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Abstract: Propagation of paternal sperm-contributed mitochondrial genes, resulting in heteroplasmy,
is seldom observed in mammals due to post-fertilization degradation of sperm mitochondria, re-
ferred to as sperm mitophagy. Whole organelle sperm mitochondrion degradation is thought to
be mediated by the interplay between the ubiquitin-proteasome system (UPS) and the autophagic
pathway (Song et al., Proc. Natl. Acad. Sci. USA, 2016). Both porcine and primate post-fertilization
sperm mitophagy rely on the ubiquitin-binding autophagy receptor, sequestosome 1 (SQSTM1),
and the proteasome-interacting ubiquitinated protein dislocase, valosin-containing protein (VCP).
Consequently, we anticipated that sperm mitophagy could be reconstituted in a cell-free system
consisting of permeabilized mammalian spermatozoa co-incubated with porcine oocyte extracts.
We found that SQSTM1 was detected in the midpiece/mitochondrial sheath of the sperm tail after,
but not before, co-incubation with oocyte extracts. VCP was prominent in the sperm mitochondrial
sheath both before and after the extract co-incubation and was also detected in the acrosome and
postacrosomal sheath and the subacrosomal layer of the spermatozoa co-incubated with extraction
buffer as control. Such patterns are consistent with our previous observation of SQSTM1 and VCP as-
sociating with sperm mitochondria inside the porcine zygote. In addition, it was observed that sperm
head expansion mimicked the early stages of paternal pronucleus development in a zygote during
prolonged sperm-oocyte extract co-incubation. Treatment with anti-SQSTM1 antibody during extract
co-incubation prevented ooplasmic SQSTM1 binding to sperm mitochondria. Even in an interspecific
cellular environment encompassing bull spermatozoa and porcine oocyte extract, ooplasmic SQSTM1
was recruited to heterospecific sperm mitochondria. Complementary with the binding of SQSTM1
and VCP to sperm mitochondria, two sperm-borne pro-mitophagy proteins, parkin co-regulated gene
product (PACRG) and spermatogenesis associated 18 (SPATA18), underwent localization changes
after extract coincubation, which were consistent with their degradation observed inside fertilized
porcine oocytes. These results demonstrate that the early developmental events of post-fertilization
sperm mitophagy observed in porcine zygote can be reconstituted in a cell-free system, which could
become a useful tool for identifying additional molecules that regulate mitochondrial inheritance
in mammals.

Keywords: mitochondria; mtDNA; cell-free system; ubiquitin-proteasome system; autophagy;
SQSTM1; VCP; PACRG; SPATA18
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1. Introduction

Clonal, maternal inheritance of mitochondria and mitochondrial DNA is observed in
humans and prevalent in most animals [1]. Sperm mitophagy, the elimination of sperm-
borne mitochondria after fertilization, assures normal preimplantation development and
might prevent adverse effects on fitness and fertility arising from heteroplasmy, the co-
existence of two distinct mitochondrial genomes in one organism [2–5]. Early studies of
mammalian sperm mitophagy reported that the sperm mitochondrial sheath becomes
ubiquitinated during spermatogenesis and surrounded by the oocyte-derived lysosome-
like structures after fertilization, thus implicating both the ubiquitin-proteasome system
(UPS) and the autophagic pathway in the elimination of paternal mitochondria [6,7]. The
porcine zygote is a particularly useful model system as sperm mitophagy is observed prior
to the first embryo cleavage, earlier than in other relevant mammalian models. Cell-free
systems are yet to be applied to this area of research, relying on monitoring mitochondria
from one spermatozoon per zygote. While frog egg extracts are commonly used in cell
biology, they are not suitable for the study of mammalian sperm mitophagy, which appears
to be species-specific and not observed in interspecific crosses. Our recent observations
in zygotes of the domestic pig and rhesus monkey indicate that post-fertilization sperm
mitophagy depends on both autophagy driven by ubiquitin-binding autophagy receptor,
sequestosome 1 (SQSTM1). Presentation of ubiquitinated sperm mitochondrial membrane
proteins to the 26S proteasome is mediated by the ubiquitinated protein dislocase, valosin-
containing protein (VCP) [8]. SQSTM1 was found to exclusively associate with boar and
rhesus monkey sperm mitochondria after fertilization. While VCP was detectable in the
sperm midpiece, both before and after in vitro fertilization, transient pharmacological
inhibition of VCP function delayed the progress of sperm mitophagy in porcine zygotes. A
combined treatment interfering concomitantly with SQSTM1 and VCP in the zygotes de-
layed sperm mitophagy up to the two–four-cell stages of porcine embryonic development,
at which time the control zygotes no longer contained detectable sperm mitochondria.
These findings raised the question of whether the post-fertilization sperm mitophagy could
be reconstituted in a cell-free system, an in vitro research tool that could simplify the
identification of additional mitophagy regulators.

Cell-free systems are widely used to study biochemical and molecular events, which
reduce the complexity of interactions seen in whole cells [9]. Cell-free systems derived
commonly from Xenopus laevis, or rarely from mammalian oocytes have been used to
reconstitute early events of zygotic development [9–11]. The large size of Xenopus oocytes
assures large quantities of cell extract suitable for analyzing molecular and subcellular
events occurring at low detection levels in a zygote fertilized by a single spermatozoon.
For example, the assembly and incorporation of the nuclear pore complexes (NPC) into
the nuclear envelope formed de novo around the demembranated bull sperm nuclei was
reconstituted in Xenopus oocyte extracts [11]. Under cell-free conditions, treatment with
microtubule inhibitors reduced the assembly of NPCs around the sperm nuclei as well
as sperm head expansion that signals the onset of paternal pronuclear development. The
morphological events observed under cell-free conditions thus replicated NPC assembly
observed during natural fertilization. The Xenopus oocyte extracts have also been used
to induce nuclear reprogramming of differentiated mammalian somatic cells. Expression
of pluripotent marker genes was confirmed in the differentiated mammalian cells treated
with Xenopus oocyte extracts [10]. In addition, cell-free extracts derived from mammalian
oocytes were used to induce nuclear reprogramming in somatic cells [9,10]. A semi-
cell-free system composed of live, capacitated boar spermatozoa and solubilized porcine
zona pellucida (ZP) proteins were used to study the role of sperm-borne proteasomes
in the digestion of ZP proteins, mimicking the events of sperm-ZP penetration during
natural fertilization [12]. Together, such studies document the feasibility of reconstituting
early developmental events in a cell-free system consisting of permeabilized mammalian
spermatozoa co-incubated with intra- or inter-specific oocyte extracts.
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Porcine oocytes are obtainable in large numbers and extract volumes, sufficient to
treat thousands of spermatozoa in one trial. Thus, cell-free systems lend themselves to
large-scale studies of post-fertilization sperm mitophagy, which is limited to one spermato-
zoon/sperm mitochondrial sheath per zygote in a conventional monospermic IVF system.
Our cell-free system is able to mimic the proteomic interactions taking place between the
fertilizing spermatozoa and the ooplasm during natural fertilization. The priming process
of removing the plasma membrane and reducing disulfide bonds mimics spermatozoa
processing which takes place prior to sperm-ooplasm contact. At that point, the demem-
branated and disulfide-reduced spermatozoa would enter the ooplasm, and proteomic
interactions such as pronuclear development and sperm mitochondrial sheath degradation
would begin. Our unique and novel cell-free system was designed with capturing these
protein-protein interactions in mind. Here, we established a cell-free system consisting
of permeabilized boar and bull spermatozoa co-incubated with cell extracts from porcine
metaphase II (MII) oocytes and used it to examine the binding of oocyte-derived mitophagy
factors, SQSTM1 and VCP, to sperm mitochondria. Furthermore, our cell-free system was
used to study the localization of candidate sperm-borne mitophagy determinants, parkin
co-regulated gene (PACRG), and spermatogenesis associated 18 (SPATA18) in spermatozoa
before and after coincubation with the oocyte extract.

