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Abstract: Advancements in the development of computer-aided decision (CAD) systems for clinical
routines provide unquestionable benefits in connecting human medical expertise with machine intelli-
gence, to achieve better quality healthcare. Considering the large number of incidences and mortality
numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus,
the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality.
At any stage of the lung cancer clinical pathway, specific obstacles are identified and “motivate” the
application of innovative AI solutions. This work provides a comprehensive review of the most
recent research dedicated toward the development of CAD tools using computed tomography images
for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on
future directions. Although we focus on lung cancer in this review, we also provide a more clear
definition of the path used to integrate AI in healthcare, emphasizing fundamental research points
that are crucial for overcoming current barriers.

Keywords: computer-aided decision; learning models; CT scan; lung cancer

1. Introduction

Lung cancer is a disease that involves the accumulation of multiple genetic mutations
and epigenetic changes, which results in an out-of-control cell proliferation that disrupts
regular cells. Lung cancer is the leading cause of cancer-related fatalities worldwide,
accounting for about 1.6 million deaths per year [1,2]; it is the second most common cancer
diagnosis, comprising a total of 13% of new cancer cases each year [3]. Age is a risk factor
for lung cancer [4], due to biologic factors, including DNA damage (over time) and telomere
shortening. Smoking is the primary “agent” in the development of lung cancer, responsible
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for about 80% of lung cancer-related deaths [5]. Men and women who smoke are 23% and
13%, respectively, more likely to develop lung cancer compared to never-smokers [6]. The
risk of being diagnosed with lung cancer, due to tobacco consumption, varies in ethnic
groups, e.g., compared to white people, African Americans and native Hawaiian smokers
are shown to be at a greater risk of developing lung cancer, with the highest incidences and
death rates. Latino and Japanese American smokers are less likely to develop the disease
and present the lowest cancer-specific mortality [1,6]. Accumulating evidence supports
that genetic factors are also risk factors for lung cancer [7]. Recently, several novel lung
cancer susceptibility genes, including those on chromosomes 6q23-25 and 13q31.3, were
identified by large-scale genome-wide association studies as being associated with lung
cancer risk, particularly in never-smokers, who account for 25% of lung cancer patients
worldwide [8,9]. Furthermore, an individual who has a positive family history of lung
cancer has a 1.7-fold increased risk of developing lung cancer [9–11]. Lung cancer in
never-smokers has been associated with genetic factors, as well as occupational exposures
to lung carcinogens, exposure to ionizing radiation, and a poor diet [1,5,9,12].

Lung cancer can be classified into two major histological subtypes: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 85% of all
lung cancer cases and presents a 25% chance of a 5-year-survival [13]. Adenocarcinoma and
squamous cell carcinoma are its two major histologic types, accounting for about 40% and
25% of lung cancers, respectively [14]. SCLC is the lung cancer type that tends to spread
the fastest, accounting for 10% to 15% of all lung cancers [15]. Individuals who have this
type of lung cancer present a 7% chance of a 5-year-survival [13]. Figure 1 represents the
distribution of the main histological subtypes.

Lung Cancer

Non-Small Cell Lung Cancer (NSCLC)  
85%

Small Cell Lung Cancer (SCLC) 
10 - 15%

Squamous Cell Carcinoma  
25%

Adenocarcinoma 
40% Large Cell Carcinoma Adenosquamous

Carcinoma

Figure 1. Prevalence of the major histological subtypes of lung cancer: non-small cell lung cancer
and small cell lung cancer [13–15].

Computed tomography (CT) is the most useful imaging modality used for lung cancer
management, including diagnosis, staging, treatment planning, and treatment response
evaluation [16–19]. CT is the recommended screening test for lung cancer; but confirmation
of the malignancy and characterization of the nodule are traditionally conducted via a
biopsy, which is an invasive and risky procedure for the patient that can lead to some
clinical complications. Recently, non-invasive, fast, and easy-to-use techniques, such as
computer-aided diagnosis (CAD) based on CT scans, have been developed for lung cancer
characterization, to improve the accuracy of diagnosis, determine the most appropriate
treatment for each subject and, consequently, decrease the mortality rate of patients battling
lung cancer [20–22]. Since imaging is already regularly repeated during treatment, it has
the potential to continuously supervise therapy and monitor the rise and growth of the
disease or its response to therapy.

In this review, we present the main advances made in CADs dedicated to lung cancer
diagnosis, characterization, and management; we also discuss the limitations of each part
of the pipeline (e.g., screening and treatment assessments) and suggest directions for future
developments. The primary focus of this work is on CAD systems that could be of help to
clinicians in cancer management—from detection to treatment. We provide a deep summary
of the state-of-the-art CADs. Due to the relevance of CT on lung cancer assessment, the
CADs selected here are dedicated to this type of medical image data. We searched the
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following databases: Embase, PubMed, Cochrane Library, the Institute of Electrical and
Electronics Engineers (IEEE), Scopus, Web of Science, conference proceedings, and the
ACM Digital Library. For each section, additional keywords are used/detailed, as described
during the review. This review begins with an overview of the clinical proceedings that
comprise lung cancer clinical routines. Due to the relevance of the main biomarkers used to
shape treatment plans, this work covers the biological pathways and elements that explain
the importance of these biomarkers and the target therapies that have been (or are being)
developed. A global overview of the clinical routines and biological elements involved in
lung cancer genesis and development will help one understand the need (and impact) of
CADs. This work reviews the CADs that have been (are being) developed to help clinicians
in lung cancer management; it covers all stages of the clinical evaluations, and presents
directions for the future, which are crucial for integration of CADs into clinical settings.

2. Clinical Pathway for Lung Cancer

The clinical pathway for lung cancer consists of the following main steps: screening,
diagnosis, and treatment plan development [23]. The process of diagnosis begins with an
initial evaluation, and it is followed by an analysis of tissues collected in the biopsy for the
cancer confirmation, characterization, and staging. The treatment plan will consider the
diagnosis and the patient’s functional status.

2.1. Screening

Screening involves testing an asymptomatic individual for a disease. Lung cancer
typically does not cause signs or symptoms in its earliest stages; these only occur when the
disease is advanced. Thus, screening exams are the most powerful tools for early detection.
A total of 65% of patients are diagnosed when the disease has already reached the metastatic
stage; these individuals have a 6% chance of 5-year-survival [24]. Only 17% of cases are
diagnosed in a local state; in these cases, the 5-year survival rate increases to 59% [13]. The
US national lung screening trial (NLST) and NELSON (two randomized controlled trials
of low-dose CT (LDCT)-based lung cancer screenings in high-risk populations) showed
evidence of a statistically significant mortality reduction in patients [19,25]. CT exams are
recommended for adults aged 50 to 80 who have 20 packs-a-year smoking histories and
who currently smoke or have quit within the past 15 years [26].

2.2. Diagnosis
2.2.1. Initial Evaluation

The most common lung cancer symptoms are chronic cough, repeated respiratory
infections, fatigue, hemoptysis, shortness of breath, hoarseness, and chest pain [27]. The
initial evaluation should include a careful analysis of risk factors for lung cancer, prior his-
tory of cancer, evaluation of comorbidities, functional status, and overall health status [23].
All patients suspected of having lung cancer, who are undergoing initial evaluations, will
require imaging studies. CT is the primary imaging exam performed to assess the existence
of nodules and eventually lung cancer. The nodule size, nodule growth rate, and spicula-
tion of the nodule anatomical margins are the main radiological predictors of malignancy
risk [28]. The tissue biopsy will confirm the disease.

2.2.2. Tissue Biopsy

Tissue biopsy is the current standard procedure for lung cancer classification, consist-
ing of an assessment technique that includes several methods, such as fine needle aspiration,
bronchoscopy, endobronchial ultrasound, mediastinoscopy, thoracentesis, thoracoscopy,
and electromagnetic navigation. Bronchoscopy is the main diagnosis procedure, with
flexible bronchoscopy being more useful for central lesions and navigational bronchoscopy
displaying higher sensitivities for peripheral lesions [29,30]. Percutaneous approaches in-
clude transthoracic needle aspiration (TTNA) or needle/core biopsy (TTNB) of the primary
tumor. The samples collected will be analysed in immunohistochemical stains and molecu-
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lar tests in order to assess the mutation status of predominant oncogenes and identify the
main biomarkers of the tumor, supporting precision medicine [31].

Despite a tissue biopsy being considered a relatively safe procedure, it is not free of
complications since the invasive nature of a tissue biopsy limits its use, particularly in
patients with inaccessible tumor sites or when repeated biopsies are needed [32]. Moreover,
tissue biopsies have some limitations related to tumor heterogeneity, since a single biopsy
may not represent the complexity of the entire tumor and its genetic alteration. Thus, there
is an inability to carry out a complete therapeutic decision and prognosis, which are the
main issue in clinical practices [29,30]. Therefore, although recommendations are clear
about the need for a biopsy, its invasive nature limits repetition for treatment response
evaluations [33].

2.2.3. Liquid Biopsy

A liquid biopsy is a non-invasive, safe, and accessible technique that allows the
detection of tumor cells or tumor-derived products in body fluids. Liquid biopsies consist
of the analysis of circulating tumor cells and/or circulating tumor DNA (ctDNA) molecules
employing simple tests on body fluid samples. A liquid biopsy may be viewed as a key
strategy to improve lung cancer early diagnosis—either alone or as complementary data
for imaging findings. Other clinical applications consist of patient stratification, therapeutic
decisions, and disease monitoring [29,30]. Liquid biopsies are shown to be useful in the
management of NSCLC in clinical practices. This approach overcomes both spatial and
temporal tumor heterogeneity problems and enables repeatable evaluations of cancer
patients while reducing the inherent risks and discomfort of tissue biopsies [34].

Several liquid biopsy-derived biomarkers have been identified, such as circulating
tumor cells, circulating cell-free DNA, circulating micro-RNAs, tumor-derived exosomes,
and tumor-educated platelets [29,30]. Evidence indicates that a liquid biopsy can be
applied to dynamically evaluate resistance mutations during treatment with epidermal
growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibitors [35].
However, there are limitations, i.e., related to low sensitivity for the detection in early stage
tumors and, consequently, less utility in clinical practices [36,37]. For early stages of lung
cancer, when the cancer biomarkers have very low values, the available biomarkers display
significant proportions of false negatives or a need for a confirmatory tissue biopsy. Thus,
the development of more sensitive and specific assays must occur in the following years to
allow its standard use in clinical practice. There is also the possibility of combining different
biomarkers and other diagnostic techniques, such as imaging techniques, although more
robust studies are required to define the best combinations and to validate the clinical role
of liquid biopsy in the screening or diagnosis of lung cancer [29,30].

