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ABSTRACT

Nearest neighbor parameters for estimating the folding stability of RNA are commonly used in secondary structure pre-
diction, for generating folding ensembles of structures, and for analyzing RNA function. Previously, we demonstrated
that we could quantify the uncertainties in each nearest neighbor parameter by perturbing the underlying optical melting
data within experimental error and rederiving the parameters, which accounts for the substantial correlations that exist
between the parameters. In this contribution, we describe a method to estimate uncertainty in the estimated folding sta-
bilities of RNA structures, accounting for correlations in the nearest neighbor parameters. This method is incorporated in
the RNA structure software package.
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INTRODUCTION

Noncoding RNAs (ncRNA), functional RNAs that are not
transcribed into protein, have functions that range from
enzymatic catalysis (ribozymes) (Doudna and Cech 2002)
to regulation of gene expression (siRNA, miRNA, and
riboswitches) (Wu and Belasco 2008; Serganov and
Nudler 2013) and to target identification (guide RNAs)
(Yu and Meier 2014). Many of these RNA sequences func-
tion by either having a structure or by forming a structure,
e.g., a helix, with a second RNA sequence.
RNA structure is hierarchical (Tinoco and Bustamante

1999). The primary structure is the linear sequence of cova-
lently linked nucleotides. The secondary structure is the set
of canonical base pairs in the RNA, which are A-form heli-
ces. These helices flank regions that are termed loops, in-
cluding hairpin loops (with one exiting helix), bulge loops
(with two exiting helices and all unpaired nucleotides on
one strand of the loop), internal loops (with two exiting he-
lices and unpaired nucleotides on both strands of the
loop), and multibranch loops (with three or more exiting
helices). The tertiary structure includes additional contacts
and is defined by the positions of all atoms in the RNA. The
secondary structure generally forms faster (Woodson
2000) and is generally more thermostable (Crothers et al.
1974; Onoa and Tinoco 2004) than tertiary structure, al-

lowing RNA secondary structure to be predicted indepen-
dently of tertiary structure (Tinoco and Bustamante 1999).
A set of nearest neighbor parameters can be used to es-

timate the free energy change of folding to a secondary
structure from random coil (Mathews et al. 2004). In the
nearest neighbor rules, the stability of a given motif, such
as a stack of two base pairs or a set of unpaired nucleotides
called a loop, is assumed to be determined by the se-
quence of themotif and the adjacent base pairs. These pa-
rameters approximate the folding free energy change of a
secondary structure as the sum of the energies of neigh-
boring structural motifs, and they were derived using linear
regression on a database of folding stabilities determined
by optical melting data of small model RNA structures
(Andronescu et al. 2014). The most recent complete set
of Turner rules, assembled in 2004 (Mathews et al. 2004;
Turner and Mathews 2010), includes the Watson–Crick
terms determined in 1998 (Xia et al. 1998) and are enumer-
ated in the nearest neighbor database (NNDB), along with
examples of their use (Turner and Mathews 2010).
The nearest neighbor parameters are usedwidely in soft-

ware for RNA secondary structure prediction (Andronescu
et al. 2003; Zuker 2003; Ding et al. 2004; Reuter and
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Mathews 2010; Lorenz et al. 2011). It is popular to use dy-
namic programming algorithms topredict lowest freeener-
gy structures (Seetin and Mathews 2012; Hofacker 2014),
base-pairing probabilities across an ensemble of structures
for a given sequence (McCaskill 1990; Mathews 2004), or a
set of structures to represent the Boltzmann ensemble
(Ding and Lawrence 2003). Additionally, methods that infer
folding parameters from the set of sequences with known
structure generally use the same functional forms (Do
et al. 2006; Andronescu et al. 2010; Rivas et al. 2012).

Despite their wide application, methods to determine
the uncertainties in the folding free energy predictions cal-
culated using the nearest neighbor parameters have been
unavailable. There are a number of barriers that have im-
peded the development of these methods. First, uncer-
tainties for many of the nearest neighbor parameters
were unreported. Second, due to the complex relation-
ships between the parameters during the derivation of
the nearest neighbor parameters, an accurate estimate of
the parameter covariation was difficult (Zuber et al.
2018). Finally, many of the reported uncertainties deter-
mined from the standard error of the linear regressions
were inaccurate due to the practice of using correlated val-
ues in the regressions (Zuber et al. 2018). We recently re-
ported the uncertainty in parameters and the correlation
between parameters, addressing these barriers.

