T)CAAGGT(C/T)A [66] and GTCAAG-
GTCA, that was derived from our data set [40]. According
to the data extracted from TRRD [42], the region protected
from nuclease digestion in the footprinting experiment
was not longer than 20 bp. It followed that the core region
of the SF-1 BS was not longer than that. We took local
dinucleotides of the SiteGA SF-1 model and studied the
distribution of their locations within and outside the core
region. We found that most significant SF-1 context fea-
tures were inherent to the consensus [10,19] and footprint
(approximately [5,24]) regions (Figure 4).

The revealed dependencies between locally positioned
dinucleotides for all SiteGA models were split into close
and distant ones (Figure 5), which revealed that:

(1) The most significant correlations are mainly between
pairs of close dinucleotides, mostly resided to the core
region (most probably these patterns are clearly handled
by PWMs);

(2) Larger portions of less significant correlations are
mainly between distant dinucleotides;

(3) Total numbers of distant dependencies are substan-
tially higher than numbers of close ones. Since the signif-
icance of the distant dependencies is generally lower than
for the close ones, the larger dataset is favourable
for detailed clarification. We may note that the domina-
tion of close dependencies among most significant corre-
lations (Figure 4, p < 0.001) is indeed the basis for
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assumption of independence [8], which was accepted in
our case by PWMs.

Finally, a large portion of the current research was devoted
to analysis of EPD data, i.e. nearly all human promoters
~10% of genome (genes for which the transcription start
site has been determined experimentally). This is a sub-
stantial development that is worth bringing to the atten-
tion of a wider audience. Firstly we separately used
optimized PWM and SiteGA models on human EPD pro-
moters (Figure 6) and simulated data analysis (Figure 7),
and applied stringent thresholds (TP 50%-70%) to
reduce the number of FPs. A small number of predicted
sites may be considered as indirect evidence of better rec-
ognition performance, since we can expect obvious
enrichment of total EPD dataset with functional TFBSs.
Indeed for both PWMs and SiteGA, the ratios of predicted
site frequencies to those for background (random
sequences, Markov model 0) varied from ~1 to ~3 at the
most permissive stringency (TP 70% for SiteGA and
PWMs) depending on TF type.

The comparison of PWM and SiteGA model predictions
applied to EPD promoter data (Figure 6) as well as for
random sets (Figure 7) suggests the following:

(1) For E2F, HNF4, NF-«B, SF-1 and STATI1, SiteGA
appeared to be better than the respective PWMs. Some
deviation from this general rule is not very important. For
instance, a small advantage of E2F PWM at TP 50%
(Figure 6) was suppressed by considerable dominance of
SiteGA at two other thresholds, TP 60% and 70%.

(2) Ambiguous situations are found for PPAR and SREBP:
the ratios of PWM and SiteGA predictions (Figure 6, 7)
may be more or less than unity depending on threshold,
but generally it is hard to choose the better model.

(3) For IRF1 and ISGF3, PWMs achieved better results
than SiteGA, which may be attributed to their having only
small datasets. Another possible explanation is the small
total count of LPDs captured by SiteGA models (38 and
36 are two most divergent values in the last column of
Table 3).

This EPD analysis suggests that SiteGA models are able to
outperform the optimized dinucleotide PWM:s.

Table 4 shows the genes (identified by the TFBS searches)
sorted on the likelihood (from biological knowledge) of
them genuinely regulated by the TF concerned. For all
TFBSs, the superposition of PWM and SiteGA appeared to
reduce FPs substantially, while TPs reduced slower (Figure
6). We have shown that among combined predictions
indeed there are many known and other probable func-
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tional sites (Table 4). The combined use of both models is
very promising for whole genome searches, since the
human genome contains approximately tenfold greater
number of genes than is present in EPD now.

Analysis of whole human genome sequences (Figure 8)
confirmed that SiteGA and optimized PWMs have similar
performances and the combination of two different
approaches has a substantially reduced FP rate. Obvi-
ously, the density of predicted sites for Y chromosome is
an outlier among others, most probably explained by dif-
ferences in base content and gene density [67-69]. The
average predicted site density for other chromosomes (1-
22,X) are 1.60E-04, 1.64E-04 and 3.99E-05 for optimized
PWM, SiteGA and their combination, respectively (Figure
8). These figures are slightly lower than the random
sequence scores for PWMs and SiteGA of 2.0E-04 (see Fig-
ure 3f), which is probably accounted for by minor differ-
ences in base composition. Whereas for EPD promoters,
there were notably higher predicted-site densities (2.18E-
04, 2.19E-04 and 5.56E-05, respectively). This may be just
a consequence of closer similarity of nucleotide contents
between training data and EPD promoters (they are both
gene regulatory regions), than between training data and
full-length chromosomes.