2.2.4. Staging

For confirmed malignant cases, it is important to determine the extension of cancer
(cancer staging) and identify additional pathologies that can influence the treatment plan of
the patient. The type of cancer is characterized in a triple form, using cytology and histology,
immunohistochemical stains, and molecular testing, allowing to identify the type and
subtype of cancer, to assess the PD-L1 expression, and define the genomic profile. Staging
tests may include imaging procedures that allow the clinician to search for evidence that the
cancer has spread beyond the lungs. These tests include CT, magnetic imaging resonance
(MRI), positron emission tomography (PET), and bone scans. The characterization and
staging of the cancer will help define a treatment plan, combining one or more types:
surgery, radiotherapy, and drug therapy (chemo- and immunotherapy); as well as the order
that they are applied, taking into account the specific conditions of the patient. In cases
where there is progress of the cancer after the line of treatment, the process of diagnosis
will restart, using an imaging analysis, and if the tumor is so different from the expected, a
biopsy will be performed.
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2.3. Treatment Plan

Depending on the staging of lung cancer, patients are eligible for treatments that
may be local, such as surgery and radiation therapy; systemic, such as chemotherapy and
targeted therapy; or combined, meaning the merging of two or more types of treatments [38].
Early-stage NSCLC patients can be treated surgically with a 5-year-survival rate of 77% [39].
If stage I–II patients are unable to tolerate surgery (due, for example, to other associated
health problems or inaccessible tumor location), they usually receive stereotactic body
radiation therapy. If the tumor is found to be resectable from imaging studies and biopsies
and the patient is able to tolerate surgery, surgery is typically performed to remove the
tumor. However, most cases are identified in the late stages, when surgery is no longer an
option as a result of distant metastases. Treatment for stage III NSCLC patients include some
combination of radiation therapy and chemotherapy. Immunotherapy is a target therapy
that attacks immune checkpoint pathways, which includes the blockade of the inhibitory
receptors cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell
death-1 (PD-1), and its ligand, PD-L1, and has altered the management of NSCLC over the
last 10 years [40]. For stage IV NSCLC patients, who constitute 57% of newly diagnosed
lung cancer patients [41], there are several lines of treatment, depending on whether the
cancer cells have certain genetic or protein alterations, and the overall health of the patient.
Personalized medicine by targeting appropriate genomic biomarkers with small-molecule
tyrosine kinase inhibitors (TKIs) has helped improve survival in stage IV NSCLC patients,
while decreasing multiple undesirable side effects associated with cancer treatment [42–45].
On lung cancer, one of the most relevant oncogenes and a predictive biomarker with
clinically approved therapies is EGFR [46]. EGFR-dedicated therapies with TKIs, such as
afatinib and erlotinib, are currently used as first- and second-line lung cancer treatments [47],
improving objective response rates and progression-free survival compared to cytotoxic
therapy for patients with mutated EGFR [48–50]. Furthermore, for patients whose tumor
expresses the PDL-1 protein on at least 50% of the cells, the treatment options might include
the administration of an immunotherapy drug, such as pembrolizumab, which is a human
immune checkpoint inhibitor that can inhibit the PD-1 or PD-L1 and improve antitumor
immunity [51–53]. However, immunotherapy is only effective for a small percentage of
cancer patients (20%), due to the low performance of the current predictive biomarkers of
the response to the immune checkpoint blockade therapy, which relies on the detection of
PD- L1 in cancer tissue [54]. On the other hand, if the PD-L1 levels are lower than 50%, the
treatment often consists of chemo- and immunotherapy combination.

2.4. Main Biomarkers for Target Therapies

Only a small portion of NSCLC patients are diagnosed at an early stage (I or II),
when surgical resection is an optimal treatment option [55,56]. Researchers are focusing
on developing targeted therapies because of the ability to deliver drugs effectively with
high specificity while being less toxic. Target therapies identify and block specific enzymes,
proteins, or other molecules involved in cancer development. Thus, understanding the
pathophysiology of cancer is a crucial step to identify molecular targets that favor the
promotion of cancer cell growth, interfere with the regulation of cell cycle, and/or induce
cell death, so as to interfere within the tumor microenvironment and activate the immune
system [57]. In NSCLC, one-third of the patients have an oncogenic driver mutation that is
druggable, another third show excessive inflammation in the tumor micro-environment
that can be targeted with an immune checkpoint, and the last third of patients are treated
with combined chemotherapy [58]. In NSCLC, some specific targets that have already been
studied are oncogenes, such as EGFR, KRAS, or ALK, and immune checkpoints, such as
PD-1/PD-L1 and CTLA-4.

2.4.1. Oncogenes

EGFR is a receptor found on the surface of cells and is a member of the EGFR-family of
extracellular protein ligands that cannot penetrate the cell membrane; thus, they function
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via targeted signal transduction pathways that carry cellular information [59,60]. Ultimately,
its function as a cell proliferation, differentiation, motility, and survival factor allows cancer
cell growth and development, as well its metastasis [59]. It is a tyrosine kinase receptor that
is frequently overexpressed in tumors, and so it is considered a predictor of survival [59].
The EGFR mutation occurs in 10–20% of patients with lung cancer (80–85% of NSCLC) and
is mostly adenocarcinoma in younger women and never-smokers [56]. Within the EGFR
mutation, the most common are the exon 19 deletion and exon 21 L858R point mutation—
almost 90% of them—and they are also the ones with the better response to EGFR-targeted
therapies [58]. For EGFR, there are two types of drugs: (1) monoclonal antibodies, which
bind to the extracellular domain of EGFR, preventing its dimerization; (2) tyrosine kinase
inhibitors, which block the intracellular part of the receptor [59,61].

The rat sarcoma proto-oncogene (RAS) family mutations are the most frequent cause
for cancer, including three different oncogenes: the Kirsten rat sarcoma oncogene KRAS,
the neuroblastoma rat sarcoma oncogene (NRAS) and the Harvey rat sarcoma oncogene
(H-RAS) [62]. The KRAS isoform expresses the most alterations, accounting for 86% of
RAS mutations, mainly in lung, pancreatic, and colon cancers [62–64]. KRAS mutations are
responsible for about 30% of lung adenocarcinomas, with higher prevalence in Western
countries and in smoking patients, showing worse outcomes in early and advanced stages
of lung cancer [62–64].

KRAS is a guanosine triphosphate protein (GTPase) encoded by the KRAS oncogene
and activated by cell surface receptors, such as EGFR, fibroblast growth factor receptor
(FGFR), and human epidermal growth factor receptors 2–4 (HER2-4), which through
downstream pathways will induce cell proliferation, differentiation, or cell death. Although
the molecular processes involving the RAS family are quite known, there is no potent anti-
RAS therapy as yet, since, for the last four decades, every targeted therapy to this molecular
pathway has not shown good clinical results [62–65]. Reasons for that likely include
heterogeneity involving the RAS mutations, mainly the ones in the KRAS oncogene, besides
the co-occurring genetic events and the diverse KRAS allelic content that contributes to
direct clinical implications [62].

ALK is a member of the transmembrane insulin receptor superfamily of receptor
tyrosine kinases [59,66]. Although its mutations have been known for more than 10 years,
the ALK role, as well as ligands, are still being debated [66]. In NSCLC, ALK mutations
represent 2–7% mostly in never- to light-smokers, men, with 50 being the median age of
diagnosis [56]. ALK tyrosine kinase inhibitors are ATP-competitive antagonists, preventing
ALK kinase activity and promoting tumor reduction [59]. Crizotinib is an example of an
ALK inhibitor, which reduces 50–60% of tumor sizes in patients with this mutation and
provides greater improvement in one’s quality of life, although most of the patients had
previous chemotherapy [59,66].

2.4.2. Immunobiomarkers

Inhibitory checkpoint molecules generated upon T cell activation, such as those that
regulate the immunological synapses between T cells and dendritic cells in lymph nodes
(CTLA-4 and B7.1), or between T cells and tumor cells (PD-1 and PDL-1/2), are currently
the most relevant targets for immunotherapy (see Figure 2) [56].

PD-1 presents on the cell surface as a co-inhibitory receptor, expressed in T cells, B-cells,
monocytes, and natural killer T cells after activation. Binding of PD-L1 to PD-1 inhibits cell
proliferation, cytokine secretion, and the expression of anti-apoptotic molecules in immune
cells [55,59,67]. In various malignancies, including lung cancer, PD-L1 is overexpressed,
allowing the activation of PD-1 signalling pathways and ultimately the escape of cancer
from immunosurveillance [67]. Blockage of PD-1/PD-L1 pathways has been the most
successful strategy as it promotes the programmed death of tumor cells, with various
anti-PD-1/PD-L1 antibodies approved for first- and second-line settings with manageable
toxicity profiles, improved efficacy, and longer durations of response compared to standard
chemotherapy [59,67,68].
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Figure 2. Physiological response to the activation of membrane receptors and immune receptors.
Activation of receptor kinases, such as EGFR, FGFR, or HER-2, promotes the activation of RAS and
its downstream pathways that facilitate cell growth, proliferation, cell survival, and differentiation.
However, mutations in the RAS family lead to its constitutive activation and the hyperactivation of the
downstream pathways—leading to uncontrolled cell survival. On the other hand, PD-L1 is present
on the cell surface of immune cells and its binding to tumor cells PD-1 inhibits cell proliferation,
cytokine secretion, and the expression of anti-apoptotic molecules in immune cells culminating in the
escape of cancer from immunosurveillance. The goal of target therapies is to diminish the activation
of abnormal signalling pathways, which can be inhibited at every step.

CTLA-4 (or CD152) is a known receptor of an immune checkpoint pathway that
downregulates T cell proliferation, mainly in lymph nodes, and promotes immune self-
tolerance [59,67]. CTLA-4 is often overexpressed in a chronic inflammatory status, such
as in cancer, implying that its presence in the tumor microenvironment may be involved
in the dysregulation of the immune response [67]. Therefore, targeting CTLA-4 allows
enhancing T cell-mediated anti-tumor activity [59,67]. Monoclonal antibodies, such as
ipilimumab, prevent CTLA-4 binding to its ligands (CD80/CD86) and, thus, augmenting T
cell activation [59,68].