Uncertainties in folding free energy estimates of second-
ary structure formation have a number of important appli-
cations. Uncertainties can be used to determine whether
the probabilities of two distinct secondary structures are
significantly different from each other. The uncertainty in
the folding free energy of the lowest free energy structure
could also be used to determine the optimal difference
from the lowest free energy structure fromwhich to sample
suboptimal structures (Wuchty et al. 1999; Mathews 2006).

Here we report a new method, implemented in the
RNAstructure software package, for estimating the exper-
imental uncertainty in a folding free energy change for an
RNA secondary structure, accounting for the uncertainty in
each parameter and the correlation between parameters.
Four things are required for this estimate: a count of the
number of times each data table entry (corresponding to
one or more of the nearest neighbor parameters) was
used in the software, a method to map data table usage
to the underlying nearest neighbor parameters, an esti-
mate of the uncertainty of each nearest neighbor parame-
ter, and an accurate estimate of the parameter covariation.

RESULTS

Calculating uncertainty in predicted folding free
energy changes

The predicted folding free energy change determined us-
ing the nearest neighbor thermodynamic model is a linear

sum of parameter values:

DG =
∑NNs

i

Pi ×NNi, (1)

where Pi is the parameter coefficient (the parameter usage
count) and NNi is the value of the ith nearest neighbor pa-
rameter. The variance in the free energy change (s2

DG) can
be determined by

s2
DG =

∑NNs

i

∑NNs

j

si × sj × Pi × Pj × rij, (2)

where, ρij is the linear correlation coefficient between the
ith and jth nearest neighbor parameter values (where ρii =
1), Pi and Pj are the parameter usage counts for the ith

and jth nearest neighbor parameters, and σi and σj are
the estimated uncertainties for the ith and jth parameters.
s2
DG is the variance in the free energy change, and there-

fore σΔG is the estimated experimental uncertainty for
the folding free energy change. It is convenient to instead
use the variance-covariance form of the equation:

s2
DG =

∑NNs

i

∑NNs

j

Pi × Pj × covij. (3)

In this form, covij is the covariance for parameters i and j for
i≠j and the variance for parameter iotherwise (covij=σi×σj×
ρij). Equation 3 can be represented using matrix notation:

s2
DG = P× SP × P`, (4)

where P is the parameter usage count vector, ΣP is the var-
iance-covariance matrix (not to be confused with the sum-
mation operator), and P` is the transpose of the parameter
usage count vector. The variance-covariance matrix for the
free energy parameters is available from our prior work
(Zuber et al. 2018). The variance-covariance matrix was de-
termined with complete sets of thermodynamic parame-
ters derived from optical melting data that had been
randomly perturbed within the experimental limits. This
method accounts for all the explicit and implicit relation-
ships between all the parameters in the nearest neighbor
thermodynamic model that are derived from experimental
data.

To validate our method, we estimated the experimental
uncertainty in the folding free energy change for 1450
RNA structures (listed in Materials and Methods) ranging
in length from54 to 2927 nt using twomethods. In the first,
the experimental uncertainty was measured as the stan-
dard deviation of the distribution of free energy changes
determined using 100 nearest neighbor parameter sets
that are equivalent, but fit to experimental data perturbed
within the experimental error. These parameter sets were
available from our previous work (Zuber et al. 2018). In
the second, the square root of Equation 4 was used to cal-
culate the uncertainty using variance and covariance
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values we determined previously (Zuber et al. 2018). A
high linear correlation (r2 = 0.9952) was observed between
the two estimates (Fig. 1). This demonstrates our method
that uses uncertanties in individual parameters and the co-
variances of these parameters matches the explicit deter-
mination of error.