Finally, we consider the high number of predicted SF-1
BSs on human chromosomes (Figure 8). The first and
obvious explanation is the presence of BSs that have sim-
ilar consensus sequences. For instance, SF-1 BSs closely
resemble those of LRH-1 [70], both TFs function as mon-
omers. In general, closely related TFs share the same con-
sensus (e.g. androgen, progesterone and glucocorticoid
receptors that bind DNA as dimers [71,72]). Futhermore,
the specific location of an predicted site may be non-func-
tional in vivo for a range of reasons: (a) the position may
lie in tightly packaged heterochromatin far from gene reg-
ulatory machinery (b) although in putatively regulatory
DNA4, it also may be not exposed enough for TF binding,
and finally (c) in a given tissue or development stage
where the TF is present, only a subset of the potential
binding sites are available. Hence in genomic DNA, we
may separate 'in vitro' and 'in vivo' false positives. That
means that the latter can bind TF in vitro, but in vivo this
interaction is not observed. We have previously confirmed
that our computer tools are able to predict functional sites
at least in vitro quite well [73]. However, the majority of
predicted sites on human chromosomes are probably 'in
vivo' false positives, which can only filtered out with extra
knowledge.

Conclusion

We have refined the SiteGA approach for TFBS prediction.
The approach uses a genetic algorithm with a discriminant
function of locally positioned dinucleotides (LPDs) to
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find out the most important positions and dinucleotides.
This technique provides a mechanism to infer and apply
long-range structural TF-DNA interactions. SiteGA and
optimized PWMs have been applied to 9 TFBSs (E2F,
HNF4, ISGF3, IRF1, NF-«B, PPAR, SF-1, SREBP, STAT1).
We performed jackknife and bootstrap resampling tests to
compare performances of SiteGA and PWMs, than we
applied both methods separately to EPD promoter data.
These comparisons allow us to conclude that for the
SiteGA models and optimized PWMs have similar per-
formances. The analysis of dependencies between fre-
quencies of LPDs found by SiteGA models revealed a
number of significant correlations between close and dis-
tant LPDs. Analysis has shown that the majority among
the most significant of these correlations are close and
mainly located in the core (footprint) region. Among the
less significant correlations, the distant were dominating
and resided in both core and flanking regions. Finally we
applied combined SiteGA & PWM approach to EPD pro-
moter data. We have demonstrated that the combined
approach effectively reduced the false positive rate, which
is especially important for higher eukaryotes, whose regu-
latory regions are long and poorly annotated. This combi-
nation looks very promising for future genome-wide
searches, since the two different models together ensured
a substantial reduction in the number of false positives.
Thereby only the most reliable potential TF targets may be
found. The SiteGA web tool interface [31] for 9 TFBSs
types has been implemented.

Methods

Sequence data

The TFBS training samples of E2F, IRF1, ISGF3, HNF4, NF-
kB, PPAR, SF-1, SREBP and STAT1 (Table 3) were derived
from the TRRD [42] and contained only experimentally
confirmed sites (see also presentation of all training sam-
ples on the web tool homepage, [31]). Only TFs with at
least 25 BSs were considered. Initially the analyzed
regions were retrieved as a 40-50 base windows. The con-
served sequence motifs are at the centre of these windows.
The sequence lengths used for analysis and comparison of
PWMs and SiteGA were adjusted by preliminary jackknife
tests performed for PWMs (see section Resampling tests
below).

In order to preserve the validity of the resampling tests, we
removed duplicate sequences from each BS set. Addition-
ally sequence similarity was checked for all sets to check
for homologous genes. Very few similar sequences were
found. The application of a 90% similarity threshold
revealed two pairs of homologous sequences in IRF1,
PPAR and NF-kB sets, none in the SREBP set, and all the
remaining sets had one pair of homologous sequences.
The majority of BSs were represented by nonorthologous
sequences. Thus, among 53 distinct sites comprising the
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largest SF-1 set, 38 (~72%) were in unique non-
orthologous vertebrate genes and the remaining 15
belonging to 7 groups of orthologous genes.

For the EPD searches [38], 1871 sequences of lengths 600
nt located [-550;+50] relative to transcription start sites
were used.

Full-length sequences of human chromosomes were
downloaded from the NCBI site [74].

PWMs

Mononucleotide and dinucleotide PWMs (mono- and
diPWMs) were calculated on the basis of nucleotide and
dinucleotide frequencies respectively, i.e. for monoPWMs
{Sj} ={A T, G, C},j=1,.] =4 and for diPWM {Sj} =
{AA, AT,..., CC}, j=1,.,] = 16. Let n;;denote the number
of sites for which (di-)nucleotide S; appears in position i,
and p; is background (expected) frequency of (di-)nucle-
otide j. We investigated four approaches for weight com-
putation (Egs 1a-1d):

(1a)

n; i+0.5
wl(EVH) = Ln{l’] :|,

nimax 0.5

Berg and von Hippel approach (BVH) [2],

1; max — the number of occurrences of the most common
(di-)nucleotide in position j of the set of binding sites;

oby _, | M, it /
Wiy —L”[Nw/”f}'

log-odds approach (LOD) [4,58].