2. Materials and Methods
2.1. Semen Preparation

Boars were raised at the University of Missouri swine farm. Fresh boar semen was
collected in one regular collection per week, transferred into 15 mL centrifuge tubes,
and centrifuged at 800× g for 10 min to separate spermatozoa from seminal plasma.
Sperm concentration was assessed by using a light microscope and a hemocytometer
(ThermoFisher Scientific, Houston, TX, USA). Only semen collections with acceptable
sperm motility were used. Spermatozoa were diluted with BTS extender (IMV Technologies,
Maple Grove, MN, USA) to a final concentration of 1 × 108 spermatozoa/mL and stored in
a styrofoam box at room temperature for up to 5 days.

Cryopreserved bull semen was thawed at 37 ◦C for 40 s and washed by centrifu-
gation in HEPES-buffered Tyrode lactate medium containing 0.01% (w/v) polyvinyl al-
cohol (TL-HEPES-PVA, pH = 7.4) [13]. The frozen-thawed bull spermatozoa were used
without dilution.

2.2. Sperm Priming for Cell-Free System

Boar or bull spermatozoa were washed with phosphate-buffered saline (PBS, 137 mM
NaCl, 2.7 mM KCl, 10 mM, 11 Na2HPO4, 1.8 mM KH2HPO4, pH = 7.2) containing 0.1%
PVA (PBS-PVA) two times by centrifugation at 800× g for 5 min. To stain sperm mitochon-
dria, the spermatozoa were labeled with a fixable, vital, mitochondrion selective probe
MitoTracker® Red CMXRos (Invitrogen-Molecular Probes, Eugene, OR, USA) for 10 min
at 37 ◦C. At the previously tested concentration of 400 nM, the probe specifically stains
bull sperm mitochondria, while in the boar, the probe is also taken up by the sperm head
structures [8]. However, this is not detrimental to the colocalization of autophagy proteins
with sperm mitochondria in zygotes or the cell-free system described here.

Sperm heads and tails were separated to examine sperm morphological changes after
oocyte extract co-incubation. Spermatozoa pre-labeled with MitoTracker were sonicated
with a digital sonifier (Branson) at 30% intensity for 1 min in RIPA buffer (200 mM Tris·HCI,
pH = 8; 150 mM NaCI; 1% (v/v) Triton X-100; 0.5% (w/v) sodium deoxycholate; 0.1% (w/v)
SDS; and 1 mM PMSF) [14].

To prime sperm mitochondrial sheaths for cell-free studies, spermatozoa pre-labeled
with MitoTracker were demembranated/permeabilized with 0.05% (w/v) lysolecithin (L-α-
lysophosphatidylcholine, Sigma, St. Louis, MO, USA) in KMT (20 mM KCl, 5 mM MgCl2,
50 mM TRIS·HCl, pH = 7.0) for 10 min at 37 ◦C, and washed twice with the KMT for 5 min
by centrifugation, to terminate the reaction. The spermatozoa were subsequently incubated
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with 0.0, 0.1, 1.0, and 10.0 mM dithiothreitol (DTT; disulfide bonds/S-S reduction agent;
Sigma, St. Louis, MO, USA) diluted in KMT, pH = 8.2 for 20 min at 37 ◦C and washed
twice with KMT for 5 min by centrifugation, to terminate the reaction. Such sequential
lysolecithin-DTT treatment was applied to mimic the demembranation and S-S reduction
in the sperm mitochondrial sheath following natural fertilization [15].

2.3. In Vitro Maturation of Porcine Oocytes

Porcine ovaries were obtained from a local slaughterhouse. Cumulus-oocyte com-
plexes (COCs) were aspirated from ovarian follicles sized 3–6 mm, divided into groups
of 100–150 in 4-well culture dishes (Nunc, Roskilde, Denmark), and matured in TCM-199
medium (Mediatech, Inc., Manassas, VA, USA) supplemented with 0.1% PVA, 3.05 mM
D-glucose, 0.91 mM sodium pyruvate, 0.57 mM cysteine, 0.5 µg/mL FSH, 0.5 µg/mL
LH, 10 ng/mL EGF, 10% porcine follicular fluid, 75 µg/mL penicillin G and 50 µg/mL
streptomycin. The COCs were incubated at 38.5 ◦C, with 5% CO2 in the air. After 22 h of
culture, the COCs were transferred into TCM199 medium without FSH and LH and then
cultured for an additional 22 h at 38.5 ◦C and 5% CO2 in the air.

2.4. In Vitro Fertilization (IVF) and In Vitro Culture (IVC) of Pig Oocytes/Zygotes

Cumulus cells from matured COCs were removed with 0.1% hyaluronidase in TL-
HEPES-PVA medium and washed three times with TL-HEPES-PVA medium. The oocytes
were washed one more time with Tris-buffered medium (mTBM) containing 0.3% BSA
(A7888, Sigma). Between 25–30 oocytes/drop were placed into 100 µL drops of the mTBM
covered with mineral oil in a 35 mm polystyrene culture dish, then incubated until sperma-
tozoa were prepared for fertilization. Liquid semen preserved in BTS extender solution
was washed with PBS containing 0.1% PVA (PBS-PVA) two times by centrifugation at
800× g for 5 min. To stain mitochondria in the sperm tail, the boar spermatozoa were
incubated with vital, fixable, mitochondrion-specific probe MitoTracker® Red CMXRos
(Molecular Probes, Inc., Eugene, OR) for 10 min at 38.5 ◦C. The spermatozoa pre-labeled
with MitoTracker were resuspended in mTBM, and added to the 100 µL drops of mTBM for
a final concentration of 2.5 to 5 × 104 spermatozoa/mL. Matured oocytes were incubated
with spermatozoa for 6 h at 38.5 ◦C, 5% CO2 in the air, then transferred to 500 µL drops of
MU3 medium containing 0.3% BSA (A6003; Sigma) for additional culture.