Calculating uncertainty in predicted folding free
energy changes at temperatures other than 37°C

In order to calculate the uncertainty in the predicted fold-
ing free energy change at multiple temperatures, we
needed to determine the variance-covariance matrix for
the enthalpy change nearest neighbor parameters. This re-
quires that the enthalpy and free energy parameters be
determined simultaneously from the experimental optical
melting data for sets of data perturbed within the experi-
mental error.We randomly perturbed the enthalpy and en-
tropy change values for the optical melting experiments
within experimental uncertainty, accounting for the known
correlation between enthalpy change and entropy change
(Xia et al. 1998). The experimental values were then used
to derive the folding free energy change and enthalpy
change values for each nearest neighbor parameter (Lu
et al. 2006). 100,000 perturbed parameter sets were gen-
erated, from which the variance-covariance matrices were
calculated for the enthalpy change parameters.

Parameter covariation contributes to reduced
uncertainty magnitudes

We calculated the uncertainty in the predicted folding free
energy for known RNA structures from a set of 1450 se-
quences (listed in Materials and Methods). This calculation
was done while including the effects of parameter covaria-
tion and while ignoring covariation (Fig. 2). The covariation

of the parameters is an important consideration when esti-
mating the uncertainty in the folding free energy changes
(Zuber et al. 2018). Neglecting the parameter covariation
has the effect of increasing the estimated uncertainty by
∼40% compared to the uncertainties estimated when pa-
rameter covariations are included (Fig. 2).

Uncertainty in folding free energy is correlated with
sequence length

We found that the estimated uncertainty is highly correlat-
ed with sequence length (r2 = 0.939; Fig. 2). Plotting the
distribution of the fractional uncertainty relative to the fold-
ing free energy value reveals a compact distribution with a
long tail, where the tail is mainly due to accepted second-
ary structures with low magnitude predicted folding free
energies (Fig. 3).

DISCUSSION

To our knowledge, this is the first technique to estimate the
uncertainty of RNA folding free energy calculations, pro-
viding information that is required to assess the signifi-
cance of many predictions. This capability allows users of
RNAstructure to differentiate between true suboptimal
secondary structures and structures within experimental
uncertainty of the lowest free energy structure. The incor-
poration of uncertainty estimates opens up the field to
more rigorous statistical analyses of the predictions made.
Additionally, this analysis provides guidance for future

implementations of RNA structure prediction. For exam-
ple, in RNAstructure, the program Fold can generate
suboptimal structures, up to a specifiedmaximumpercent-
agedifferencebetween the folding freeenergies of theop-
timal and suboptimal structures. By default, the maximum
percentage difference scales with sequence length.
However, the fractional uncertainties, the calculated

FIGURE 1. Calculated uncertainties agree with measured uncertain-
ties. Experimental uncertainty values calculated using Equation 4
are compared to uncertainties measured from the distribution of
free energy predictions using 100 randomly perturbed parameter
sets. Each point represents the uncertainty in the predicted free ener-
gy for a single secondary structure. The diagonal line represents the
ideal case where the two methods agree.

FIGURE 2. Correlation between uncertainty and sequence length.
The uncertainty in the folding free energy for the accepted structures
of the sequences in the structure archive is plotted against sequence
length, both considering correlation and neglecting correlation. Best
fit lines are shown to represent the trend.

Estimating uncertainty in free energy changes
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uncertainties divided by the predicted folding free ener-
gies, are largely independent of the sequence length. In
fact, the width of the fractional uncertainty distribution be-
comesnarroweras length increases (Fig. 4). This reflects the
fact that the fractional uncertainty converges as the number
of distinct parameters that are used increases. We hypoth-
esize that this is because the parameter usage for a second-
ary structure approaches the parameter usage distribution
of the general ensemble of RNA, i.e., the “average”param-
eter usage, as sequence length increases. Therefore, com-
binations of parameter usage that disproportionately
increase or decrease uncertainty through parameter
variation and covariation are more likely to influence the
fractional uncertainty in short sequences than in large
sequences.

Previously, we estimated the parameter usage frequen-
cies among the ensemble of RNA secondary structures by
counting parameter usage in a large stochastic sample
of structures (Zuber et al. 2017). By sampling from this pa-
rameter usage distribution and calculating the resulting
free energies and uncertainties for each sample, we repro-
duce the relationship between sample size and fractional
uncertainty distribution (Fig. 5). This evidence supports
our hypothesis that longer sequences use a wider variety
and number of nearest neighbor parameters which
more closely approximate the “average” parameter usage
than short sequences.