(1b)

I
b= Z{b j=1
b=1f, =
docounts settings are used in PWMs, [21], N - the number
of BSs in the set;

, pseudocounts settings, various pseu-

I
‘ i
w{t =ni,j><2|:ni'k><Ln[]>< [l\']k]}, (1¢)

k=1
MATCH approach (MCH) [57],

Finally, in this work, we introduce the use of natural log-
arithms (NLG):

w(NIG) _

i =—n;xLn[p;]. (1d)

For all approaches and a nucleotide sequence X [A,B] the
PWM score was calculated as follows:
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B,B-1

wi,j%6;,j(X)~wi min
Prm(X)= Y Y~ 2)
i=A

Wi max ~Wi,min

The indicator ;(X) = 1, if S; = X; (nucleotide (dinucle-
otide) j occurs at i-th position of sequence X) and ;;(X) =
0 otherwise; w; ;, and w; ;.. are minimal and maximal
weights for i-th position. For mononucleotide and dinu-
cleotide PWMs, the sum over i is calculated in the intervals
[A,B] and [A,B-1] respectively. The PWM score is restricted

to the interval [0; 1].

PWM optimization

NLG PWMs were optimized as follows. The training win-
dow size and location search implied the search among
different length (from 10 to 40-50 nt) and locations, i.e.
for each window size three slightly shifted (1 nt) locations
were tested. We chose for each TFBS type the best matrix
type (mono- or dinucleotide PWMs). The recognition
accuracy estimates based on the jackknife resampling tests
[39] were used for window size, location and matrix type
selection. We compared PWMs models, based on opti-
mized settings for NLG approach with other PWMs:
monoPWM (Table 1) and diPWM (Table 2), lengths 15 nt
and 20 nt, correspondingly). For weights calculation BVH,
LOD, MCH and NLG approaches were used.

SiteGA, genetic algorithm

The SiteGA method employed a discriminant function of
locally positioned dinucleotides (LPDs). Identification of
these LPDs was directed by a genetic algorithm (GA),
which handled a population of individuals. An individual
was represented as a set of N LPD frequencies. Each LPD
A(s, e, d) was defined by location [s, e] within the whole
window [A,B] and dinucleotide type d (d-type), 1 <d < 16.
The start s and the end e denote limits for possible posi-
tions of first base of the dinucleotide, so that A <s <e < B-
1. The initial GA population consisted of individuals of
arbitrarily assigned LPDs. Note that for any individual
overlapping of locations for two LPDs of the same dinu-
cleotide type is forbidden. After the population initiation
GA produced iterative mutations and recombinations.
Two types of mutations were applied. Consider an indi-
vidual and fixan LPD A(s,, e,, d,,), 1 <n < N. The mutation
implied either location [s,, e,] or dinucleotide type d,
change. Recombinations were defined in a more compli-
cated fashion. Generally recombination between two par-
ent individuals means an exchange of two or more
different LPDs or their "parts". First, we take two distinct
individuals and consider one of them. Then, we sort all
LPDs in ascending order of dinucleotide types and starts.
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o(d) = Min(s,,d, =d
denote (@ lngN(; * ),

g(d)= lgegﬂff](ekfdk =d)

Next we

, and two respective order num-
bers are n( (d)) and n( (d)). Then for any two LPDs n and
n + 1 that are adjacent in the ordered list, we get the fol-
lowing: (1) ifd,=d, , ;, thene,<s,, ;, otherwise (2) d, <d,,

,means thate,= (d,) ands,,,= (d,,,)) correspond-

n+ 1/

ingly. Let d-type occupancy g; denote the total number of
LPDs of d-type. According to previous notations, g;= 1 +

n( (d)) - n( (d)) and summation of all occupancies gives
16
zgd =N
the total number of LPDs: d=1 . Below the super-
script denotes the 15t or 27 individual. Next we enter nota-
tions r1 &r2 for the ordered numbers of recombinating
LPDs of 15t and 2" individuals, respectively. This defines
the following types of recombination:

1_ 2
(1) If we have 84 =84, then all LPDs of d-type are
exchanged: n(1(d)) < r1 < n(1(d)) &n(2(d)) < r2 <
n(2(d));

11 2 2
(2) If for two LPDs Alsren,d) & Alsiarenzid) 5 position

1 1
SpSx<e,

x (A <x <B-1) is chosen so that

2 o2 )
&2 =% =6 respectively, then these LPDs are
exchanged: r1 =nl &2 =n2;

(3) We again need the same as (2) above and yet 81 = 81 ,
nl-n(1(d)) = n2-n( 2(d)). LPDs of d-type whose starts and
ends are larger than x are exchanged: n1 <r1 <n( 1(d)) &n2
<r2 < n(2(d)), and for two LPDs only the ends are
exchanged: r1 = nl1 &2 =n2;

11 41 2 2 12
(4) If for two LPDs Almeemdm) g Alsna€naidiz) ong
two other pairs of adjacent in the ordered lists LPDs

2 2 12 2 2 2
{A(sic2 €2 dia)s A(Sias1s€ieas1/ dica1)