3. Computer-Aided Decision Systems

Computer-aided decision systems could be defined as tools that automatically extract
valuable information from medical data and help make more accurate and fast decisions. In
lung cancer, CADs focus on using imaging results from CT scans and producing predictions
that help the clinicians to decide the follow-up of the patients or the best treatment plans. An
effective CAD should comprise various components: pre-processing, segmentation, feature
extraction, classification, grading, and characterization of cancer. An ideal CAD would
present specific features (e.g., accurate, non-invasive, low-cost, repeatable, generalizable,
and interpretable) to be integrated into the clinical routine of the cancer assessment (see
Box 1).
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Box 1. Key features of CADs for lung cancer diagnosis.

Accurate: to be used to help clinicians produce better decisions;
Non-invasive: to avoid the problems associated with an invasive procedure;
Low-cost: to be implemented on a large scale;
Repeatable: allowing it to be performed several times to follow the progress and treatment results;
Generalizable: to be able to deal with the heterogeneities of the population and make correct predictions for unseen data;
Interpretable: to give additional information to clinicians to trust in the decision.

The developed approaches were first based on statistical methods (and more recently
on machine learning models). The initial automatic methods attempted to correlate imaging
features with the malignancy, which is defined as radiomics. The use of the most powerful
methods opened up the possibility of exploring a characterization of cancer, such as the
genotype (see Figure 3). Radiogenomics is an approach to predict the genotype (genes
mutation status) based on imaging information (phenotype), which could reduce the need
for biopsies.

Radiomics

Models 
Statistical Methods 
Machine Learning 

Deep Learning

Image
Characteristics 

Malignancy
Assessment

Radiogenomics

Models 
Machine Learning 

Deep Learning

Image
Characteristics 

Genotype
Characterization

Feature
Engineering

Benign 
 
Vs 
 

Malignant

Wild type 
 
Vs 
 

Mutant

Figure 3. Radiomic vs. radiogenomic perspectives for lung cancer assessment. The assessment of
lung cancer was first based on the nodule; however, recently, in radiogenomics approaches, other lung
structures were shown to have relevant information for cancer characterization. Those approaches
brought new challenges, such as the segmentation of lungs, to use this region of interest (ROI) in the
AI-based models.

For the particular case of lung cancer, there are specific elements that are crucial to
consider in the phenotype characterization. The first element is the nodule, which is a
cluster of tumor cells. This structure must be detected, segmented, and assessed to make
the initial diagnosis of malignancy. For the malignant cases, CADs could help in cancer
characterization, based on more information from the lung structures surrounding the
nodules since other lung pathologies are correlated with cancer development [69].

Exploratory studies that have taken into account features from multiple lung struc-
tures, and did not just focus on the nodule, showed the importance of including extra-tumor
features to obtain a successful genomic prediction (see Figure 3, where it is illustrated that ra-
diogenomics approaches use information from more than just the nodule region) [50,69–73].
This seems to indicate that cancer development is related to multiple physiological changes
not restricted to the nodule region and that the next generation of CADs should consider
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large lung regions to allow for a more complete lung cancer characterization [16,74]. This
comprehensive approach, in the treatment planning field, would allow for the selection of a
personalized treatment that would improve effectiveness and efficiency while diminishing
avoidable therapy-related adverse events. This strategy may be particularly helpful in
elderly or unfit patients who are at higher risk of procedure-related complications.

A deep characterization of lung cancer shows the need for more comprehensive analy-
ses, capturing more information of other lung structures related to cancer development,
which potentially present relevant information for more accurate predictions of the main
biomarkers. Figure 4 illustrates the two main perspectives for AI-based CAD development
for lung cancer, focusing on the nodule region or approaching a more holistic perspective of
the lung condition. The following sections are dedicated toward analyzing the methodolo-
gies developed for nodule detection, segmentation, and classification; lung segmentation,
genotype prediction, and other biomarkers prediction reflecting the movement from ap-
proaches centered in the nodule to more inclusive approaches. The selected works were
presented in chronological order, with a deep discussion of the current limitations and
possible opportunities and solutions. There are several up-to-date and significant reviews
on each specific part of the CAD development solutions. The correspondent review papers
are presented at the beginning of each section dedicated to CADs. The present work is
dedicated toward capturing a global perspective of the general pipeline of CADs based on
CT images dedicated to lung cancer evaluation; we present the specific challenges of each
part of the clinical pathway and provide a critical discussion of the results.

Screening 

Diagnosis 

Follow up 

Prognostic 

Treatment Plan 

Figure 4. Two main perspectives for CADs in lung cancer, focused on the nodule and a more holistic
approach that takes into consideration information about the surrounding structures of the nodule.

3.1. Nodule-Focused CADs

This section is dedicated to the CAD centered in the nodule. This represents the first
approach dedicated to lung cancer, following the clinical proceedings, by only taking into
consideration the imaging findings presented by the nodule for the assessment. For this
reason, CADs for nodule detections, assessments, and classifications were developed for
cancer prediction in order to help the clinicians.

3.1.1. Nodule Detection and Segmentation

The automated detection and segmentation of lung nodules is of great significance
in the treatment of lung cancer and in increasing patient survival [75]. In clinical settings,
radiologists must extract suspicious lung nodules from numerous images, a rigorous task
since many destabilising factors, such as distraction and fatigue, as well as the limitations of
professional experience, can contribute to misinterpretation of the available data. Therefore,
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several studies have focused on overcoming these difficulties, helping radiologists make
more accurate diagnoses by proposing CAD systems that perform automatic detection and
segmentation of lung nodules.

The articles presented in this section were retrieved from the following databases:
Science Direct, IEEE Xplore, Web of Science, and PubMed. The most relevant keywords used
during our searches were “lung”, “nodule”, “detection”, “segmentation”, “pulmonary”,
“tumor”, “cancer”, “CAD”, and “CADe”, with various combinations of logical expressions
containing “AND” and “OR”. Initially, we selected 134 articles. Then, we filtered them
according to their relevance to the subject and presence/absence in previous reviews. This
gave us 32 articles through December 2021. All of the pre-selected articles are from the
current year or last year.

To acknowledge the most recent articles published in the field of CAD systems for
lung nodule detection and segmentation, we highlight in this section two review articles
from 2020 and 2021. Halder et al. [76] presented a systematic review of state-of-the-art
approaches and their progress towards lung nodule detection in chest CT images. This
review covered the published works from 2009 to April 2018. In the review by Gu et al. [77],
AI-based algorithms and their applications in lung nodule detection, segmentation, and
classification were reviewed. The aim of this review was to help better understand the
performances of current approaches, limitations, and future trends in lung nodule analyses.
This review article covered papers published up until December 2020.

Nodule Detection

The heterogeneity and high variability of nodule imaging characteristics bring sig-
nificant complexity into this task, and so lung nodule detection can naturally be seen
separated in two sub-modules: (1) where multiple candidates are first proposed, and
(2) the nodule/non-nodule distinction is refined. Considering DL-based approaches,
encoder–decoder architectures are widely used as the base methods for initial nodule
detection [78–85]. The extraction of hand-crafted statistical, shape, and texture features
also brought valuable information for candidate detection, being further classified by
SVM [86,87] or by using ensemble strategies to combine the learning abilities of different
classifiers [88]. Other traditional vision algorithms found successful results in juxtapleural
nodules detection [89]. In the context of this problem, missing a true nodule should be
more penalized than predicting too many false suspicions; however, there is an obvious
effort in the literature to decrease false positive mistakes, mostly approached by combining
different classification networks [78,90], using multi-scaled patches for capturing features
at different expression levels [80,81,91,92], employing other classification algorithms, such
as SVM [82,86,87,93–95], Bayesian networks, and neuro-fuzzy classifiers [95], or proposing
a graph-based image representation with deep point cloud models [96].

On the other hand, single-stage methods have also been explored. In the work by Har-
sono et al. [97], inspired by RetinaNet [98] successes, transfer learning techniques were
employed to make use of ImageNet [99] pre-trained architectures, building a modified
feature pyramid network (FPN) to combine the feature maps obtained at specific dimension
levels, outperforming the previous state-of-the-art. A different single-stage approach can
be found in [100], where the YOLO v3 architecture was firstly adapted for lung nodule
detection, showing capability of detecting these small imaging elements.

Table 1 summarizes the different nodule detection systems mentioned above in chrono-
logical order.
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Table 1. Overview of published works regarding nodule detection approaches in lung CT images
(2020–2021).

Authors Year Dataset Methods Performance Results (%)

Tan et al. [78] 2020 LIDC-IDRI 3D CNNs, based on FCN, DenseNet, and U-Net TPR = 97.5

Mukherjee et al. [88] 2020 LIDC-IDRI Ensemble stacking

ACC = 99.5
TPR = 99.2
TNR = 98.8
FPR = 1.09
FNR = 0.85

Shi et al. [79] 2020 LUNA16 3D Res-I and U-Net network TPR = 96.4
FROC = 83.7

Khehrah et al. [86] 2020 LIDC-IDRI SVM

ACC = 92
TPR = 93.7
TNR = 91.2
PPV = 83.3
MCC = 83.8

Kuo et al. [87] 2020 LIDC-IDRI
Private (320 patients) SVM TPR = 92.1

Zheng et al. [80] 2020 LIDC-IDRI 3D multiscale dense CNNs TPR = 94.2 (1.0 FP/scan),
96.0 (2.0 FPs/image)

Paing et al. [89] 2020 LIDC-IDRI Optimized random forest
ACC = 93.1
TPR = 94.9
TNR = 91.4

Liu et al. [100] 2020 LIDC-IDRI CNN algorithm: You Only Look Once v3 TPR = 87.3

Harsono et al. [97] 2020 LIDC-IDRI
Private (546 patients) I3DR-Net

mAP = 49.6 (LIDC),
22.9 (private)
AUC = 81.8 (LIDC),
70.4 (private)

Xu et al. [81] 2020 LUNA16 3D CNN networks: V-Net and multi-level
contextual 3D CNNs

TPR = 93.1 (1.64 FP/scan)
CPM = 75.7

Drokin and Ericheva [96] 2020 LIDC-IDRI Algorithm for sampling points from a point cloud FROC = 85.9

El-Regaily et al. [90] 2020 LIDC-IDRI Multi-view CNN

ACC = 91.0
TPR = 96.0
TNR = 87.3
F-score = 78.7

Ye et al. [82] 2020 LUNA16 Three modified V-Nets with multilevel receptive
fields

ACC = 66.7
TPR = 81.1
PPV = 78.1
F-score = 78.7

Baker and Ghadi [93] 2020 LIDC-IDRI SVM NRR = 94.5
FPR = 7 cluster/image

Halder et al. [94] 2020 LIDC-IDRI SVM
ACC = 88.2
TPR = 86.9
TNR = 86.9

Jain et al. [83] 2020 LUNA16 SumNet
ACC = 94.1
TNR = 94.0
DSC = 93.0

Mahersia et al. [95] 2020 LIDC-IDRI SVM, Bayesian back-propagation neuronal
classifier and neuro-fuzzy classifier

NRR = 97.9
(neuronal classifier),
97.3 (SVM),
94.2 (neuro-fuzzy classifier)

Mittapalli and
Thanikaiselvan [91] 2021 LUNA16 Multiscale CNN with Compound Fusions CPM = 94.8

Vipparla et al. [92] 2021 LUNA16 3D Attention-based CNN architectures:
MP-ACNN1, MP-ACNN2 and MP-ACNN3 CPM = 93.1
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Table 1. Cont.