2.5. Preparation of Porcine Oocyte Extracts

Cumulus cells from matured COCs were denuded with 0.1% hyaluronidase in TL-
HEPES-PVA, and zonae pellucidae (ZP) were removed by protease (0.1%, w/v) (Pronase,
Sigma) in TL-HEPES-PVA. The ZP-free, mature MII oocytes were transferred into an
extraction buffer (50 mM KCl, 5 mM MgCl2, 5 mM ethylene glycol-bis(β-aminoethyl ether)-
N,N,N′,N′-tetraacetic acid (EGTA), 2 mM β-mercaptoethanol, 0.1 mM PMSF, protease
inhibitor cocktail (cat# 78410, ThermoFisher Scientific, Houston, TX, USA), 50 mM HEPES,
pH = 7.6) containing an energy-regenerating system (2 mM ATP, 20 mM phosphocreatine,
20 U/mL creatine kinase, and 2 mM GTP), and submerged three times into liquid nitrogen
for 5 min each. Next, the frozen-thawed oocytes were crushed by high-speed centrifugation
at 13,000 rpm for 20 min at 4 ◦C in a Sorvall Biofuge Fresco (Kendro Laboratory Products).
The supernatants were harvested, transferred into a 1.5 mL tube, and stored in a deep
freezer (−80 ◦C). Unless otherwise noted, all chemicals used in this study were purchased
from Sigma Chemical Co. (St. Louis, MO, USA).

2.6. Co-Incubation of Permeabilized Mammalian Spermatozoa with Porcine Oocyte Extracts

The permeabilized boar or bull spermatozoa were added to porcine oocyte extracts
at a concentration of 1 × 104 spermatozoa/10 µL of an extract derived from 2000 porcine
oocytes/batch (200 µL) and co-incubated for 4–24 h in a humid atmosphere at 38.5 ◦C.

Mouse monoclonal anti-SQSTM1 antibody (cat. #ab56416; Abcam, Cambridge, MA,
USA), previously shown to interfere with sperm mitophagy when injected in porcine
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zygotes [8], was added to the co-culture to examine the consequences of the inhibition of
ooplasmic SQSTM1 binding to sperm mitochondria in the cell-free system. The perme-
abilized boar spermatozoa were co-incubated with porcine oocyte extracts at the same
concentration as above for 4 h in a humid atmosphere at 38.5 ◦C, with or without the
addition of 2 µg of anti-SQSTM1 antibody or control non-immune rabbit serum.

At the end of co-incubation, the spermatozoa exposed to oocyte extracts and the
control spermatozoa were sedimented onto poly-L-lysine-coated 18 mm coverslips in a
drop of KMT, pH = 7.0 at 38.5 ◦C on a slide warmer. The sperm-coated coverslips were
fixed in 2% formaldehyde in PBS-NaN3 for 40 min at room temperature and used for
immunocytochemistry immediately.

2.7. Immunocytochemistry to Visualize the Mitophagy Factors in The Cell-Free System

Spermatozoa affixed onto poly-L-lysine coated coverslips were permeabilized in PBS-
NaN3 with 0.1% (v/v) Triton-X-100 (PBS-TX) for 40 min and blocked in PBS-TX containing
5% (v/v) normal goat serum for 25 min at the ambient temperature. The sperm-coated
coverslips were immunolabeled with mouse monoclonal anti-SQSTM1 (cat. #ab56416;
Abcam, Cambridge, MA, USA), rabbit polyclonal anti-VCP (cat. #sc-20799; Santa Cruz
Biotechnology, Dallas, TX, USA), rabbit polyclonal anti-PACRG (Cat. #ab4090; Abcam),
or rabbit monoclonal anti-SPATA18 (Cat. #ab180154; Abcam) antibodies overnight at
4 ◦C, followed by goat-anti-mouse (GAM)-IgG-FITC (1:200 dilution) or goat-anti-rabbit
(GAR)-IgG-FITC (1:200) to demonstrate the localization of SQSTM1, VCP, PACRG, and
SPATA18 in the cell-free system. Studies of PACRG were replicated with comparable
results by using custom-produced monoclonal antibodies described previously [16]. Sperm
DNA was counterstained with 2.5 µg/mL DAPI (Invitrogen-Molecular Probes, Eugene,
OR, USA) added into the secondary antibody solution. Coverslips were mounted on
microscopy slides in the VectaShield mounting medium (Vector Laboratories, Burlingame,
CA, USA) and examined under a Nikon Eclipse 800 epifluorescence microscope (Nikon
Instruments Inc., Melville, NY, USA) with a Retiga QI-R6 camera (Teledyne QImaging,
Surrey, BC, Canada) operated by MetaMorph 7.10.2.240 software (Molecular Devices,
San Jose, CA, USA).

2.8. Immunocytochemistry to Visualize the Mitophagy Factors in Oocytes and Zygotes

Oocytes and embryos were fixed in 2% formaldehyde for 40 min at room temperature.
In some cases, the zona pellucida was removed using protease in TL-HEPES-PVA prior
to fixation. Formaldehyde was then removed via washing in PBS. Oocytes/embryos
were then permeabilized in PBS with 0.1% Triton-X-100 (PBS-TX) at room temperature
for 40 min, then blocked in PBS-TX containing 5% normal goat serum (NGS) for 25 min.
Oocytes/embryos were incubated with primary antibodies diluted in PBS containing
1% NGS and 0.1% Triton-X-100 overnight at 4 ◦C. The samples were incubated with a
secondary antibody solution including 2.5 µg/mL DNA stain DAPI (Molecular Probes,
Eugene, OR, USA), and goat-anti-rabbit (GAR)-IgG-FITC (1:100 dilution), GAR-IgG-TRITC
(1:100), goat-anti-mouse (GAM)-IgG-FITC (1:100), or GAM-IgG-TRITC (1:100) for 40 min at
room temperature. The oocytes were mounted on microscopy slides and photographed as
described above for sperm samples.

2.9. SQSTM1 Fluorescence Intensity Measurement and Statistical Analysis

Images for pixel intensity measurements were acquired with identical magnification,
exposure time, and acquisition settings for all treatment groups. The fluorescence intensity
of SQSTM1 was analyzed by NIS-Elements software (v4, Nikon Inc., Melville, NY, USA).
Values were represented as the mean of SQSTM1 fluorescence intensity ± SEM. Fluores-
cence intensities were evaluated by analysis of variance (ANOVA) using the SAS package
(v9.3). Duncan’s multiple range test was used to compare significance between individual
measurements when F-value was significant (p < 0.05).
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2.10. SDS-PAGE and Western Blotting