11 g1 11 1
&{A(Skl'eklfdkl)'A(SkHl/ek1+1'dk1+1)}, we have:

1 2 1 2 12 1 2
{{Snl > ey ordyy > dip} 0 {em > Sion ordy > djn} }
2 1 2 1
& { {sn2 > € ord,; >dj} and

2 _ 1 2
{2 < S OTdny < djnsa} }, then two original LPDs are
exchanged: r1 = nl1 &2 = n2.
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SiteGA, discriminant analysis

The GA process was based on the fitness function maximi-
zation. The fitness evaluated each individual of popula-
tion. Let us consider the real (1%t) and random (2nd)
sequence sets. Random sequences were obtained by shuf-
fling the nucleotides within real sequences (Markov
model 0). The fitness was given by the Mahalanobis
distance R2? between two sets in the space of N LPD
frequencies:

N N
R = Y D - i - 521 )

k=1 n=1

(1)

Here, /" is the mean frequency of the nt LPD calculated

(2
for the real set; /7

- respective frequency for the random
-1
set; and Sk is an element of the matrix |S-1| inverse to the
matrix |S| = |SM)]| + |S(?)|. These are the covariance matri-
ces of the vectors of LPDs over the 1stand 2nd sets, corre-
spondingly. In our implementation, only individuals with
equal numbers of LPDs (N) were compared by the fitness
R2. The choice of the suitable N value was based on the
resampling tests (see below section Resampling tests).
Among others GA parameters, the population size may be
noted as the most important. It was adjusted on the basis
of a trade-off between calculation time and algorithm

convergence.

After the GA finished the final set {f,(X)} of N LPDs, fre-
quencies may be attributed to any nucleotide sequence X
[A,B]. Then we consider two additional designations:

N N

Bu= X DS 1PNy = (1 DB XA + £
k=1 n=1

(4)

This allows deduction of the SiteGA score as follows:

N
Psieca(X) =1=11=Y B [} +1)| (5)
n=1
The highest score +1 denotes the best prediction. Zero
score implies an arbitrary classification between real and
random sets.

Resampling tests

Resampling tests were performed for all 9 TFBSs (Table 3)
to compare the performance of PWM and SiteGA models.
The random nucleotide sequences were included in back-
ground sets. For each TFBS type, we applied resampling
jackknife (leave-one-out cross-validations) and bootstrap
tests [39]. The jackknife test sampled data by taking out a
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single site, then training a model and using the omitted
site for validation. This process was repeated for every site
in the full set. Bootstrapping differed from jackknifing in
that rather than taking only one site out, it randomly
selected 90% of the full set for training, while the remain-
ing sites were used for validation. A total of 100 bootstrap
iterations were done.

Both types of resampling tests were applied to the same
data, in order to verify the stability of performance esti-
mates and to study the relationship between sample size
and performance.

Note that we used as background models for SiteGA and
optimized PWMs the Oth order Markov models, which
have been widely used for performance estimates [15,23],
since this type of sequences is lack any significant depend-
encies among different positions, but still preserves the
nucleotide content of training foreground data. Though
there are many attempts to use genomic sequences as a
background model or a contrast negative set (e.g. second
[57] or third [75] exons, random promoters [22], random
position in the genome [76]), contamination of such neg-
ative sets with functional (at least in vitro) binding sites is
possible. Thus, we used as a background set random, Oth
order Markov model sequences, which surely left only a
small chance to functional site formation.

Performance measures

The comparison of PWM and SiteGA models was based
on the computation of the ROC plot, i.e. dependence
between true positive (TP) and false positive (FP) rates. As
the main performance measure, FP rates were chosen
which corresponded to TP rates in the range 50%-70%.
This range was accepted since it primarily related to strin-
gent thresholds applied in wide genome analysis. For
example, the most stringent threshold (TP rate 50%) cor-
responds to the loss of approximately a half of potential
sites, at the same time the FP rate is very efficiently sup-
pressed. Usually genome data require minimization of FP
rates; therefore the most stringent thresholds have applied
in this work.

PWM and SiteGA models settings

The details for developed PWM and SiteGA models for
TFBSs of 9 types are shown in Table 3. The performance of
PWM model strongly depends on the window length.
Another parameter of PWM model is the matrix type,
since we chose between mononucleotide and dinucle-
otide matrices. The jackknife tests were used for selection
of window length and location. The window length and
location selection implied the search among different
sizes (from 10 to 40-50 nt) and locations, i.e. for each
window length three overlapped and slightly shifted loca-
tions (1 nt) were tested. The background set generated by
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shuffling of control site sequence (taken in it full length
40-50 nt). To build SiteGA models, we chose for all TFs
the same BS lengths as for corresponding PWM models
(Table 3). The total number of LPDs was adapted by
SiteGA model using resampling tests by choosing the
value that maximized the performance.