This work estimates sources of uncertainty in nearest
neighbor calculations that originate in the experimental
uncertainty from random errors. An additional source of
uncertainty is the systemic errors that are present in both
the analysis of optical melting data and in nearest neighbor
parameter derivation. The systematic error is harder to es-
timate. One source of systemic error is that optical melting
experiments are analyzed assuming two-state behavior.
Our previous work shows that this leads to errors in the
Watson–Crick parameters (Spasic et al. 2018). Another
source of systematic error is that the nearest neighbor
model is incomplete. For example, recent optical melting
studies demonstrate sequence-dependence to RNA fold-

ing that is not included in the existing rules (O’Toole
et al. 2005; Blose et al. 2007; Clanton-Arrowood et al.
2008; Thulasi et al. 2010; Chen et al. 2012). Part of the ef-
fect of this systematic error is indirectly included in this work
because it manifests as error in the parameter values fit us-
ing an incompletemodel. A final systematic error is one that
arises from using theoretical or empirical models to extrap-
olate free energy changes. We do not include uncertainty
in these parameters, which include three sets of parame-
ters: Jacobson–Stockmayer parameters, pseudoknot pa-
rameters, and the maximum asymmetry penalty. The
Jacobson–Stockmayer polymer theory is used to estimate
the loop closure entropy for loops larger than those that
have been measured (Jacobson and Stockmayer 1950;
Mathewset al. 2004). Theenergyparameters used to calcu-
late the energy of a pseudoknot are similarly derived from
polymer theory (Aalberts and Nandagopal 2010; Hajdin
et al. 2013). Additionally, there is an empirically deter-
mined nearest neighbor parameter for themaximumasym-
metry penalty for internal loops (Jaeger et al. 1989).

This new uncertainty calculation is incorporated in the
folding free energy calculator (program efn2) in the
RNAstructure package. This is available under the GNU
GPL open source license and downloadable at https
://rna.urmc.rochester.edu/RNAstructure.html.

MATERIALS AND METHODS

Data table usage counts

In order to measure the number of times each data table entry is
used in a folding free energy calculation, the data tables in

FIGURE 3. Fractional uncertainty distribution. The fractional uncer-
tainty (uncertainty/predicted energy) was calculated for the accepted
secondary structures for 1450 sequences. The distribution of the cal-
culated fractional uncertainty is shown.

FIGURE 4. Fractional uncertainty converges with increased sequence
length. (A) The fractional uncertainty (uncertainty in folding free ener-
gy/predicted folding free energy) is plotted against sequence length
for each of the sequences in the structure archive. (B) Same as A ex-
cept the y-axis is truncated to show more detail.
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RNAstructure were implemented as a C++ class that automatical-
ly tracks the number of times each variable is accessed, as de-
scribed in Zuber et al. (2018). These data table usage counts
were then aggregated into a single vector.

Mapping to nearest neighbor parameters

Each data table entry used in the RNAstructure software is a linear
combination of one or more nearest neighbor parameters. The
data tables have a total of 13,172 entries. To map data table us-
ages back to the 294 independent nearest neighbor parameters,
the contributions of each nearest neighbor parameter to the value
of each data table entry needed to be determined (Zuber et al.
2017).

One example involves terminal mismatches. Because not every
terminal mismatch was experimentally measured, some are esti-
mated from the sum of two dangling end measurements. For ex-

ample,
5′-AC-3′

3′-UU-5′
was not measured, and its value was approximated

by the sum of the constituent dangling end parameters:
5′-AC-3′

3′-UU-5′
= 5′-AC-3′

3′-U -5′
+ 5′-A -3′

3′-UU-5′
. However, the dangling end term

5′-A -3′

3′-UU-5′
was not measured and was approximated from the values

of two dangling end terms: 5′-A -3′

3′-UU-5′
= 1

2
5′-A -3′

3′-UA-5′
+ 5′-A -3′

3′-UC-5′

( )
.