Authors Year Dataset Methods Performance Results (%)

Luo et al. [84] 2021 LUNA16 SCPM-Net
TPR = 92.2 (1 FPs/image),
93.9 (2 FPs/image),
96.4 (8FPs/image)

Bhaskar and
Ganashree [85] 2021 DSB-2017 Gaussian mixture convolutional auto encoder +

3D deep CNN ACC = 74.0

ACC: accuracy; AUC: area under the ROC curve; CPM: competition performance metric; DSC: Sørensen–Dice
coefficient; FDR: false discovery rate; FNR: false negative rate; FP: false positive; FPR: false positive rate; FROC:
free-response receiver operating characteristic; mAP: mean average precision; MCC: Matthews correlation
coefficient; NPV: negative predictive value; NRR: nodule recognition rate; PPV: positive predictive value; TNR:
true negative rate; TPR: true positive rate.

Nodule Segmentation

Although the popularity of deep learning approaches has caused a take over of the ma-
jority of nodule segmentation tasks, other learning algorithms have also been used. Machine
learning-based approaches are still used for segmentation tasks. Hybrid models combin-
ing ML classifiers have been applied [101], standard level set image segmentations [102],
or regions growing—that merge regions with similar features [103]. DL methods have
shown capability of outperforming the results presented by the previous works. The U-Net,
3D-UNet, VNet approaches are the most common architectures applied [104–106]. The
deep deconvolutional residual network was proposed for nodule segmentation, using a
summation-based long skip connection from convolutional to deconvolutional parts of the
network [107].

All of these methodologies are summarized in Table 2 in chronological order.

Table 2. Overview of the published works regarding nodule segmentation approaches in lung CT
images (2020–2021).

Authors Year Dataset Methods Performance Results (%)

Sharma et al. [101] 2020 SPIE-AAPM Lung CT
Challenge SVM + k-NN

ACC = 93.9
TPR = 94.5
GM = 94.2

Xiao et al. [104] 2020 LUNA16 3D-UNet + Res2Net Neural Network TPR = 99.1
DSC = 95.3

Singadkar et al. [107] 2020 LIDC-IDRI Deep deconvolutional residual network DSC = 95.0
JI = 88.7

Kumar and
Raman [105] 2020 LUNA16 V-Net (3D CNN) DSC = 96.1

Rocha et al. [106] 2020 LIDC-IDRI Sliding Band Filter + U-Net + SegU-Net
DSC = 66.3 (SBF),
83.0 (U-Net),
82.3 (SegU-Net)

Hancock and
Magnan [102] 2021 LIDC-IDRI Level set machine learning method DSC = 83.6

JI = 71.8

Savic et al. [103] 2021
LIDC-IDRI

Private—phantom
(108 patients)

Algorithm based on the fast marching method

DSC = 93.3
(solid round nodules),
90.1 (solid irregular
nodules),
79.9 (non-solid nodules),
61.4 (cavity nodules)

ACC: accuracy; DSC: Sørensen–Dice coefficient; GM: Geometric mean; JI: Jaccard index; TPR: true positive rate.

3.1.2. Nodule Classification

Identification of lung nodule malignancy at the early stage has a positive impact
on lung cancer prognosis. Therefore, there is a need for CAD systems to classify the
lung nodule into benign and malignant types with maximum accuracy to avoid delays in
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diagnosis. This section of the review provides an overview of the current technology for
lung nodule classification, a subject of study that is heavily explored by researchers who
see the mortality rate increasing each day.

Science Direct, IEEE Xplore, Web of Science, and PubMed were the databases used
during the search for articles pertaining to the classification of pulmonary nodules. The key-
words used were “lung”, “nodule”, “classification”, “malignant”, “benign”, “pulmonary”,
“tumor”, “cancer”, “CAD”, and “CADe”, with various combinations of logical expressions
containing “AND” and “OR.” The articles were filtered according to their relevance, per-
formance results, year of publication, and presence/absence in other reviews. Of the 33
articles selected, one was published in 2021 and the rest in 2020.

In recent years, many deep learning techniques have been used in lung nodule classifi-
cation and have shown promising results when compared to other state-of-the-art machine
learning methods. Thus, not surprisingly, the most recent review article found, published in
the year 2021, and written by Naik and Edla, focused on 108 research papers, published up
until 2019, which proposed novel deep learning methodologies for the nodule classification
in lung CT scans [108].

The development of CAD systems for lung nodule malignancy has focused on a
binary analysis, which basically resumes into finding imaging characteristics with values
for distinguishing benign from malignant nodules. Although more complexity could be
extracted from this problem (e.g., the assessment of more detailed malignancy levels), the
literature still focused on the “two class” version of this problem.

Regarding nodule feature extraction, CNN has became the standard approach in
this field, either with single-network approaches [109–119] or using ensemble strategies
to combine multiple models [120–125]. A combination of local and more nodule-specific
features with more global information is captured by processing the input image at different
dimensions [126–131], enabling to bring together features from different levels of analysis.
Regarding training techniques, the possibility of making use of ImageNet [99] pre-trained
architectures, as in [111,113,132,133], was shown to provide improvements in the predictive
ability. In works that explored multi-task learning strategies, taking advantage of related
tasks to enhance the extraction of relevant information, features captured by generative
models while discriminating real and fake lung nodules, have also shown valuable roles
in training options [134,135], as well as the use of knowledge obtained by learning to
reconstruct nodule images [120,124,136].

Although the majority of the literature on this topic relies on end-to-end neural
network-based methodologies, algorithms, such as SVM, XGBoost, and KNN, have also
been employed, serving as classifiers for previous extracted deep features [117,120], com-
bined multimodal features [112], or hand-crafted features, such as nodule textures, intensity,
and shape [137].

Table 3 summarizes the detailed nodule classification works with reported best perfor-
mance in chronological order.

Table 3. Overview of published works regarding nodule classification approaches in lung CT images
(2020–2021).

Authors Year Dataset Methods Performance Results (%)

Wang et al. [109] 2020 Private (1478 patients) Adaptive-boost deep learning strategy with
multiple 3D CNN-based weak classifiers

ACC = 73.4
TPR = 70.5
TNR = 76.2
PPV = 83.8
AUC = 82.0
F-score = 71.6

Xiao et al. [120] 2020 LIDC-IDRI ResNet-18 + Denoising autoencoder classifier +
handcrafted features

ACC = 93.1
TPR = 81.7
PPV = 83.8
AUC = 82.0
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Table 3. Cont.

Authors Year Dataset Methods Performance Results (%)

Wang et al. [127] 2020 LUNGx ConvNet

ACC = 90.4
TPR = 88.7
TNR = 92.4
AUC = 94.8

Lin et al. [110] 2020 LUNA16 GVGG + ResCon network

TPR = 92.5
TNR = 96.8
PPV = 93.6
F-score = 93.0

Onishi et al. [134] 2020 Private (60 patients) M-Scale 3D CNN TPR = 90.9
TNR = 74.1

Zhao et al. [126] 2020 LIDC-IDRI Multi-stream multi-task network

ACC = 93.9
TPR = 92.6
TNR = 96.2
AUC = 97.9

Zia et al. [132] 2020 LIDC-IDRI Multi-deep model
ACC = 90.7
TPR = 90.7
TNR = 90.8

Jiang et al. [121] 2020 LUNA16 Ensemble of 3D Dual Path Networks

ACC = 90.2
TPR = 92.0
FPR = 11.1
F-score = 90.4

Bao et al. [131] 2020 LIDC-IDRI Global-local residual network

ACC = 90.4
TPR = 90.1
PPV = 89.9
AUC = 96.1

Shah et al. [111] 2020 LUNA16 NoduleNet (transfer learning from VGG16 and
VGG19 models)

ACC = 95.0
TPR = 84.0
TNR = 97.0

Tong et al. [112] 2020 LIDC-IDRI 3D-ResNet + SVM with RBF and polynomial
kernels

ACC = 90.6
TPR = 87.5
TNR = 94.1

Xu et al. [128] 2020 LIDC-IDRI Multi-scale cost-sensitive methods

ACC = 92.6
TPR = 85.6
TNR = 95.9
PPV = 90.4
AUC = 94.0
F-score = 87.9

Huang et al. [113] 2020 LIDC-IDRI Deep transfer convolutional neural network +
Extreme learning machine

ACC = 94.6
TPR = 93.7
TNR = 95.1
AUC = 94.9

Naik et al. [122] 2020 LUNA16 FractalNet + CNN

ACC = 94.1
TPR = 97.5
TNR = 86.8
AUC = 98.0

Zhang et al. [118] 2020 LUNA16 3D squeeze-and-excitation network and
aggregated residual transformations

ACC = 91.7
AUC = 95.6

Liu et al. [123] 2020 LIDC-IDRI
Multi-model ensemble learning architecture
based on 3D CNNs: VggNet, ResNet, and

InceptionNet

ACC = 90.6
TPR = 83.7
TNR = 93.9
AUC = 93.0

Afshar et al. [129] 2020 LIDC-IDRI 3D Multi-scale Capsule Network

ACC = 93.1
TPR = 94.9
TNR = 90.0
AUC = 96.4

Lyu et al. [114] 2020 LIDC-IDRI Multi-level cross ResNet

ACC = 92.2
TPR = 92.1
TNR = 91.5
AUC = 97.1
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Table 3. Cont.