Oocytes were suspended in 1× LDS loading buffer (106 mM Tris·HCl, 141 mM Tris
base, 2% (w/v) LDS, 10% (v/v) Glycerol, 0.75% (w/v) Coomasie Blue G250, 0.025% (w/v)
Phenol Red, pH = 8.5) and sperm protein extracts were mixed with 4× LDS loading
buffer in ratio 3:1, both supplemented with 2.5% β-mercaptoethanol. Spermatozoa were
incubated at room temperature in 1× LDS loading buffer for 1 h on a rocking platform,
spun, and the extract was supplemented with 2.5% β-mercaptoethanol. MII-oocytes and
cultured embryos were incubated with protease to remove ZP and mixed with 1× LDS
loading buffer supplemented with 2.5% β-mercaptoethanol. Prior to PAGE, all extracts
were incubated at 70 ◦C for 10 min. Equal numbers of oocytes 50 or 100 per lane, as
specified in images, spermatozoa (50 to 100 million per lane, as specified in images), and
protein extract (the equivalent of 20 µg per lane) were loaded in each lane on a NuPAGE
4–12% Bis-Tris gel (Invitrogen, Waltham, MA, USA). Electrophoresis was carried out in Bis-
Tris system using MOPS SDS running buffer (50 mM MOPS, 50 mM Tris base, 0.1% (w/v)
SDS, 1 mM EDTA, pH = 7.7) with the cathode buffer supplemented with 5 mM sodium
bisulfite. The molecular masses of separated proteins were estimated using Novex® Sharp
Pre-stained Protein Standard (cat # LC5800, Invitrogen, Carlsbad, CA, USA) run in parallel.
PAGE was carried out for 5 min at 80 V to let the samples delve into the gel and then
for another 60–70 min at 160 V. The power was limited to 20 W. After PAGE, proteins
were electrotransferred to polyvinylidene fluoride (PVDF) membranes (Millipore) using
Owl wet transfer system (Fischer Scientific, Waltham, MA, USA) at 300 mA for 90 min for
immunodetection, using Bis-Tris-Bicine transfer buffer (25 mM Bis-Tris base, 25 mM Bicine,
1 mM EDTA, pH = 7.2) supplemented with 10% (v/v) methanol, and 2.5 mM sodium
bisulfite. The membranes with the transferred proteins were blocked with 10% (w/v)
non-fat milk in TBS with 0.05% (v/v) Tween 20 (TBST; Sigma-Aldrich) for 1 h and incubated
with primary antibodies described in the Immunocytochemistry section, overnight at 4 ◦C
and subsequently incubated with the HRP-conjugated goat anti-mouse IgG (GAM-IgG-
HRP), or goat anti-rabbit (GAR-IgG-HRP) as secondary antibodies for 40 min at room
temperature. The membranes were reacted with chemiluminescent substrate (Millipore
Corporation, Billerica, MA, USA), detected using ChemiDoc Touch Imaging System (Bio-
Rad, Hercules, CA, USA) to record the protein bands and analyzed by Image Lab Software
(ver. 5.2.1, Bio-Rad, Hercules, CA, USA). The membranes were stained with CBB R-250
after chemiluminescence detection for protein load control.

3. Results
3.1. Sperm Priming for Cell-Free System Studies

To optimize the priming of sperm mitochondrial sheaths for oocyte extract co-incubation,
boar spermatozoa pre-labeled with red fluorescent MitoTracker were treated with 0.05%
lysolecithin for 10 min at 37 ◦C and subsequently incubated with different concentrations of
DTT (0.0, 0.1, 1.0 or 10.0 mM) for 20 min at 37 ◦C. The spermatozoa in all treatment groups
displayed uniform labeling of the mitochondrial sheaths pre-labeled with MitoTracker,
and the strong, non-specific red fluorescence was detected in sperm heads due to non-
specific MitoTracker uptake by sperm membranes and perinuclear theca (Figure 1A–E).
Such labeling was not detrimental to experimental observation and resulted from the high
initial MitoTracker concentration necessary for the specific mitochondrial sheath labeling
to withstand the demembranation and permeabilization procedure. There were no obvious
morphological changes in the sperm mitochondria after the incubation of spermatozoa with
0.05% lysolecithin alone (Figure 1B’,B”), compared to control spermatozoa (Figure 1A’,A”),
despite the treatment causing the removal of the sperm plasma membrane. Incubation
of spermatozoa with 0.05% lysolecithin followed by 0.1 mM DTT still showed intact
sperm mitochondrial sheaths (Figure 1C’,C”). Incubation of spermatozoa with 1 mM
DTT for 20 min induced partial disintegration of mitochondrial sheaths, showing swollen
and occasionally missing mitochondria/dented mitochondrial sheaths (Figure 1D’,D”).
A higher concentration of 10 mM DTT, combined with 0.05% lysolecithin, accelerated
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the stripping of the sperm midpiece/mitochondrial region (Figure 1E’,E”). The latter two
treatments also removed most of the MitoTracker labeling from the sperm tail midpiece.
Altogether, the alterations of boar sperm mitochondrial sheath after demembranation and S-
S reduction mirrored the observation of similarly primed bull and human spermatozoa [15].
As expected, a higher concentration of DTT also caused sperm flagella detachment.
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demembranated with 0.05% lysolecithin and subsequently incubated with various DTT concentra-
tions (0.0, 0.1, 1.0, and 10.0 mM) (A–E). The morphological changes of sperm mitochondria were
not obvious after the incubation of spermatozoa with 0.05% lysolecithin alone (B’,B”) compared
to membrane-intact control spermatozoa (A’,A”). Incubation with 0.05% lysolecithin followed by
0.1 mM DTT still showed intact sperm mitochondrial sheaths (C’,C”), while incubation with 1 mM
DTT for 20 min induced partial disintegration of mitochondrial sheaths (D’,D”). A high concentration
of 10 mM DTT accelerated the stripping of mitochondria from sperm tail midpiece/mitochondrial
sheaths (E’,E”). Original magnification: 1000×.

3.2. Binding of Sperm Mitophagy Factors to Primed Sperm Tail Mitochondria in the Cell-Free System

To examine the recognition of sperm mitochondria by oocyte extract-derived mi-
tophagy factors, boar spermatozoa were sequentially treated with 0.05% lysolecithin
(10 min at 37 ◦C) and 10 mM DTT (20 min at 37 ◦C), and co-incubated with porcine
oocyte extracts for 4 h, which regimen mimics early ooplasmic post-fertilization events.
Spermatozoa exposed to oocyte extracts were immunolabeled with anti-SQSTM1 or anti-
VCP antibodies. Ooplasmic SQSTM1, a known ubiquitin-binding autophagy receptor, was
detected in the midpiece/mitochondrial sheaths of the demembranated sperm tails after
co-incubation with oocyte extracts (Figure 2(Ab)), but not in the spermatozoa exposed for
4 h to extraction buffer (no oocyte extract) (Figure 2(Aa)). Such immunolabeling pattern
indicated that SQSTM1 derived from oocyte extracts was able to recognize and bind to
sperm mitochondria during co-incubation. This result is consistent with our previous
observation of SQSTM1 associating with sperm mitochondria in the cytoplasm of porcine
and rhesus monkey zygotes [8].

Protein dislocase VCP was detected in both the sperm mitochondrial sheath, the
postacrosomal sheath, and the subacrosomal layer of the sperm heads (Figure 2(Ba))
in spermatozoa, which were not primed and were co-incubated with extraction buffer
as control. After exposure to the sperm priming process, VCP was then detected in
the sperm mitochondrial sheath only (Figure 2(Bb)); VCP was also prominent in the
mitochondrial sheaths of spermatozoa which were primed and exposed to the oocyte
extract for 4 h of co-incubation (Figure 2(Bc)). Such patterns of VCP localization in the
cell-free system are consistent with previous observations of VCP associating with sperm
mitochondria both before and after in vitro fertilization but dissipating from the sperm
head after fertilization [8].