Therefore, a usage of
5′-AC-3′

3′-UU-5′
from the terminal mismatch data ta-

ble must map to a single count for the
5′-AC-3′

3′-U -5′
parameter and a half

count each for the
5′-A -3′

3′-UA-5′
and

5′-A -3′

3′-UC-5′
parameters in the dangling

end data tables.
Other examples are bulge loop initiations for loops with four or

more unpaired nucleotides. Because there were no experimental
measurements for those loops, the initiation energies were linear-

ly extrapolated from the initiation terms for loops of size 2 and 3
unpaired nucleotides. Therefore, for a bulge loop with four un-
paired nucleotides:

DG◦
Bulge 4 = DG◦

Bulge 3 + ( DG◦
Bulge 3 − DG◦

Bulge 2), (5)

and for a bulge loop of five unpaired nucleotides:

DG◦
Bulge 5 = DG◦

Bulge 3 + 2× ( DG◦
Bulge 3 − DG◦

Bulge 2). (6)

Therefore, a count forDG◦
Bulge 5 maps to +3 counts for ΔG°Bulge 3

and −2 counts for DG◦
Bulge 2.

A third example is the
5′-GG-3′

3′-CC-5′
base pair stack and

5′-CC-3′

3′-GG-5′
base

pair stack. These each have entries in the data tables for compu-
tational efficiency, but they are the same nearest neighbor param-
eter. Additionally, this parameter is also used in the flush coaxial
stacking data tables (Walter et al. 1994). All of these data table us-
age counts need to be mapped to the same parameter usage
count.
To determine the contributions of each nearest neighbor pa-

rameter to each data table entry, a new data table format was de-
vised, where every nonindependent data table entry is described
in terms of other entries. This format was originally devised so
that changes in parameter values could be propagated to all
the dependent data table values (Zuber et al. 2017). However,
for this analysis, the same data table format was used to recursive-
ly determine the linear combination of nearest neighbor param-
eters that determine the value of every dependent data table
entry. The coefficients of this linear combination can be used to
map data table usage counts to the independent nearest neigh-
bor parameters. The parameter mapping matrix is generated by
concatenating all the linear combination vectors, forming a 2-D
matrix where each column represents the linear combination
vector for an individual data table entry. The nearest neighbor pa-
rameter usage counts can then be calculated using the parameter
mapping matrix:

P = M× D, (7)

where P is the parameter usage vector of independent parame-
ters (294×1 using the 2004 Turner rules), M is the parameter
map (294×13,172 elements), and D is the data counts vector
(13,172×1). The vector P represents the linear combination of
nearest neighbor parameters required to calculate the folding
free energy of a given secondary structure.

Accounting for parameter covariance

To accurately assess the experimental uncertainty from the linear
combination ofmultiple parameters requires the estimation of pa-
rameter covariance. We previously determined the free energy
parameter covariance at 37°C (Zuber et al. 2018). To extrapolate
to other temperatures, the parameter covariance was estimated
by perturbing the experimental ΔH° and ΔS° values for the optical
melts that were used to derive the nearest neighbor parameters
within experimental uncertainty and rederiving the nearest neigh-
bor parameters. In order to generate an input data set that accu-
rately reflects the high Pearson correlation (0.9996) between the
enthalpy and entropy measurements (Xia et al. 1998), the matrix
c needed to be determined for each experiment, such that

FIGURE 5. Random parameter usage sampling reproduces frac-
tional uncertainty distributions. Parameter usage counts were ran-
domly sampled from the ensemble parameter usage distribution
and fractional uncertainties were calculated for each sample.
Sample sizes were 100, 1000, and 10,000 parameter counts. As
more parameter counts are included in each sample, the fractional
uncertainty converges toward the fractional uncertainty for the total
ensemble.
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c × c` = SE , where ΣE is the desired covariance matrix for the ex-
periment, defined by

SE = s2
DH r× sDH × sDS

r× sDH × sDS s2
DS

[ ]
, (8)

where ρ is the correlation coefficient between enthalpy and entro-
py measurements (Xia et al. 1998) and σΔH and σΔS are the exper-
imental uncertainty in enthalpy and entropy, respectively. The
matrix c can be computed using Cholesky decomposition
(Watkins 2002).