Authors Year Dataset Methods Performance Results (%)

Wu et al. [115] 2020 LIDC-IDRI Deep residual network (ResNet + residual
learning + migration learning)

ACC = 98.2
TPR = 97.7
TNR = 98.3
PPV = 98.5
F-score = 98.1
FPR = 1.60

Lin and Li [116] 2020 LIDC-IDRI Taguchi-based AlexNet CNN ACC = 99.6

Kuang et al. [135] 2020 LIDC-IDRI Combination of a multi-discriminator generative
adversarial network and an encoder

ACC = 95.3
TPR = 94.1
TNR = 90.8
AUC = 94.3

Lima et al. [137] 2020 LIDC-IDRI SVM with Gaussian kernel + Relief +
Evolutionary Genetic Algorithm AUC = 85.6

Veasey et al. [133] 2020 NLST Recurrent neural network with 2D CNN PPV = 55.9 (t0), 66.9 (t1)
AUC = 80.6 (t0), 83.5 (t1)

Bansal et al. [117] 2020 LUNA16 Deep3DSCan

TPR = 87.1
TNR = 89.7
AUC = 88.3
F-score = 88.5

Zhai et al. [124] 2020 LUNA16
LIDC-IDRI Multi-task learning CNN

TPR = 84.0 (LUNA16),
95.6 (LIDC-IDRI)
TNR = 96.8 (LUNA16),
88.9 (LIDC-IDRI)
AUC = 97.3 (LUNA16),
95.6 (LIDC-IDRI)

Paul et al. [125] 2020 NLST Ensemble of CNNs

ACC = 90.3
AUC = 96.0
TPR = 73.0
FNR = 27.0

Ali et al. [119] 2020 LIDC-IDRI
LUNGx Transferable texture CNN

ACC = 96.6 (LIDC-IDRI),
90.9 (LUNGx)
TPR = 96.1 (LIDC-IDRI),
91.4 (LUNGx)
TNR = 97.4 (LIDC-IDRI),
90.5 (LUNGx)
AUC = 99.1 (LIDC-IDRI),
94.1 (LUNGx)

Silva et al. [136] 2020 LIDC-IDRI Transfer learning (convolutional autoencoder)

AUC = 93.6
PPV = 79.4
TPR = 84.8
F-score = 81.7

Xia et al. [130] 2021 LIDC-IDRI Gradient boosting machine algorithm

ACC = 91.9
TPR = 91.3
F-score = 91.0
FPR = 8.00

ACC: accuracy; AUC: area under the ROC curve; FNR: false negative rate; FPR: false positive rate; PPV: positive
predictive value; TNR: true negative rate; TPR: true positive rate.

3.1.3. Interpretability Methods for Nodule-Focused CADs

As mentioned in the previous section, nodule classification models based on deep
learning (DL) algorithms are able to achieve the highest performances. However, DL
models are considered the least interpretable machine learning models due to the inherent
mathematical complexity; thus, not providing a reasoning for the prediction and, conse-
quently, decreasing the trust in these models [138]. When utilizing these black-box models
in the medical domain, it is critical to have systems that are trustworthy and reliable to
the clinicians, therefore raising the need to make these approaches more transparent and
understandable to humans [139].
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Explainable AI (XAI) refers to techniques or methods that aim to find a connection
between the input features and the prediction of the black-box; thus, looking to justify the
decision and its reliability. Perceptive interpretability includes XAI methods that focus on
generating interpretations that can be easily perceived by humans, despite not actually
‘unblackboxing’ the algorithm [140]. Visual explanations are the most commonly used
XAI methodologies in deep learning image analysis approaches [141], namely in radiology
image-based predictive models, where the trust on a CAD system can increase substantially
by presenting the areas of a medical image with higher contribution to the prediction, along
with the prediction itself [138].

A large portion of the most utilized XAI methods in the medical domain are post-
hoc models, which consist of methods external to the already trained predictive model,
performing evaluations on the predictions without altering the model itself. These are
off-the-shelf agnostic methods that can be found in libraries, such as PyTorch Captum [142].
This post-model approach was implemented by Knapič et al. [139], where two popular
post-hoc methods, local interpretable model-agnostic explanations (LIME), and SHAPley
Additive exPlanations (SHAPs) were compared in terms of understandability for humans
in the predictive model with the same medical image dataset.

Furthermore, in-model XAI methods for lung nodule classification were also imple-
mented by Li et al. [143], where an importance estimation network returns a diagnostic
visual interpretation that is utilized by the classifier for an irrelevant feature destruction
process in each pooling layer. In the developed model, only the essential features are
preserved in the visual interpretation, being the optimization of the model achieved by
a trade-off between the accuracy of the model and the amount of information used in
the classification. In Jiang et al. [144], a convolutional block attention module (CBAM)
was implemented to develop a partially explainable classification model for pulmonary
nodules, allowing to build a relationship between the features of the input images and the
symptom descriptions and infer that the rationale of the network shows some correlation
with the diagnosis of physicians.

The concern for interpretability is increasing, especially in the medical field, where
there are higher stakes and responsibilities in the CAD systems that are implemented.
However, the research in the area of interpretable models is still in progress, despite
the recent rise in the development of this approach. The increase in research efforts of
interpretable CAD systems is already noticeable, mainly regarding the verification and
explanation of the predicted diagnosis, rather than the unravelling of the black-box [140].
These methods may show future potential, not only in providing trustworthy explanations
to physicians, but also in assuring the reliability and consistency of the developed models.

3.1.4. Discussion and Future Work: Nodule Detection, Segmentation, and Classification

In this review of current methods, direct comparisons of research results were ham-
pered by the heterogeneity in the selection of included scans, different parameters for
the algorithms, and inconsistent use of performance metrics and evaluation protocols.
Overall, the selected works have shown good capabilities in the detection, segmentation,
and classification of pulmonary nodules in CT images. We found that the machine learning
techniques showed satisfactory performance results, while deep learning, especially CNN,
outperformed conventional models and emerged as a promising approach. The main
advantages of CNN lie in its ability to directly learn from a variety of data sources and
automatically generate relevant and possibly unknown features, allowing for prompt and
efficient development of CAD systems. The major challenge is achieving the robustness
to diverse clinical data of varying quality. Although the availability of heterogeneous
private datasets have shown to improve model performance, results comparability, and
generalization become limited. Furthermore, to ensure robustness, the proposed methods
need to be validated with sufficiently large datasets that include all nodule types and
sizes. Thus, methods that were evaluated with fewer nodules will likely lose accuracy
under clinical conditions where nodule types are more varied. The next challenge is the
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discrepancy or variability between the manual annotations. For image-based annotations,
such as detection, segmentation, and classification, such variability may reflect a possible
ceiling performance for AI-based methods. In addition, feature extraction serves as an
important step in differentiating nodules from other anatomic structures present in lung
lobes. Yet, the optimal set of features for nodule detection remain a subject of debate. More-
over, although deep-learning technologies avoid handcrafting and selecting image features,
they instead require the selection of a loss function, network architecture, and an efficient
optimization method, all of which influence the learning process. Additionally, the images
used for training and testing of nodule analysis algorithms may have excluded pathological
conditions in addition to lung nodule screening. Incorporating day-to-day chest CT images
from multiple centers and dealing with these real-life situations are challenges and are
reasons why manual correction and interaction are necessary to help physicians read the
images.

Improvements Needed

To improve CADe and further develop its contribution to lung cancer treatment, some
areas need to be explored:

1. Large and different public lung nodule databases for algorithm evaluation to provide
replication of desired results and enhance the stringency of the algorithm so that lung
nodule analysis tools can be validated mimicking real clinical scenarios.

2. The ability to deal with pulmonary nodules based on location (isolated, juxtapleural,
or juxta-vascular) and internal texture (solid, semi-solid, ground-glass opacity, and
non-solid). In particular, the detection of ground glass optical and non-nodules is
difficult and is explored by very few researchers.

3. The ability to deal with pulmonary nodules with extremely small diameters. Most
early-stage malignant tumors are smaller in size, and if these tumors are detected at
an early stage, the survival chance of the individual can be increased.

4. The ability to classify nodules not only as benign or malignant, but as benign, early-
stage cancerous nodule, primary malignant, and metastasis malignant, decreasing the
level of abstraction related to some clinical phenomena that must be considered.

5. Develop a system capable of segmenting out large solid nodules attached to the
pleural wall, which is quite challenging.

6. Build a set of useful and efficient features based mainly on shape or geometry, intensity,
and texture for better false-positive reduction.

7. Develop a new CAD system based on powerful feature map visualization techniques
to better analyze CNN’s decision and transfer it to radiologists.

8. Fine-tune a pre-trained CNN model instead of training it from scratch to increase its
robustness and surpass the limitation of annotated medical data.

9. Develop in-depth research on GAN models, which can solve the problem of lack of
medical databases.

10. Design new CAD systems, including two or more of the CNN architectures to address
the problem of overfitting that occurs during the training process due to imbalance in
the datasets.

11. Develop new deep learning techniques or optimize existing techniques to improve
the performance of the CADe system, such as using a contracting path (to capture
context) and a symmetric expanding path (to enable precise localization) to strengthen
the use of available annotated samples, training multilayer networks efficiently by
residual learning to gain accuracy from considerably increased depth.

12. Promote cooperation and communication between academic institutions and medical
organizations to combine real clinical requirements and the latest scientific achievements.

3.2. Lung Segmentation

Lung segmentation is a critical task necessary in the majority of lung imaging CAD
studies. Despite not being provided to radiologists in real scenarios, an accurate lung mask
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is absolutely crucial in the development of clinical support tools, avoiding the inclusion of
noise and non-relevant background information, which also improves the efficiency of the
computational resources usage. However, the main challenge to overcome remains the lack
of robustness of the developed tools when analysing lung images with completely different
properties. The large diversity of lung pathological status and biological phenomena asso-
ciated with severe imaging manifestations often result in extremely difficult segmentation
cases, and models tend to fail in these scenarios.