Combination PWM & SiteGA

The combination PWM & SiteGA implied that a potential
site was predicted separately by optimized PWM and
SiteGA models at specified stringencies. In our implemen-
tation we fixed TP rates for both models, thus, a fixed
stringency means the recognition of certain portion of
train data. For example, if for optimized PWM and SiteGA
we set stringencies corresponded to TP rates 70%, then
effective TP rate for combined approach will be approxi-
mately 50%. Thus, combination allows reducing the FP
rates, but this also related with a moderate low of TP rate.

Awvailability and requirements
Project name: SiteGA

Project home page: http://wwwmgs.bionet.nsc.ru/mgs/
programs/sitega/

Operating system(s): Platform independent (web-based,
tested on Mozilla Firefox 2.0 and Internet Explorer 6.0)

Programming language: The recognition algorithms are
implemented in C++, the interactive version was devel-
oped using Perl

Licence: Free for academic and non-profit researchers.
Contact the corresponding author for commercial

licensing

List of abbreviations
BS binding site

diPWM dinucleotide PWM

FP false positive

GA genetic algorithm

LPD locally positioned dinucleotide
monoPWM mononucleotide PWM
PWM position weight matrix

ROC receiver operating characteristic

TP true positive
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TF transcription-factor
TFBS transcription-factors binding site

Authors' contributions
VGL drafted the manuscript, performed the computer
analysis and prepared the manuscript.

EVI, EAA and IIT prepared the sequence data and drafted
the manuscript.

TIM participated in the design of the study and drafted the
manuscript.

NAK and TCH drafted the manuscript and participated in
the design of the study.

All authors read and approved the final manuscript.

Acknowledgements

The work was supported by the RFBR (grants 05-04-49111, 05-07-98012);
the Ministry of Industry, Science, and Technologies of the Russian Federa-
tion (grant 43.073.1.1.1501); Innovation Project of Federal Agency of Sci-
ence and innovation IT-CP.5/001 "Development of software for computer
modeling and design in post-genomic systems biology (systems biology in sil-
ico); U.S. Civilian Research & Development Foundation for the Independent
States of the Former Soviet Union (CRDF) and the Ministry of Education of
Russian Federation within the Basic Research and Higher Education Pro-
gram (Award No. REC-008, grant Y2-B-08-02), the Ministry of Education
of the Russian Federation grant DSP.2.1.1.4935. The authors are grateful to
Lokhova L.V. for technical support, to Genaev M. for interface design, and
to Osadchuk A.V., Busygina T.V and Podkolodny N.L. for helpful
discussions.

References

I. Hoglund A, Kohlbacher O: From sequence to structure and
back again: approaches for predicting protein-DNA binding.
Proteome Sci 2004, 2(1):3.

2.  Berg OG, von Hippel PH: Selection of DNA binding sites by reg-
ulatory proteins l: statistical-mechanical theory and applica-
tion to operators and promoters. | Mol Biol 1987, 193:723-750.

3. Quandt K, Frech K, Karas H, Wingender E, Werner T: Matind and
Matlnspector: new fast and versatile tools for detection of
consensus matches in nucleotide sequence data. Nucleic Acids
Res 1995, 23:4878-4884.

4. Stormo GD: DNA binding sites: representation and discovery.
Bioinformatics 2000, 16:16-23.

5.  Man TK, Stormo GD: Non-independence of Mnt repressor-
operator interaction determined by a new quantitative mul-
tiple fluorescence relative affinity (QuUMFRA) assay. Nucleic
Acids Res 2001, 29:2471-2478.

6.  Bulyk ML, Johnson PLF, Church GM: Nucleotides of transcription
factor binding sites exert interdependent effects on the bind-
ing affinities of transcription factors. Nucleic Acids Res 2002,
30:1255-1261.

7. Lee M-LT, Bulyk ML, Whitmore GA, Church GM: A statistical
model for investigating binding probabilities of DNA nucle-
otide sequences using microarrays. Biometrics 2003,
58:981-988.

8.  Benos PV, Bulyk ML, Stormo GD: Additivity in protein-DNA
interactions: how good an approximation is it? Nucleic Acids
Res 2002, 30:4442-4451.

9.  Abnizova |, Gilks WR: Studying statistical properties of regula-
tory DNA sequences, and their use in predicting regulatory

Page 18 of 20

(page number not for citation purposes)


http://wwwmgs.bionet.nsc.ru/mgs/programs/sitega/
http://wwwmgs.bionet.nsc.ru/mgs/programs/sitega/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15202939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15202939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3612791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3612791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3612791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10812473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384591
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761364

BMC Bioinformatics 2007, 8:481

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.
31

32.

regions in the eukaryotic genomes.
7(1):48-54.

GuhaThakurta D: Computational identification of transcrip-
tional regulatory elements in DNA sequence. Nucleic Acids Res
2006, 34(12):3585-3598.

Blanchette M, Tompa M: FootPrinter: A program designed for
phylogenetic footprinting. Nucleic Acids Res 2003, 3 1:3840-3842.
Xie X, Lu ], Kulbokas EJ, Golub TR, Mootha VK, Lindblad-Toh K,
Lander ES, Kellis M: Systematic discovery of regulatory motifs
in human promoters and 3' UTRs by comparison of several
mammals. Nature 2005, 434:338-345.