During the calculation of the multibranch loop folding free en-
ergy change and enthalpy change, there is an optimization to
determine the lowest free energy configuration of dangling
ends, terminal mismatches, and coaxial stacks in the multibranch
loop (Mathews and Turner 2002; Tyagi andMathews 2007; Turner
and Mathews 2010). This optimization was performed using free
energy changes; the folding enthalpy calculation needs to use
the optimal configuration. To do this, the folding free energies
and the enthalpies were determined simultaneously.

Generating parameter sets by randomly perturbing experimen-
tal enthalpy and entropy values for the 802 optical melting exper-
iments results in a data set that can be used to calculate
parameter variances and covariances for both folding free ener-
gies and enthalpies (Zuber et al. 2018). The resulting variance-co-
variance matrix can be used to estimate the experimental
uncertainty using two matrix multiplications using Equation 4, re-
peated here:

s2 = P× SP × P`, (4)

where ΣP is the variance-covariance matrix for the nearest neigh-
bor parameters (not to be confused with ΣE in Equation 8) and P is
parameter usage determined using Equation 7. The effects of co-
variation can be ignored by setting Sij = 0 : i = j. In that case,
only the parameter variances contribute to the estimated uncer-
tainty in the predicted folding free energy change.

Calculating experimental uncertainty in free energy
calculations

The program efn2, in the RNAstructure package, was instrument-
ed to track the data table usage when calculating the folding free
energy of an RNA secondary structure. The software reads the pa-
rameter mapping matrix and the variance-covariance matrix from
disk. The software then performs the matrix operations required
to convert data table usage to uncertainty in folding free energy
change for a given RNA secondary structure. A fractional uncer-
tainty can be calculated by dividing the calculated uncertainty
in folding free energy by the predicted folding free energy of a
given secondary structure.

To calculate uncertainties at temperatures other than 37°C,
σΔG37 and σΔH are first calculated using the parameter usage
counts and the variance-covariance matrices for free energies
and enthalpies. From the equation to determine the folding
free energy: ΔG° =ΔH°−T×ΔS°, the equation for uncertainty in
the folding free energy is

s2
DG = s2

DH + T2s2
DS − 2rTsDHsDS , (9)

where ρ is the correlation coefficient between ΔH and ΔS.

Given a s2
DG37 at 37 °C and s2

DH, σΔS can be determined by
solving for the root of the quadratic equation
T2
37s

2
DS − 2rT37sDHsDS + s2

DH − s2
DG37 = 0, which yields

sDS =
rsDH −

�������������������������
r2s2

DH − s2
DH + s2

DG37

√
T

. (10)

This σΔS is then used in Equation 9 to calculate the uncertainty in
the folding free energy at arbitrary temperature.

Randomly sampling parameter usage counts

To verify that the length dependence of the fractional uncertainty
can be attributed to variations in sample size, sets of synthetic pa-
rameter usage counts were generated. A parameter usage count
distribution was generated by summing the parameter usage
counts for 10,000 stochastically sampled secondary structures
for 1650 RNA sequences (16,500,000 total predicted secondary
structures) (Zuber et al. 2017). Sets of parameter usages were ran-
domly sampled from that distribution with sample sizes of 100,
1000, and 10000 parameters. The uncertainty in the free energy
prediction for each sample was calculated using Equation 4.
The free energy for each sample was calculated by taking the
dot product of the parameter usage count vector and the vector
of parameter values.

Structure archive

The uncertainty estimation method was performed on a set of
1450 sequences. The RNA families in this collection include 5S
rRNA (309 sequences; 119.5 nt mean length), 16S rRNA (21 se-
quences, 1512.7 nt mean length), 23S rRNA (four sequences,
2577.5 nt mean length), tRNA (484 sequences, 77.5 nt mean
length), tmRNA (462 sequences, 366.0 nt mean length), Group I
Introns (25 sequences, 343.0 nt mean length), Group II Introns
(3 sequences, 668.7 nt mean length), RNase P RNA (15 sequenc-
es, 378.7 ntmean length), SRP RNA (91 sequences, 267.9 ntmean
length), and telomerase RNA (37 sequences, 444.5 nt mean
length). These structured RNA sequences were previously assem-
bled for structure prediction accuracy benchmarks (Bellaousov
and Mathews 2010).
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