In the work by Shaziya et al. [145], a comprehensive review of the state-of-the-art
solutions regarding conventional, machine learning, and deep learning solutions was
made, collecting several works from 2001 to 2018. El-Baz et al. The authors of [146] also
reviewed the most relevant challenges associated with the lung cancer diagnosis research
field, including several works regarding the lung segmentation task. Since these were the
only published review articles found on this subject, the works included in this section
were carefully compared to ensure the absence of overlapping. The search queries selected
were (“Lung segmentation”) AND (“CT”) using the IEEE Xplore, Science Direct, and
PubMed databases, which resulted in a total of 26 selected articles. This section is divided
into conventional and learning methods. The first includes a wide group of fundamental
computer vision-based methodologies from 2014 to 2021. The second comprises a selection
of machine and deep learning solutions from 2019 to 2021, considering the large amount of
recent approaches and the articles already discussed in [145]. To facilitate the article search,
the keyword “Nodule” was excluded from the title search option, excluding the amount of
works only dedicated to nodule analysis.

3.2.1. Conventional Methods

Approaching lung segmentation through conventional computer vision methods often
requires manual interventions for initialization of the algorithm [147]. Filtering operations,
such as histogram-based thresholding [148,149], may be susceptible to several abnormalities
present in lung tissues with higher or lower density values compared with the rest of the
lung. To overcome this, a possible direction was proposed by Shi et al. [149], consisting
of combining the “weak” and the “strong” from the multiple methods, with the intuition
that it would result in an improved segmentation ability over single-method approaches.
Morphological operations were also used as a post-processing option to fine-tune the
predicted masks by eliminating some common mistakes, such as holes inside the lung
tissues [148].

More complex methodologies based on active contour models [150,151], and modifi-
cations on the random walker method [152] were also recently proposed. These method-
ologies showed a robustness increase, even in the presence of tissue abnormalities, also
enabling more automatic pipelines at the same time. A multi-atlas segmentation approach
for thoracic organs at risk (OAR) was also proposed by Oliveira et al. [153], by considering
the spatial relationships between the different thoracic organs to produce a single spatially
coherent mask.

Table 4 summarizes the reviewed conventional methodologies for lung segmentation
in chronological order.
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Table 4. Overview of published works regarding conventional methodologies for the segmentation
of lung CT images (2014–2021).

Authors Year Dataset Methods Performance Results (%)

Lai and Wei [148] 2014 Private (10 patients) Filtering process + morphological operations
(threshold, region filling, closing)

TPR = 97.0
TNR = 99.0
AAE = 1.58

Li et al. [147] 2015 Private (15 patients) Edge-based recursive geometric active contour
(GAC) model OV = 98.0

Shi et al. [149] 2016 Private (23 patients) Histogram thresholding + region growing and
random walk

OR = 1.87
UR = 2.36
ABD = 0.620 mm

Zhang et al. [150] 2017 LIDC-IDRI Region- and edge-based GAC (REGAC) method DSC = 97.7
HD-95 = 2.50 mm

Rebouças Filho et al. [151] 2017 Private (40 patients) 3D ACACM

F-score = 99.2 (ACACM),
97.6 (RG),
97.4 (OsiriX),
97.2 (LSCPM)

Oliveira et al. [153] 2018 VISCERAL Anatomy3 Multi-atlas alignment + label fusion (voting and
statistical selection)

DSC = 97.4 (LL),
97.9 (RL)
HD-95 = 4.65 mm (LL),
2.81 mm (RL)

Chen et al. [152] 2021 LOLA11
Private (65 patients) Random walker

(Private)
DSC = 98.6 (LL),
98.5 (RL)
(LOLA11)
DSC = 97.4

AAE: average area error; ABD: absolute border distance; ACM: active contour method; DSC: Sørensen–Dice
coefficient; LL: left lung; LSCPM: level-set based on coherent propagation method; HD: Hausdorff distance; OR:
over-segmentation rate; OV: overlap volume; RG: region growing; RL: right lung; TPR: true positive rate; TNR:
true negative rate; UR: under-segmentation rate.

3.2.2. Learning Methods

The most recent approaches for CT lung segmentation show a clear predominance
of learning algorithms capable of directly learning the distribution of the data used for
training. Methodologies inspired on U-net [154] cover the majority of deep learning-based
attempts [155–165]. To increase the complexity of the feature extraction task, the encoder
module could reuse transferred weights from pre-trained networks, as in the works by Vu
et al. [163] and Jalali et al. [166], where the VGG-16 and ResNet-34 models were adopted
to work as encoder blocks, respectively. More investigations on improvements in typical
convolutional blocks can also be found, integrating residual blocks [164,167], inception
modules with dense connections [162], and squeeze-and-excitation blocks to target specific
thoracic organs at risk [165]. Still, on feature extraction enhancement, adversarial training
approaches were explored in [155,168,169], enabling approximating the predicted masks
to the ground-truth by discriminating between both. More meaningful features can also
be extracted by aggregating an auxiliary classification branch, enriching the information
used for backpropagation [160,170]. Liu et al. [171] integrated different feature extraction
branches by combining deep, textured, and intensity features, to be classified as part of the
lung mask or background.

In two-stage pipelines, approaches based on lung detection followed by proper seg-
mentation of the cropped input have been proposed [156,172,173], the Mask R-CNN [174]
architecture was employed and predictions were refined through combining different
supervised and unsupervised methods. These regularisation techniques confirmed that, as
expected, less noisy inputs would allow to obtain better predictions.

The lack of training data diversity has been recognized as a major barrier to achieve ro-
bust segmentation models, with better results obtained with larger and more heterogeneous
private data, even with simple networks [158].



J. Pers. Med. 2022, 12, 480 20 of 36

Table 5 summarizes the reviewed machine/deep learning methodologies for lung
segmentation in chronological order.

Table 5. Overview of published works regarding learning-based methodologies for the segmentation
of lung CT images (2019–2021).

Authors Year Dataset Methods Performance Results (%)

Dong et al. [155] 2019 LCTSC U-net generator with a FCN discriminator DSC = 97.0

Feng et al. [156] 2019 LCTSC Two-stage segmentation process with 3D U-net DSC = 97.2 (RL),
97.9 (LL)

Park et al. [157] 2019 LCTSC
Private (30 patients) U-net

DSC = 98.8
JSC = 97.7
MSD = 0.270 mm
HSD = 25.5 mm

Hofmanninger et al.
[158] 2020

LCTSC, LTRC, VISCERAL,
VESSEL12

Private (5300 patients)

U-net, ResUNet, Dilated residual network-D-22,
DeepLab v3+

(merged dataset)
DSC = 98.0
HD95 = 3.14 mm
MSD = 0.620 mm

Yoo et al. [159] 2020 HUG-ILD
Private (203 patients) 2D and 3D U-net

(Private - 2D; 3D)
DSC = 99.6; 99.4
TPR = 99.5; 99.1
PPV = 99.6; 99.7
HD = 17.7 px; 18.7 px
(HUG-ILD - 2D; 3D)
DSC = 98.4; 95.3
TPR = 98.7; 98.0
PPV = 98.1; 92.8
HD = 7.66 px; 15.6 px

Khanna et al. [167] 2020
LUNA16
VESSEL12

2HUG-ILD
ResUNet + false positive removal algorithm

(LUNA16)
DSC = 96.6
JI = 93.4
TPR = 97.5
(VESSEL12)
DSC = 98.3
JI = 97.9
TPR = 98.8
(HUG-ILD)
DSC = 98.1
JI = 96.3
TPR = 98.3

Shi et al. [160] 2020 StructSeg 2019 TA-Net

DSC = 96.8 (LL),
97.1 (RL)
HD = 0.188 mm (LL),
0.171 mm (RL)

Nemoto et al. [161] 2020 NSCLC-Radiomics 2D and 3D U-net DSC = 99.0 (2D/3D U-net)

Zhang et al. [162] 2020

Lung dataset (Kaggle
“Finding and Measuring

Lungs in CT Data”
competition)

Dense-Inception U-net (DIU-net)

DSC = 98.6
JI = 98.7
ACC = 99.4
TPR = 98.5
TNR = 99.8
F-score = 98.5
AUC = 99.0

Vu et al. [163] 2020 Private (168 patients) U-net with pre-trained VGG16
DSC = 97.0 (RL and LL)
HD-95 = 5.10 mm (RL),
4.09 mm (LL)

Liu et al. [171] 2020 HUG-ILD Random forest fusion classification of deep,
texture and intensity features

DSC = 96.4
JI = 91.1
OR = 5.04
UR = 4.76

Hu et al. [172] 2020 Private (39 patients) Mask R-CNN + supervised and unsupervised
classifiers

DSC = 97.3
ACC = 97.7
TPR = 96.6
TNR = 97.1



J. Pers. Med. 2022, 12, 480 21 of 36

Table 5. Cont.

Authors Year Dataset Methods Performance Results (%)

Han et al. [173] 2020 Private Xception + VGG with SVM-RBF
Detectron2 + contour fine-tuning

DSC = 97.0
ACC = 99.0
TPR = 96.5
TNR = 99.4

Xu et al. [170] 2021

Private (217 patients)
COVID-19-CT-Seg

HUG-ILD
VESSEL12

Boundary-Guided Network (BG-Net)

DSC = 98.6 (Private),
96.5 (StructSeg),
98.9 (HUG-ILD),
99.5 (VESSEL12)
HD = 2.77 mm (Private),
1.39 mm (StructSeg),
0.665 mm (HUD-ILD),
1.40 mm (VESSEL12)

Jalali et al. [166] 2021 LIDC-IDRI ResBCDU-Net DSC = 97.1

Wang et al. [164] 2021

Lung dataset (Kaggle
“Finding and Measuring

Lungs in CT Data”
competition)

HDA-ResUNet

DSC = 97.9
JI = 96.0
ACC = 99.3

Tan et al. [168] 2021 LIDC-IDRI
QIN lung CT dataset LGAN

(LIDC-IDRI)
IOU = 92.3
HD = 3.38 mm
(QIN)
IOU = 93.8
HD = 2.68 mm

Pawar and Talbar
[169] 2021 HUG-ILD LungSeg-Net

DSC = 96.3 (Fibrosis),
96.5 (Ground glass),
91.4 (Reticulation),
97.6 (Consolidation),
97.8 (Emphysema),
99.0 (Nodules)
JI = 93.7 (Fibrosis),
93.9 (Ground glass),
86.9 (Reticulation),
95.3 (Consolidation),
96.2 (Emphysema),
98.0 (Nodules)

Cao et al. [165] 2021 StructSeg 2019 C-SE-ResUNet DCS = 97.0 (LL)
96.6 (RL)

ACC: accuracy; AUC: area under the ROC curve; DSC: Sørensen–Dice coefficient; HD: Hausdorff distance; IOU:
intersection over union; JI: Jaccard index; LL: left lung; OR: over-segmentation rate; PPV: positive predictive vale;
RL: right lung; TNR: true negative rate; TPR: true positive rate; UR: under-segmentation rate.