3.3. Investigation of Candidate, Sperm-Borne Mitophagy Determinants Using the Cell-Free System

After confirming SQSTM1’s ability to bind to sperm mitochondria in the cell-free
system, we investigated two candidate mitophagy determinants, PACRG and SPATA18,
known to integrate into sperm mitochondrial sheath and other sperm tail structures during
spermiogenesis. Furthermore, both proteins have established roles in somatic cell mi-
tophagy. Changes in localization pattern and/or labeling intensity of these proteins were
assessed before and after the oocyte extract co-incubation using the cell-free system. Sperm
mitophagy determinants such as these two would be expected to be recognized and de-
graded by the oocyte’s autophagic machinery early after fertilization. Thus, we anticipated
observing changes in localization patterns of PACRG and SPATA18 after sperm-oocyte
extract coincubation if they were, in fact, acting as mitophagic determinants.
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Figure 2. Binding of mitophagy factors SQSTM1 and VCP to sperm mitochondria in the porcine cell-free system. Spermato-
zoa pre-labeled with MitoTracker were primed with 0.05% lysolecithin and 10 mM DTT, then co-incubated for 4 h with
porcine oocyte extracts or with an oocyte extraction buffer (no oocyte extract) as a control, fixed and immunolabeled with
anti-SQSTM1 (A) or anti-VCP antibodies (B). SQSTM1 was not detected in spermatozoa exposed solely to the extraction
buffer (Aa), but SQSTM1 was detected in the midpiece/mitochondrial sheaths of sperm after co-incubation in oocyte extract
(Ab). VCP was detected in spermatozoa that were not exposed to the lysolecithin or DTT treatment and were exposed to
extraction buffer (no oocyte extract); these spermatozoa acted as a control (Ba). Likewise, VCP was detected in spermatozoa
that were then exposed to the lysolecithin and DTT priming process and co-incubated for 4 h with extraction buffer (no
oocyte extract) (Bb) and also oocyte extract (Bc). The VCP protein was prominent in the sperm mitochondrial sheath both
before (Bb) and after (Bc) co-incubation, while the control spermatozoa without treatment of DTT and oocyte extracts also
displayed VCP in postacrosomal sheaths and the subacrosomal layer of the sperm head (Ba). Original magnification: 1000×.
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PACRG was detected in ejaculated spermatozoa using WB at multiple molecular
masses (Figure 3A) and found to localize to the mitochondria sheath (Figure 3B). Within
our cell-free system control group, this mitochondrial sheath localization pattern was
unaffected by sperm priming and 4 h of exposure to extract buffer, which lacked oocyte
proteins (Figure 3C). However, spermatozoa that were exposed to oocyte proteins in
the proper cell-free system for 4 h displayed a dramatic change in PACRG localization
(Figure 3D). At this point, PACRG was found to be diminished in the mitochondrial sheath,
but now detectable localize throughout the rest of the sperm tail and also in the sperm head
post acrosomal sheath. After 24 h of cell-free system exposure, PACRG was still detectable
within the sperm tail principal piece and throughout the head of the spermatozoa but
absent from the sperm tail midpiece/mitochondrial sheath (Figure 3E). Finally, we screened
for PACRG in a one-cell zygote, where it was no longer detectable on the mitochondrial
sheath or the rest of the sperm tail (SQSTM1 was used as a mitochondrial sheath indicator)
(Figure 3F).
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Figure 3. PACRG was identified in ejaculated sperm utilizing Western blot detection (A) and immunocytochemistry before
fertilization (B). Predicted mass for various PACRG isoforms ranges from 26.5 to 33 kDa, while polymorphisms and stable,
covalent complexes with chaperones and other proteins are known, including covalent modification by multi-ubiquitin
chains. Within the cell-free system, primed and buffer exposed spermatozoa saw no difference in localization when
compared to ejaculated sperm (C); however, after 4 h of cell-free treatment PACRG underwent a dramatic change in
localization (D). After 24 h of cell-free system exposure, a similar localization signature was observed (E). PACRG was no
longer detectable in a one-cell zygote (F).

SPATA18 was selected as a candidate pro-mitophagic protein because of its known
function, implied by its sobriquet (mitochondria-eating protein), which is to degrade
damaged mitochondria within a somatic cell. SPATA18 was detected in spermatozoa using
Western blotting (Figure 4A) and immunocytochemistry (Figure 4B). SPATA18 was found
throughout the sperm tail both before and after 4 h of oocyte extract exposure (Figure 4C,D).
This localization shifted after 24 h of oocyte extract exposure and clearly became prominent
on the mitochondrial sheath, while it was diminished, in a complementary fashion, in
the sperm tail principal piece (Figure 4E). However, when observed in a one-cell zygote,
neither localization pattern was detectable in the tails of the spermatozoa present in the
fertilized oocyte cytoplasm (Figure 4F).



Cells 2021, 10, 2450 11 of 19

Cells 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

pared to ejaculated sperm (C); however, after 4 h of cell-free treatment PACRG underwent a dramatic change in localiza-
tion (D). After 24 h of cell-free system exposure, a similar localization signature was observed (E). PACRG was no longer 
detectable in a one-cell zygote (F). 

SPATA18 was selected as a candidate pro-mitophagic protein because of its known 
function, implied by its sobriquet (mitochondria-eating protein), which is to degrade dam-
aged mitochondria within a somatic cell. SPATA18 was detected in spermatozoa using 
Western blotting (Figure 4A) and immunocytochemistry (Figure 4B). SPATA18 was found 
throughout the sperm tail both before and after 4 h of oocyte extract exposure (Figure 
4C,D). This localization shifted after 24 h of oocyte extract exposure and clearly became 
prominent on the mitochondrial sheath, while it was diminished, in a complementary 
fashion, in the sperm tail principal piece (Figure 4E). However, when observed in a one-
cell zygote, neither localization pattern was detectable in the tails of the spermatozoa pre-
sent in the fertilized oocyte cytoplasm (Figure 4F). 

 
Figure 4. SPATA18 was detected in freshly ejaculated, and cell-free system treated spermatozoa (A–E) and zygotes (F) 
using Western blotting (A) and immunocytochemistry (B–E). (A) Western blotting detected a band consistent with the 
predicted mass in S. scrofa (59 kDa), as well as several lower bands likely resulting from protein degradation. Fresh ejacu-
lated spermatozoa appeared to have the tail and postacrosomal sheath labeling present (B). Within the cell-free system, 
primed and buffer exposed spermatozoa appeared to have SPATA18 localized throughout the tail but mainly to its prin-
cipal piece (C). After 4 h of cell-free exposure, spermatozoa displayed a seemingly identical localization pattern (D). After 
24 h of cell-free system exposure, the localization pattern shifted from sperm tail principal piece to midpiece/mitochondrial 
sheath (E). However, SPATA18 was no longer detectable in a one-cell zygote (F). 