Kel-Margoulis O, Kel A, Reuter I, Deineko |, Wingender E: Trans-
compel. Nucleic Acids Res 2002, 30:332-334.

Zhang MQ, Marr TG: A weight array method for splicing signal
analysis. Comput Appl Biosci 1993, 9:499-509.

Gershenzon NI, Stormo GD, loshikhes IP: Computational tech-
nique for improvement of the position-weight matrices for
the DNA/protein binding sites.  Nucleic Acids Res 2005,
33(7):2290-2301.

Ponomarenko MP, Ponomarenko |V, Frolov AS, Podkolodnaya OA,
Vorobyev DG, Kolchanov NA, Overton GC: Oligonucleotide fre-
quency matrices addressed to recognizing functional DNA
sites. Bioinformatics 1999, 15:631-643.

Ponomarenko JV, Ponomarenko MP, Frolov AS, Vorobyev DG, Over-
ton GC, Kolchanov NA: Conformational and physicochemical
DNA features specific for transcription factor binding sites.
Bioinformatics 1999, 15(7-8):654-668.

Kel AE, Kel-Margoulis OV, Farnham PJ, Bartley SM, Wingender E,
Zhang MQ: Computer-assisted identification of cell-cycle
related genes: New targets for E2F transcription factors. |
Mol Biol 2001, 309:99-120.

Osada R, Zaslavsky E, Singh M: Comparative analysis of methods
for representing and searching for transcription factor bind-
ing sites. Bioinformatics 2004, 20(18):3516-3525.

Barash Y, Elidan G, Friedman N, Kaplan T: Modeling dependencies
in protein-DNA binding sites. In RECOMB '03: Proceedings of the
Seventh Annual International Conference on Computational Molecular Biol-
ogy New York, NY, USA: ASM Press; 2003:28-37.

King OD, Roth FP: A non-parametric model for transcription
factor binding sites. Nucleic Acids Res 2003, 31(19):el |6.

Zhou Q, Liu JS: Modeling within-motif dependence for tran-
scription factor binding site predictions. Bioinformatics 2004,
20(6):909-916.

Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, Shmilovici A, Posch S,
Grosse |: Identification of transcription factor binding sites
with variable-order Bayesian networks. Bioinformatics 2005,
21(11):2657-2666.

Pudimat R, Schukat-Talamazzini EG, Backofen R: A multiple-fea-
ture framework for modelling and predicting transcription
factor binding sites. Bioinformatics 2005, 21(14):3082-3088.
Huang W, Umbach DM, Ohler U, Li L: Optimized mixed Markov
models for motif identification. BMC Bioinformatics 2006, 7:279.
Ko HP, Okino ST, Ma Q, Whitlock JPJr: Dioxin-induced CYPIAI
transcription in vivo: the aromatic hydrocarbon receptor
mediates transactivation enhancer-promoter communica-
tion and changes in chromatin structure. Mol Cell Biol 1996,
16(1):430-436.

Beato M, Eisfeld K: Transcription factor access to chromatin.
Nucleic Acids Res 1997, 25:3559-3563.

Graunke DM, Fornace A Jr, Pieper RO: Presetting of chromatin
structure and transcription factor binding poise the human
GADD45 gene for rapid transcriptional up-regulation.
Nucleic Acids Res 1999, 27:3881-3890.

Deroo BJ, Archer TK: Glucocorticoid receptor activation of the
| kappa B alpha promoter within chromatin. Mol Biol Cell 2001,
12(11):3365-3374.

Kiyama R, Trifonov EN: What positions nucleosomes? - A
model. FEBS Lett 2002, 523(1-3):7-11.

SiteGA web tool for transcription factor binding sites recog-
nition by genetic algorithm [http://wwwmgs.bionet.nsc.ru/mgs/
programs/sitega/]

Levitsky VG, Katokhin AV: Recognition of eukaryotic promoters
using a genetic algorithm based on iterative discriminant
analysis. In Silico Biol 2003, 3:81-87.

Brief Bioinform 2006,

33.

34.

35.

36.

37.
38.

39.
40.

41.
42.

43.
44,
45.

46.

47.

48.

49.

51.
52.
53.

54.

55.
56.
57.

http://www.biomedcentral.com/1471-2105/8/481

Levitskii VG, Ignat'eva EV, Anan'ko EA, Merkulova Tl, Kolchanov NA,
Hodgman TC: Method SiteGA for transcription factor binding
sites recognition. Biofizika 2006, 51(4):633-639.

Solovyev VV, Salamov AA, Lawrence CB: Predicting internal
exons by oligonucleotide composition and discriminant anal-
ysis of spliceable open reading frames. Nucleic Acids Res 1994,
22:5153-5156.

Zhang MQ: Identification of human gene core-promoters in
silico. Genome Res 1998, 8:319-326.