Discussion and Future Work: Lung Segmentation

The use of conventional methods for lung segmentation has, to some extent, achieved
satisfactory results for certain scenarios of data distributions. Image threshold-based
algorithms often lack robustness, not being able to cope with higher variances on the density
values of more heterogeneous lung structures. To achieve decent results, these algorithms
require an extensive amount of post-processing work, employing highly data-dependent
fine-tuning methods, which improves the performance by creating tight boundaries on
the properties of a specific dataset. Regarding more dynamic algorithms, such as active
contour models (ACM) and their variations, initial contours are often necessary for method
initialization and the energy functions used for mask propagation can be susceptible to
heterogeneous imaging variations in shape or intensity and, therefore, must be extensively
tested over distinct sources of data to be considered clinically reliable.

The majority of the most recent segmentation approaches proposed incorporate deep
learning mechanisms, allowing the development of completely automatic solutions without
the need to design and apply specific algorithms to solve specific problems. Since the
publication of U-net [154] as a general biomedical image segmentation network, multiple
approaches have been proposed to improve segmentation capabilities by increasing the
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complexity of the network. To improve the knowledge obtained in the extracted feature
maps, the inclusion of handcrafted imaging features and auxiliary guided classification
branches are examples of some technical innovations that were proposed, motivated by the
chance of increasing the information that could be used to deal with more heterogeneous
tissue patterns.

However, there still exist several issues that have hindered the development of uni-
versal segmentation systems capable of being adopted in clinical routines. The differences
in contouring guidelines between databases is a crucial discussion point when evaluating
lung segmentation approaches. Several models are developed with ground-truth labels
that may not be adequate for every context of analysis. In the LOLA11 data description
section, the statement “... lung segmentation images are not intended to be used as the
reference standard for any segmentation study.” alerted the authors for this issue when
selecting the data sources for their segmentation experiments. In several databases with
available lung masks, these were often obtained using automatic segmentation tools or
previously developed algorithms. In the cases where the main purpose of the database
publication was not related to the segmentation tasks, the criteria for the included patients
were often biased for specific pathological diagnoses, which made it more difficult to obtain
the desired diversity of patients. Moreover, since lung masks are made available as a
supplement, the processes for the contour quality assurance, the agreement rates of the
annotators, and the contouring guidelines are not disclosed in most cases. This problem is
emphasized by the fact that discrepancies related to the inclusion or exclusion of certain
regions, such as trachea, main/secondary bronchi, and tumor regions in training data may
create a substantial impact on the quantitative evaluation and performance comparison of
different segmentation models. From the articles reviewed, it is possible to see that, in gen-
eral, the models developed using privately collected data achieved higher generalization
abilities in comparison with the ones trained using only public data sources. However, the
generalization achieved was still limited, caused by using data from one single healthcare
institution or a single country, which created a significant bias on the data collected.

Considering these facts, universal segmentation tools are needed for the future where
CAD systems are implemented in the clinical routines. Innovation on the modeling fun-
damentals should continue to be investigated, to increase generalization, in order to cope
with the large heterogeneity of tissues caused by the pathological phenomena occurring in
the lung structures. Moreover, the implementation of measures to encourage the sharing
of biomedical data for research purposes would automatically push the challenges that
researchers face while addressing such tasks, which would cause a massive improvement
in the utility of their outcomes for the clinical practice.

3.3. Genotype Prediction

Genotype studies are the fundamental keys in the development of personalized
medicine in lung cancer and they enable the progress of targeted therapies. Furthermore,
gene analysis allows to identify biomarkers that can be used for early cancer detection,
predict the prognosis and the response to the treatment plans, and monitor disease progres-
sion [175]. The most recent ambition for CAD has been to correlate the phenotype captured
by the radiological images and determine the associated genotype. Recent studies have
focused on predicting the EGFR mutation status using CT imaging, since targeted therapies
for this gene already exist.

In total, twenty studies were found after employing the query (“Gene Mutation
Status”) AND (“Prediction”) AND (“Lung Cancer”) in the research databases IEEE Xplore
and PubMed, and excluding the ones that were not based on CT scans. These studies
included semantic, radiomic, and deep features, which were the inputd of statistical,
machine learning, or deep learning models. All of these studies were from 2017 to 2021,
which shows how novel the investigation of this area is.
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3.3.1. Centered on Nodule

Thus far, twelve studies were found, dedicated to study gene mutation status predic-
tion by CT scan analysis taking into account features related to the nodule. Table 6 provides
detailed information of each work dedicated to genotype prediction using nodule features.

EGFR is the most relevant oncogene due to the frequency of occurrence and the
target therapies available for clinical use. For these reasons, several CADs have been
developed for the detection of the mutation status of this gene. Correlations between CT
morphological features and the presence of EGFR mutations were studied and showed
that the EGFR mutation tended to exist in tumors with part-solid GGO [176]. Approaches
based on ML methods were extensively used and showed promising results [177,178]. A
different approach was used to predict EGFR mutation status and to extract high-level deep
features [179–182]; a CNN showed the best classification performance with an AUC of
0.85. Few other works were dedicated to identify the mutation statuses of other oncogenes,
including KRAS [183,184], ALK [185] or even other genes (ERBB2 receptor tyrosine kinase
2 (ERBB2) and tumor protein 53 (TP53)) [186]. Those predictions were performed using
ML-based approaches and considering radiomic features [183–186]. The best performance
results obtained achieved AUC of 0.81 for KRAS, 0.87 for ERBB2 and 0.84 for TP53 [186].

Table 6. Overview of published studies regarding predictive models for gene mutation status based
on nodule features (2017–2021).

Authors Year Dataset Methods Performance Results (%)

Zou et al. [177] 2017 Private
(209 patients) Multivariable analyses EGFR: AUC = 73.7

Cheng et al. [176] 2017 Private
(2146 patients) Weighted mean difference, inverse variance EGFR: OR = 49.0

Li et al. [179] 2018 Private
(1010 patients) Random forest/CNNs EGFR: AUC = 83.4

Koyasu et al. [178] 2019 NSCLC-radiogenomics XGBoost/random forest EGFR: AUC = 65.9

Wang et al. [180] 2019 Private
(844 patients) CNNs EGFR: AUC = 85.0

Zhao et al. [181] 2019 TCIA and private
(879 patients) 3D DenseNet EGFR: AUC = 75.8

Moreno et al. [183] 2021 NSCLC-radiogenomics SCAV with ML/CNN EGFR: AUC = 82.0 (CNN)
KRAS: AUC = 73.9 (CNN)

Zhang et al. [182] 2021 Private
(914 patients)

Machine learning
(SVM/RF/MLP)
Deep learning

(SE-CNN/CNN/1D-CNN/AlexNet/Fine-tuned
VG16/Fine-tuned VGG19)

EGFR:
AUC = 91.0 (SE-CNN)
AUC = 83.6 (SVM)

Le et al. [184] 2021 NSCLC-radiogenomics LR / KNN / RF / XGBoost EGFR: ACC = 77.8
KRAS: ACC = 83.3

Cheng et al. [187] 2021 Private
(670 patients) Pre-trained 3D DenseNet

EGFR:
AUC = 76.0
ACC = 72.5
F-score = 71.3

Zhang et al. [186] 2021 Private
(134 patients) Logistic regression

EGFR: AUC = 78.0
KRAS: AUC = 81.0
ERBB2: AUC = 87.0
TP53: AUC = 84.0

Han et al. [185] 2021 Private
(827 patients) Logistic Regression EGFR: AUC = 75.8

ALK: AUC = 73.9

ACC: Accuracy; AUC: area under the ROC curve; KNN: K-nearest neighbors; LR: logistic regression; MLP:
multilayer perceptron; OR: odds ratio; RF: random forest; SCAV: selective class average voting; SE-CNN: squeeze-
and-excitation convolutional neural network; SVM: support vector machine; XGBoost: extreme gradient boosting.
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3.3.2. More Comprehensive Approaches

Thus far, seven studies were found that took into account at least one feature related
to the structure or disease external to the nodule. Table 7 presents an overview of each
work that used a more comprehensive approach for genotype prediction.

A comprehensive approach is based on the combination of information from nodule
features, other lung structures, and a possible fusion with clinical data. The use of all this
knowledge allows a deep characterization of the pathophysiological changes that occurred,
which could benefit the prediction of the mutational status of the oncogenes. Part of the
models developed on a more comprehensive analysis employed semantic imaging data
annotated by thoracic radiologists that captured extensive regions on the lung and patient
conditions, instead of focusing only on the nodule region. These approaches were based
on radiological qualitative features [71,188,189]. On the other hand, the features from the
CT images can be objective and automatically extracted, such as radiomic or high-level
deep features [190–192]. Additionally, both types of features (semantic features and the
automatically extracted) can be used together by the learning models [50].

The studies that used semantic features combined with the simplest classification
models allowed the assessment of the most relevant lung and nodule features for the
mutation status prediction. The wild type status for EGFR was predicted by the appearance
of emphysema and airway abnormality while the presence of any ground glass component
indicates EGFR mutations [71]. Moreover, gender, smoking history, emphysema, diam-
eter in the mediastinal, TDR, and GGO showed statistical differences between the wild
type group and mutated group of EGFR [188]. The connection between EGFR mutation
and internal air bronchogram, pleural retraction, emphysema, and lack of smoking was
found [189]. The mixing nodule-related features with features from other lung structures
showed to benefit the EGFR mutational status prediction [50].

The KRAS mutation status prediction showed non-consensual results even in these
more comprehensive studies, and in some studies, this oncogene status was not connected
with image features [50,71].

Table 7. Overview of published studies regarding predictive models for gene mutation status based
on nodule and extra nodule features (2017–2021).