3.4. Sperm Head Expansion during Oocyte Extract Co-Incubation 
To observe sperm morphological changes induced by prolonged exposure to oocyte 

extracts, boar sonicated and non-sonicated spermatozoa pretreated with 0.05% lysoleci-
thin and 10 mM DTT (Figure 5A,A’,B,B’) were co-incubated with porcine oocyte extracts 
for 24 h (Figure 5C’,D’). The non-sonicated sperm heads exposed to oocyte extracts were 
enlarged after such prolonged incubation with extracts (Figure 5D’), whereas there were 
no morphological changes identifiable in the control sperm heads exposed only to oocyte 
extraction buffer (Figure 5D). Such sperm head expansion mirrored the early stages of 
paternal pronucleus formation observed in the zygote. Intriguingly, sperm heads isolated 
by sonication, and treated with lysolecithin-DTT, did not enlarge during prolonged cul-
ture in the absence of oocyte extract (Figure 5C,C’). It is possible that sonication disrupted 
the perinuclear theca and nuclear skeleton and also either removed or damaged resident 
factors required for the initial stages of paternal pronucleus development. 

Figure 4. SPATA18 was detected in freshly ejaculated, and cell-free system treated spermatozoa (A–E) and zygotes (F) using
Western blotting (A) and immunocytochemistry (B–E). (A) Western blotting detected a band consistent with the predicted
mass in S. scrofa (59 kDa), as well as several lower bands likely resulting from protein degradation. Fresh ejaculated
spermatozoa appeared to have the tail and postacrosomal sheath labeling present (B). Within the cell-free system, primed
and buffer exposed spermatozoa appeared to have SPATA18 localized throughout the tail but mainly to its principal piece
(C). After 4 h of cell-free exposure, spermatozoa displayed a seemingly identical localization pattern (D). After 24 h of
cell-free system exposure, the localization pattern shifted from sperm tail principal piece to midpiece/mitochondrial sheath
(E). However, SPATA18 was no longer detectable in a one-cell zygote (F).

3.4. Sperm Head Expansion during Oocyte Extract Co-Incubation

To observe sperm morphological changes induced by prolonged exposure to oocyte
extracts, boar sonicated and non-sonicated spermatozoa pretreated with 0.05% lysolecithin
and 10 mM DTT (Figure 5A,A’,B,B’) were co-incubated with porcine oocyte extracts for
24 h (Figure 5C’,D’). The non-sonicated sperm heads exposed to oocyte extracts were
enlarged after such prolonged incubation with extracts (Figure 5D’), whereas there were
no morphological changes identifiable in the control sperm heads exposed only to oocyte
extraction buffer (Figure 5D). Such sperm head expansion mirrored the early stages of
paternal pronucleus formation observed in the zygote. Intriguingly, sperm heads isolated
by sonication, and treated with lysolecithin-DTT, did not enlarge during prolonged culture
in the absence of oocyte extract (Figure 5C,C’). It is possible that sonication disrupted
the perinuclear theca and nuclear skeleton and also either removed or damaged resident
factors required for the initial stages of paternal pronucleus development.

3.5. Inhibition of Ooplasmic SQSTM1 Binding to Sperm Mitochondria during Sperm-Oocyte
Extract Co-Incubation

To determine if a conspecific antibody treatment prevents ooplasmic SQSTM1 bind-
ing to sperm mitochondria in the cell-free system, the permeabilized spermatozoa were
co-incubated with oocyte extracts for 4 h, and an anti-SQSTM1 antibody was added to the
mixture at the onset of co-incubation. This treatment prevented ooplasmic SQSTM1 from
binding to sperm mitochondria (Figure 6(Aa)), while the SQSTM1 was detectable on sperm
mitochondria after sperm-extract co-incubation without the addition of anti-SQSTM1 an-
tibody (Figure 6(Ba)). Non-immune serum was used to generate negative controls for
immunofluorescence and confirm treatment specificity (Figure 6(Ab,Bb)). Consistently, the
intensity of SQSTM1-induced fluorescence labeling on the sperm midpiece/mitochondrial
region was significantly lower (p < 0.05) after co-incubation with oocyte extract containing
anti-SQSTM1 antibody (Figure 6C). This result agrees with the observations of porcine zy-
gotes in which pre-injection with anti-SQSTM1 antibody blocked translocation of ooplasmic
SQSTM1 to the sperm mitochondria post-fertilization [8].
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Figure 5. Sperm head expansion during oocyte extract co-incubation. Intact spermatozoa (A,A’) and sperm heads and
tails separated by sonication (B) were incubated with oocyte extracts or with extraction buffer as a control. Both the
intact spermatozoa and the separated sperm heads and tails were subsequently treated with lysolecithin and DTT and
co-incubated with porcine oocyte extracts for 24 h (C,D). The control sperm fractions incubated with oocyte extraction
buffer (D) did not show signs of sperm head expansion, but the heads of spermatozoa exposed to oocyte extracts appeared
enlarged (D’) at the end of incubation. Sperm heads separated by sonication did not swell during prolonged incubation
with oocyte extracts (B’,C’). Original magnification: 1000×.
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Figure 6. Inclusion of an isospecific antibody into sperm-oocyte extract co-incubation mixture prevents the binding of
ooplasmic SQSTM1 to sperm mitochondria. Spermatozoa treated with lysolecithin and DTT were co-incubated with
porcine oocyte extracts for 4 h with or without the addition of anti-SQSTM1 antibody, then washed and processed for
immunofluorescence with the same antibody or with non-immune mouse serum (control). Such treatment prevented
oocyte-extract derived SQSTM1 from binding to sperm mitochondria (Aa), while in a positive control sample (control mouse
serum addition to the extract), SQSTM1 was detectable on sperm mitochondria at the end of sperm-extract co-incubation
(Ba). No significant signals were detected with non-immune serum in negative control for immunofluorescence (Ab,Bb).
Original magnification: 1000×. (C) Relative pixel intensity values of SQSTM1 fluorescence in the sperm mitochondrial
sheath after sperm-oocyte extract co-incubation with/without the addition of anti-SQSTM1 antibody. The fluorescence
intensity of ooplasmic SQSTM1 binding to sperm mitochondria was significantly lower in sperm-extract co-incubation
blocked with an anti-SQSTM1 antibody. Values are expressed as the mean of fluorescence intensity ± SEM. Different
superscripts A and B in the diagram denote significant differences at p < 0.05.
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3.6. Binding of Porcine Ooplasmic SQSTM1 to Bull Sperm Mitochondria in the Cell-Free System