Davuluri RV, Grosse |, Zhang MQ: Computational identification
of promoters and first exons in the human genome. Nat Genet
2001, 29(4):412-417.

Calladine CR, Drew HR: Principles of sequence-dependent flex-
ure of DNA. | Mol Biol 1986, 192:907-918.

Schmid CD, Perier R, Praz V, Bucher P: EPD in its twentieth year:
towards complete promoter coverage of selected model
organisms. Nucleic Acids Res 2006, 34:82-85.

Efron B, Gong G: A leisurely look at the bootstrap the jackknife
and resampling. American Statistician 1983, 37:36-48.

Busygina TV, Ignatieva EV, Osadchuk AV: Consensus sequence of
transcription factor SF-1 binding site and putative binding
site in the 5' flanking regions of genes encoding mouse ster-
oidogenic enzymes 3betaHSDI and Cyp|17. Biochemistry (Mosc)
2003, 68:377-384.

Campbell K], Perkins ND: Regulation of NF-kappaB function.
Biochem Soc Symp 2006, 73:165-80.

Kolchanov NA, Ignatieva EV, Ananko EA, Podkolodnaya OA,
Stepanenko IL, Merkulova Tl, Pozdnyakov MA, Podkolodny NL, Nau-
mochkin AN, Romashchenko AG: Transcription Regulatory
Regions Database (TRRD): its status in 2002. Nucleic Acid Res
2002, 30:312-317.

RECON web tool for construction of nucleosome formation
potential [http://wwwmgs.bionet.nsc.ru/mgs/programs/recon]
Levitsky VG: RECON: a program for prediction of nucleosome
formation potential. Nucleic Acids Res 2004:VW346-WV349.
Levitsky VG, Podkolodnaya OA, Kolchanov NA, Podkolodny NL:
Nucleosome formation potential of eukaryotic DNA: tools
for calculation and promoters analysis. Bioinformatics 2001,
17(11):998-1010.

Ganapathi M, Srivastava P, Das Sutar SK, Kumar K, Dasgupta D, Pal
Singh G, Brahmachari V, Brahmachari SK: Comparative analysis of
chromatin landscape in regulatory regions of human house-
keeping and tissue specific genes. BMC Bioinformatics 2005,
6(1):126.

Levitsky VG, Podkolodnaya OA, Kolchanov NA, Podkolodny NL:
Nucleosome formation potential of exons, introns and Alu
repeats. Bioinformatics 2001, 17(11):1062-1064.

Vinogradov AE: Noncoding DNA, isochores and gene expres-
sion: nucleosome formation potential. Nucl Acids Res 2005,
33(2):559-563.

Podkolodnaia OA, Levitskii VG, Podkolodnyi NL: Locus control
regions: description in the LCR-TRRDatabase. Mol Biol (Mosk)
2001, 35:943-951.

Levitsky VG, Katokhin AV, Podkolodnaya OA, Furman DP: Nucleo-
somal DNA organization: an integrated information system.
In Bioinformatics of genome regulation and structure Il Edited by: Kolch-
anov N, Hofestaedt R, Milanesi L. Boston/Dordrecht/London: Kluwer
Academic Publishers; 2004:3-10.

Cai D, Delcher A, Kao B, Kasif S: Modeling splice sites with bayes
networks. Bioinformatics 2000, 16(2):152-158.

Castelo R, Guigo R: Splice site identification by idIBNs. Bioinfor-
matics 2004, 20:i69-i76.

Chen TM, Lu CC, Li WH: Prediction of splice sites with depend-
ency graphs and their expanded bayesian networks. Bioinfor-
matics 2005, 21(4):471-482.

Cowell LG, Davila M, Kepler TB, Kelsoe G: Identification and uti-
lization of arbitrary correlations in models of recombination
signal sequences. Genome Biol 2002, 3(12):126.

Burge C, Karlin S: Prediction of complete gene structures in
human genomic DNA. | Mol Biol 1997, 268:78-94.

Hu , Li B, Kihara D: Limitations and potentials of current motif
discovery algorithms. Nucl Acids Res 2005, 33(15):4899-4913.
Kel AE, Gossling E, Reuter |, Cheremushkin E, Kel-Margoulis OV,
Wingender E: MATCH: a tool for searching transcription fac-
tor binding sites in DNA sequences. Nucleic Acids Res 2003,
31(13):3576-3579.

Page 19 of 20

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16855295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16855295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8293321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8293321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11491305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11491305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15797905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15797905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15905283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16749929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16749929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8524325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8524325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8524325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10481028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10481028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11694573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12123795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12123795
http://wwwmgs.bionet.nsc.ru/mgs/programs/sitega/
http://wwwmgs.bionet.nsc.ru/mgs/programs/sitega/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12762848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12762848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12762848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16909840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16909840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3586013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3586013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12765518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12765518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12765518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16626297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752324
http://wwwmgs.bionet.nsc.ru/mgs/programs/recon
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15918906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15918906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15918906
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11771141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11771141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16284194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16284194
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369

BMC Bioinformatics 2007, 8:481 http://www.biomedcentral.com/1471-2105/8/481

58. Wasserman WV, Sandelin A: Applied bioinformatics for the
identification of regulatory elements. Nat Rev Genet 2004,
5(4):276-287.

59. Platanias LC: Mechanisms of type-l- and type-ll-interferon-
mediated signalling. Nat Rev Immunol 2005, 5:375-386.

60. Jaruga B, Hong F, Kim WH, Gao B: IFN-gamma/STATI acts as a
proinflammatory signal in T cell-mediated hepatitis via
induction of multiple chemokines and adhesion molecules: a
critical role of IRF-1. Am | Physiol Gastrointest Liver Physiol 2004,
287(5):1044-1052.

61. Lohoff M, Mak TW: Roles of interferon-regulatory factors in T-
helper-cell differentiation. Nat Rev Immunol 2005, 5:125-135.

62. Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A: SF-1 a key
player in the development and differentiation of steroidog-
enic tissues. Nuclear Receptor 2003, 1:8-45.

63. Udalova IA, Mott R, Field D, Kwiatkowski D: Quantitative predic-
tion of NF-kB DNA-protein interactions. PNAS 2002,
99(12):8167-8172.

64. Ellrott K, Yang C, Sladek FM, Jiang T: Identifying transcription fac-
tor binding sites through Markov chain optimization. Bioinfor-
matics 2002, 18(Suppl 2):S100-S109.

65. Shen WH, Moore CC, lkeda Y, Parker KL, Ingraham HA: Nuclear
receptor steroidogenic factor | regulates the mullerian
inhibiting substance gene: a link to the sex determination
cascade. Cell 1994, 77:651-661.

66. Morohashi K, Honda S, Inomata Y, Handa H, Omura T: A common
trans-acting factor Ad4-binding protein to the promoters of
steroidogenic P-450s. | Biol Chem 1992, 267:17913-17919.

67. Quintana-Murci L, Fellous M: The Human Y Chromosome: The
Biological Role of a "Functional Wasteland". | Biomed Biotech-
nol 2001, 1(1):18-24.

68. Wright FA, Lemon W], Zhao WD, Sears R, Zhuo D, Wang JP, Yang
HY, Baer T, Stredney D, Spitzner J, Stutz A, Krahe R, Yuan B: A draft
annotation and overview of the human genome. Genome Biol
2001, 2(7):RESEARCHO0025.

69. Costantini M, Clay O, Auletta F, Bernardi G: An isochore map of
human chromosomes. Genome Res 2006, 16(4):536-541.

70. Fayard E, Auwerx |, Schoonjans K: LRH-1: an orphan nuclear
receptor involved in development, metabolism and ster-
oidogenesis. Trends in Cell Biol 2004, 14:250-260.

71. Stepanova M, Lin F, Lin VC: In silico modelling of hormone
response elements. BMC Bioinformatics 2006, 7(Suppl 4):527.

72. Duarte J, Perriére G, Laudet V, Robinson-Rechavi M: NUREBASE:
database of nuclear hormone receptors. Nucleic Acids Res 2002,
30(1):364-368.

73. Klimova NV, Levitskii VG, Ignat'eva EV, Vasil'ev GV, Kobzev VF, Bus-
ygina TV, Merkulova Tl, Kolchanov NA: Recognition of the poten-
tial SF-1 binding sites by SiteGA method, their experimental
verification and search for new SF-1 target genes. Mol Biol
(Mosk) 2006, 40:512-523.

74. NCBI Build Number 36, Version 2, September 2006 [ftp:/
ftp.ncbi.nih.gov/genomes/H_sapiens/]

75. Chekmenev DS, Haid C, Kel AE: P-Match: transcription factor
binding site search by combining patterns and weight matri-
ces. Nucl Acids Res 2005:WW432-437.

76. Kamalakaran S, Radhakrishnan SK, Beck WT: Identification of
estrogen-responsive genes using a genome-wide analysis of
promoter elements for transcription factor binding sites. |
Biol Chem 2005, 280(22):21491-21497.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime.

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral

http://www.biomedcentral.com/info/publishing_adv.asp

Page 20 of 20

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15864272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15864272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14594453
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8205615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8205615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8205615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1517227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12488622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12488622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11516338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11516338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16597586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17217520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17217520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16813170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16813170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16813170
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790569
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	PWMs: window lengths and performance
	PWMs and SiteGA: performance comparison
	SiteGA: patterns beyond the canonical core sequences
	PWMs, SiteGA and their combination applied for EPD promoter analysis
	Analysis of whole human genome
	SiteGA web tool

	Discussion
	Conclusion
	Methods
	Sequence data
	PWMs
	PWM optimization
	SiteGA, genetic algorithm
	SiteGA, discriminant analysis
	Resampling tests
	Performance measures
	PWM and SiteGA models settings
	Combination PWM & SiteGA

	Availability and requirements
	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