We further examined if SQSTM1 derived from porcine oocyte extracts was detected in
the interspecific cell-free system composed of porcine oocyte extract and bull spermatozoa.
Non-treated (membrane-intact), control bull spermatozoa and bull spermatozoa treated
with 0.05% lysolecithin and 10 mM DTT were immunostained with anti-SQSTM1 antibody.
The SQSTM1 was not detectable in bull spermatozoa without exposure to porcine oocyte
extracts (Figure 7A,A’,B,B’), whereas SQSTM1 originated from porcine oocyte extracts was
visible in the midpiece/mitochondrial sheaths of bull sperm tails exposed to oocyte extract
(Figure 7C,C’), suggesting that even in the interspecific conditions of the cell-free system,
ooplasmic SQSTM1 was still able to recognize heterospecific sperm mitochondria.
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Figure 7. Binding of ooplasmic SQSTM1 to bull sperm mitochondria co-incubated with porcine
oocyte extracts. Control bull spermatozoa pre-labeled with MitoTracker (A,A’) and bull spermatozoa
primed with 0.05% lysolecithin and 10 mM DTT (B,B’) were immunolabeled with anti-SQSTM1
antibody. There was no SQSTM1 labeling in bull sperm mitochondria prior to co-incubation. (C,C’),
Spermatozoa primed with 0.05% lysolecithin and 10 mM DTT and co-incubated with porcine oocyte
extracts for 4 h, showed immunolabeling with anti-SQSTM1 antibody. Original magnification: 1000×.
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4. Discussion

Using the cell-free system consisting of permeabilized, disulfide-reduced boar sper-
matozoa co-incubated with porcine oocyte extracts, we reconstituted the post-fertilization
recognition of sperm mitochondria by autophagy/mitophagy factors SQSTM1 and VCP, as
observed previously in mammalian (SQSTM1 and VCP [8]) and non-mammalian (SQSTM1
only) zygotes and embryos [17,18]. Cell-free extracts were derived from mature porcine MII
oocytes. A volume of 10 µL extract derived from 2000 porcine oocytes/batch (200 µL) was
sufficient to reconstitute the initial step of sperm mitophagy in 1 × 104 boar spermatozoa
primed by the demembranation and disulfide reduction, demonstrating that the oocyte
extract can be used to study the mechanisms promoting clonal, maternal inheritance of
mitochondria and mtDNA [8].

Boar sperm priming with lysolecithin and DTT, which mimics sperm plasma mem-
brane removal during sperm oolemma fusion and subsequent disulfide reduction by
ooplasmic factors, was sufficient to expose the sperm mitochondrial sheaths to the binding
of autophagy factors from the oocyte extract. Sperm mitochondrial membrane proteins are
hardened by disulfide cross-linking [15,19–21]. By using disulfide bond-reducing agents
such as DTT and β-mercaptoethanol, sperm mitochondria can be completely dissociated
from the sperm tail structure [22]. The stabilization of sperm accessory structures by disul-
fide bridges may be a unique feature of mammalian spermatozoa [23]. Invertebrates and
lower vertebrates, including sea urchin and Xenopus laevis spermatozoa, lack the disulfide
stabilization of sperm accessory structures, showing no structural changes after treatment
with disulfide bond reducing agents [15,24]. Experiments aimed at optimizing sperm
priming prior to the extract co-incubation indicate that disulfide reduction is necessary for
establishing a porcine oocyte cell-free system.

Prominent among mammalian sperm structures stabilized with disulfide bridges is
the sperm nucleus in which protamines become cross-linked during epididymal sperm
maturation [15,25]. Protamines are arginine-rich DNA binding proteins that supplant
nuclear histones during spermatid differentiation to mediate the hypercondensation and
packaging of sperm DNA into a compact sperm nucleus [26]. Sperm nucleus protamination
is reversed at fertilization during the disassembly of sperm accessory structures at the onset
of embryonic development. During natural fertilization, the reduction in disulfide bonds
in the cysteine residues of protamines facilitates sperm nuclear decondensation, male
pronuclear development, and replacement of protamines with oocyte-derived histones [27].
This protamination reversal is mediated by oocyte-produced glutathione (the tripeptide
γ-glutamyl-cysteinyl-glycine; GSH) [28] and may facilitate proteasomal degradation of
sperm nuclear protamines, as proteasomal inhibitors hinder paternal pronuclear develop-
ment [29]. The above findings support our observation in which sperm head expansion was
induced by an oocyte extract following sperm priming by demembranation and disulfide
bond reduction, thus mimicking the early stages of paternal pronucleus formation in the
zygote. This sperm priming process certainly may influence the localization of some sper-
matozoa proteins. However, this shift in localization should be mimicking physiological
events because both plasma membrane removal and disulfide bond reduction are notable
in vivo fertilization events.

Ubiquitin-binding autophagy receptor SQSTM1 links ubiquitinated proteins to the
autophagic pathway [30]. The SQSTM1 binds to polyubiquitinated proteins through its
C-terminal polyubiquitin-binding UBA domain [31]. Mammalian sperm mitochondria
carry (poly)ubiquitinated proteins of spermatogenic origin, while additional mitochon-
drial substrates may become ubiquitinated after sperm incorporation in the ooplasm at
fertilization [6,7,32]. Specifically, sperm mitochondrial membrane protein prohibitin (PHB)
and mitochondrial transcription factor A (TFAM) are ubiquitinated in bull and boar sper-
matozoa, respectively [32,33]. Our recent study identified three SQSTM1/UBA domain
co-purifying boar sperm mitochondrial proteins, including mitochondrial trifunctional en-
zyme subunit alpha/HADHA, mitochondrial aconitase ACO2, and mitochondrial ATP syn-
thase H+ transporting F1 complex β-subunit/ATPF1B [8]. These and other mitochondrial
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proteins are plausible binding partners/substrates of SQSTM1 during post-fertilization
sperm mitophagy. Our previous finding that SQSTM1 derived from the oocyte exclu-
sively associated with sperm mitochondria in porcine and rhesus monkey zygotes [8]
was replicated in a cell-free system in the present study. In addition, the microinjection
of autophagy-targeting antibodies specific to SQSTM1 and GABARAP interfered with
mammalian sperm mitophagy [8], and the addition of anti-SQSMT1 antibody to sperm-
oocyte extract mixtures consistently prevented the oocyte-cytosolic SQSTM1 from binding
to sperm mitochondria in the present study. Parallel to sperm mitochondrion changes, the
sperm heads in the present study became enlarged during the prolonged incubation in
oocyte extract, mimicking the initial steps of paternal pronucleus development. The addi-
tion of anti-SQSTM1 antibody to the sperm-oocyte extract mixture prevented the binding
of ooplasmic SQSTM1 to sperm mitochondria, again mimicking the events of early zygotic
development. In addition, SQSTM1 derived from porcine oocyte extracts was detected in
bull sperm mitochondria, showing interspecific recognition of ooplasmic SQSTM1.

The VCP protein belongs to the AAA+ (ATPase associated with diverse cellular
activities) protein family that participates in various cellular events, including cell di-
vision, protein degradation by UPS, mitochondria-associated protein degradation, and
autophagosome maturation [34,35]. Acting as a protein dislocase, VCP extracts ubiqui-
tinated mitochondrial membrane proteins and presents them to the 26S proteasome for
degradation during organelle renewal mitophagy in somatic cells [35]. Association of the
VCP with sperm mitochondria exposed to oocyte extracts agrees with previous studies
showing that VCP protein was detectable in the mitochondrial sheaths of boar spermatozoa
and remained associated with sperm mitochondria after fertilization [8].

In addition to SQSTM1 and VCP, we used our complementary cell-free and IVF sys-
tems to explore the post-fertilization fate of pro-mitophagic proteins, PACRG and SPATA18.
Parkin co-regulated gene product, PACRG, is regulated by the UPS. The E3 type ubiquitin
ligases which regulate it have yet to be identified [36], though the components of the
linear ubiquitin chain assembly complex (LUBAC), including ubiquitin ligases HOIP and
HOIL-1L, are plausible candidates [37]. The formation of ubiquitinated protein aggregates,
the autophagy-targeted aggresome particles, is mediated by PACRG, particularly under
conditions of repressed proteasomal proteolysis. These PACRG-containing aggresomes are
then removed through macroautophagic pathways. In this sense, mitochondrial sheaths of
mammalian spermatozoa are similar to aggresomes and are detectable using aggresome-
detecting probes [8,38]. Thus, the whole sperm mitochondrial sheath may be recognized as
a large aggresome by the oocyte autophagy machinery. PACRG was selected as a target
protein in the present study because it shares a bidirectional promoter with the gene parkin,
which codes for the PRKN protein [8]. The PRKN protein plays a role in a well-defined
somatic cell mitophagic pathway, the PINK1-PRKN mitophagic axis [39], which contributes
to post-fertilization sperm mitophagy in the mouse zygotes, in synergy with the SQSTM1-
regulated mitophagy branch [40]. The identification of PACRG on the mitochondrial sheath
prior to fertilization and throughout the tail after 4 and 24 h of oocyte extract exposure
could build upon this theory. PACRG may serve as a sperm-borne substrate that signals for
aggresome-clearing autophagy of the mitochondrial sheath. Further supporting this theory,
it has been shown that PACRG levels are directly correlated with the activity of certain
autophagic pathway branches. In particular, PACRG and SQSTM1 (alias P62/p62) directly
interact following proteasomal inhibition. However, an increase in PACRG alone did not
result in aggresome formation; the inhibition of the proteasome was necessary, indicating
that PACRG seems to function in a compensatory role [41]. Perhaps this PACRG pathway is
also used during early fertilization to degrade the sperm tail and the mitochondrial sheath
through autophagy. PACRG has also been shown to be crucial for spermiogenesis, and its
carryover in the sperm mitochondria may reflect such function. Male PACRG knock-out
mice are unable to assemble sperm flagellum and undergo spermiogenesis arrest [42].
PACRG mediates both the formation of the sperm tail [42] and somatic cell aggresomes [43]
via interactions with the microtubule network. Mutations in the PACRG gene have been
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implicated in the etiology of human asthenozoospermia [44]. The progressive change in
localization of sperm PACRG after the oocyte extract treatment in this study (Figure 3),
which resulted in its disappearance at the one-cell stage after fertilization, may help eluci-
date its function within the context of post-fertilization sperm mitophagy. The localization
of PACRG to the mitochondrial sheath of freshly ejaculated spermatozoa appears to be a
remanent of its role in sperm tail formation (Figure 3B), with perhaps a dual function re-
lated to post-fertilization sperm mitophagy. It was observed after 4 and 24 h of the cell-free
system exposure that the presumed oocyte-derived PACRG molecules appeared to localize
throughout the sperm tail principal piece tail and the post-acrosomal region of the sperm
head (Figure 3D,E). In somatic cells, PACRG plays a role in aggresome formation around
mitochondria and then plays a role in signaling for degradation. The sperm tail localization
pattern of PACRG after 4 and 24 h of cell-free system exposure may be evidence of PACRG
acting in conjunction with UPS and signal to recruit SQSTM1, which could explain the ab-
sence of PACRG from sperm mitochondria in a one-cell embryo where SQSTM1 has clearly
relocated to the sperm mitochondrial sheath (Figure 3F). Comparatively lesser intensity of
SQSTM1 and incomplete removal of PACRG is observed after sperm exposure to oocyte
extracts in the cell-free system (present study), which may also lack some of the organelle
membranes and lysosomes necessary for the completion of sperm mitophagy. Our future
experiments will thus include varied proportions of oocyte cytosol and membrane fractions
used in the cell-free system.

Mitochondria eating protein SPATA18 serves for mitochondrial quality control in
various cell types. It mediates the degradation of mitochondria using vacuole-like struc-
tures, which engulf and degrade unhealthy mitochondria [45]. The SPATA18 protein can
facilitate mitophagy because of the recognition of DNA damage through the p53-SPATA18
axis. This axis serves as a mitochondrial homeostasis maintaining mechanism rather than
a direct DNA damage response. SPATA18 induces the formation of intramitochondrial
lysosome-like organelle after mitochondrial damage, which seem to act independently
of conventional autophagy [46]. An increase in mitochondrial ATP output under stress
leads to the mitochondria producing more reactive oxygen species (ROS), which, in turn,
increases mitochondrial stress. This is where SPATA18 comes into play as a mitochondrial
quality control measure. Likewise, sperm mitochondria face stress and possible mtDNA
damage by ROS as the spermatozoa journey across the male and female reproductive
tracts to reach the site of fertilization in the oviduct [45]. Perhaps SPATA18 works along
the mitochondrial quality control axis on the sperm mitochondria upon entry into the
oocyte cytoplasm, assuring that potentially damaged paternal mtDNA is not passed onto
the next generation. Paternal mtDNA transmission to the offspring has been observed in
various interspecific hybrids throughout early embryonic development, whereas sperm
mtDNA was eliminated in intraspecific hybrids [6,47–49]. Therefore, mitophagy machinery
may be insufficient to eliminate sperm mitochondria in interspecific crosses, although our
observation showed bull sperm mitochondria were recognized by the mitophagy factor
SQSTM1 in the interspecific cell-free system. Such a system could be used in the near future
to identify factors responsible for the species specificity of mammalian sperm mitophagy.

5. Conclusions

The present study provides the first evidence that mammalian sperm mitophagy
can be reconstituted in a relevant conspecific cell-free system. Sperm mitophagy factors
SQSTM1 and VCP were detected in sperm mitochondria after oocyte extract co-incubation,
recapitulating the early events of sperm mitophagy observed in mammalian zygotes.
Candidate sperm mitophagy factors PACRG and SPATA18 were detected in spermatozoa
before and after cell-free system exposure, and the changes in their localization were
further investigated in one-cell embryos. This set of experiments highlights the usefulness
of the cell-free system in the investigation of the sperm-borne mitophagy factors, especially
those mitophagy determinants lost early after fertilization and by the time of pronuclear
formation. Altogether, our observations demonstrate that the developmental events of
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post-fertilization sperm mitophagy observed in porcine zygotes can be reconstituted in a
cell-free system, which could become a useful tool for identifying additional molecules
that regulate the mitochondrial inheritance in mammals. Experiments are underway, using
quantitative proteomics to compare the sperm proteomes before and after oocyte extract
exposure, with particular focus on sperm mitochondrial proteins lost during coincubation
and oocyte proteins associating with the sperm mitochondrial sheaths at the same time.
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