Authors Year Dataset Methods Performance Results (%)

Gevaert et al. [71] 2017 Private
(186 patients) Decision Tree EGFR: AUC = 89.0

Cao et al. [188] 2018 Private
(156 patients) Principal component analysis

EGFR:
TPR = 72.3
TNR = 78.5

Rizzo et al. [189] 2019 Private
(122 patients) Univariate analysis EGFR: AUC = 82.0

KRAS: AUC = 67.0

Pinheiro et al. [50] 2019 NSCLC-radiogenomics Gradient tree boosting EGFR: AUC = 74.6

Xiong et al. [190] 2019 Private
(1010 patients) ResNet 101 EGFR: AUC = 83.8

Silva et al. [191] 2021 LIDC-IDRI
NSCLC-radiogenomics Convolutional autoencoder EGFR: AUC = 68.0

Morgado et al. [192] 2021 NSCLC-radiogenomics LR, Elastic Net, Linear SVM, RBG SVM, RF, and
XGBoost

EGFR:
AUC = 73.7 (Linear SVM)
AUC = 73.3 (Elastic Net)
AUC = 72.5 (LR)

AUC: area under the ROC curve; LR: logistic regression; RF: random forest; SVM: support vector machine; TNR:
true negative rate; TPR: true positive rate.
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3.3.3. Discussion and Future Work: Genotype Prediction

Radiogenomic approaches used to classify the mutation status of oncogenes for lung
cancer patients have shown that there are radiomic signatures in CT images that can be
used to distinguish mutant from wild type statuses. Previous studies have also demon-
strated that radiological features, corresponding to descriptive features more familiar for
radiologists, may be associated with tumor biology. Subsequent studies further demon-
strated that the combination of radiomic features and the inclusion of clinical information
strengthens the robustness of predictive models. Furthermore, recent studies that have
taken into consideration features from a larger region of analysis that contained other struc-
tures from the lung appear to have more accurate predictive performances compared to
traditional nodule-based approaches. Since lung cancer development is related to multiple
physiological changes not restricted to the nodule region, it is expected that the studies that
employ comprehensive approaches and consider extra-tumor features from the lung with
the tumor obtain a significant increase in predictive performance. It is crucial to highlight
these results and further investigate the importance of holistic lung cancer characterization
studies, as many complex combinations of morphological, molecular, and genetic alter-
ations occur during lung cancer development that, when taken into account, would allow
the development of more accurate predictive models.

The value of image analysis to reveal biological information will not completely
replace the need for tissue biopsy or liquid biopsy. However, image-driven studies can
provide additional information that is complementary to biopsies. For example, if the
biopsy result of a tumor shows EGFR-wild type, the result may include false negatives
because of intra-tumor heterogeneity. At this time, the learning model can be seen as an
alternative validation tool, as CT imaging provides biological information that can describe
the genotype and phenotype of the whole tumor and project the biological information
onto each pixel of images to reflect intra-tumor heterogeneity. If it predicts the tumor to be
EGFR-mutant, clinicians may need to re-biopsy tissues. In addition, predicting mutation
status by CT imaging helps us to choose the most suspicious tumor for biopsy if multiple
tumors are present in a patient. Finally, the predictive model requires only routinely used
CT imaging, which is a non-invasive technique and easy to acquire throughout the course
of treatment. The CT scan can be performed multiple times along the treatment plan,
allowing to assess the treatment response of the patient. Multiple assessment throughout
the treatment plan may not be possible to perform by biopsy due to its invasive nature.
Therefore, it is worthwhile to develop an image analysis to complement the tissue biopsy
and liquid biopsy for more precise systemic treatment and local therapy.

The radiogenomics field presents a small number of publications that are strongly
limited by the small sizes of the available databases, which are hardly a good representation
of the population affected by lung cancer. In addition, there is a larger number of benign
nodules compared to malignant ones in the available public databases, which hinder the
ability to extract useful features related to malignant cases only. Furthermore, performance
comparisons between models trained and tested with different data do not allow clear and
objective conclusions, and image acquisition protocols and performance validation methods
(i.e., cross-validation) differ from study to study. Still, direct quantitative comparisons
on prediction results are crucial for a clearer understanding of the research evolution,
increasing the need for a large and heterogeneous cohort of patients affected by lung cancer,
as well as methods capable of coping with data heterogeneity. Accordingly, the sharing of
image data among different clinical institutions, but under an uniform protocol to avoid
any inconsistency during data record, is valuable to obtain an unique reliable dataset.

Before translation into clinical practice, multisite trials are also needed to validate
the results obtained in training cohorts on separate independent groups of patients. Since
a model fitting is optimal in the training set used to build the model itself, it is crucial
to validate the model in a large external cohort of patients to obtain more reliable fitting
estimates. External validation will determine the transportability of the model in different
locations consisting of plausibly similar individuals.
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Studying the variability amongst radiologists in multi-institutional cohorts is required
in the near future to further study the robustness of the annotation of semantic features.
Moreover, explainable AI is a field that should be further explored in radiogenomics studies,
as it is important not only to consider black-box models, but also interpretable models
whose predictive decisions can be understood by human observers.

3.4. PD-L1 Expression Prediction

The expression of programmed death-ligand 1 (PD-L1) can be used to predict the
response of immunotherapy for lung cancer patients. Immunohistochemical (IHC) is the
current method employed to detect PD-L1 expression levels, and its limitations related to
the tumor heterogeneity have encouraged the development of more comprehensive and
automatic approaches. In this section, a compilation of the most recent articles addressing
the relationship between PD-L1 expression status and clinical imaging data are presented.
Any published review article dedicated to this subject was found. A total of five articles
were found after employing the query (“PD-L1”) AND (“Lung Cancer”) AND (“CT”) in
the IEEE Xplore and PubMed databases. A summary of the key points regarding each
included article is presented in Table 8.

Some of the studies dedicated to this biomarker used a statistical analysis to assess
the relationship between PD-L1 expression and qualitative features extracted from CT
scans, such as surrounding GGO, air bronchogram, and pleural indentation [193,194].
More powerful methods, such as DenseNet, showed improvements in assessing the PD-L1
expression status [195]. Tian et al. [196] studied the ability to use a combination of clinical,
radiomic, and high-level deep features to predict the expression of PD-L1. However, ML
methods using radiomic features extracted from the nodule showed the best performance
results [197,198]. Yang et al. [199] developed a recurrent neural network (RNN) model and
simple temporal attention (SimTA) modules that take into consideration asynchronous
time-series imaging (radiomic features extracted from lung lesions) and laboratory data
(PD-L1 expression and blood profile). Methods that allow the assessment will be very
helpful in the understanding of the progress of disease and treatment response.

Discussion and Future Work: PD-L1 Expression Assessment

A new era of more precise treatment strategies for lung cancer patients emerged
recently, such as the development of immune checkpoint inhibitors against PD-L1. The
prediction of the expression status of PD-L1 it is intended to anticipate whether immunother-
apy would be a successful treatment strategy or not. For this, the extraction of information
from CT images has enabled the development of non-invasive and more comprehensive
methods to predict the expression of PD-L1 in lung cancer patients.

However, the development of CAD systems capable of extracting quantitative infor-
mation from CT images to assess the PD-L1 expression is a recent research field, and some
issues have been identified as crucial barriers that limit the reliability of these methods. The
lack of public databases has led to the dependence on privately collected data from clinical
institutions, creating a bias on the obtained results of each individual study. Moreover,
this issue makes comparisons over different works almost impossible, since single-center
data do not present a rich diversity of cancer stages, histologic subtypes, and specific CT
findings, which can induce variable correlations only related to the data under analysis.
This challenge is transversal to recent imaging-related AI applications in the clinical field,
and data sharing among multiple institutions must be considered as an urgent solution
that will certainly improve the scientific evolution in these challenging tasks.

Considering the methodologies that have been designed to address this task, the bias
induced by the lack of representative data have shown that simple correlation analyses
among clinical, qualitative, or quantitative extracted features, and the expression of PD-L1,
often result in distinct, and sometimes, contradictory conclusions over different studies.
This issue emphasises the need to explore causality-based methodologies, which would
enable understanding of asymmetric cause–effect relationships between the clinical and
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imaging characteristics of the patient and the outcome result. Developing models capable
of capturing the causal relationships between data will increase their reliability and future
applicability in clinical routines.

Table 8. Overview of published works regarding the prediction of PD-L1 expression status in lung
cancer CT images (2017–2021).

Authors Year Dataset Methods Performance Results (%)

Toyokawa et al. [193] 2017 Private
(394 patients)

Fisher’s exact test
Univariate/multivariate LR (CT features)

PD-L1+ statistical
association:
(p < 0.01)—convergence,
notching, spiculation,
cavitation

Wu et al. [194] 2019 Private
(350 patients)

Univariate/multivariate LR
Fisher’s exact test

Mann–Whitney U test

AUC = 78.3
TPR = 81.1
TNR = 64.1

Zhu et al. [195] 2020 Private
(127 patients)

Univariate/multivariate LR
3D DenseNet

AUC = 78.0
ACC = 77.8
TPR = 77.8
TNR = 77.4

Jiang et al. [197] 2020 Private
(399 patients)

Random forest
Logistic regression

AUC = 97.0 (≥1%)
AUC = 80.0 (≥50%)

Tian et al. [196] 2021 Private
(939 patients) Fully connected classifier AUC = 76.0

Yang et al. [199] 2021 Private
(200 patients) Simple temporal attention (SimTA) module

AUC = 77.0 (SimTA60)
AUC = 80.0 (SimTA90)
AUC = 69.0 (RNN)
AUC = 64.0 (Radiomics)

Jiang et al. [198] 2021 Private
(125 patients)

Random forest
Decision tree

Logistic regression
AdaBoost
Support vector machine

(Internal validation)
AUC = 96.0
TNR = 80.0
TPR = 98.5
(External validation)
AUC = 85.0
TNR = 63.6
TPR = 91.3

ACC: accuracy; AUC: area under the ROC curve; LR: logistic regression; RNN: recurrent neural network; SimTAx :
response prediction x days post immunotherapy; TNR: true negative rate; TPR: true positive rate.

4. Discussion and Conclusions

Currently, a large amount of data are being used by clinicians for diagnoses, which
come from medical images, medical records, lab test results, and genomic data, and more
recently, from wearable, mobile phone data, and environment data [200]. All of these
data could be helpful in understanding and characterizing pathological events. A holistic
approach could help to produce knowledge of why and when a pathological process is
triggered. However, to process this amount of data, and to find the correlations and causal
relations, the most powerful AI-based methods will be needed. Additionally, data from
the liquid biopsy could allow the finding of new biomarkers based on the circulating
elements related to cancer development. Cancer microbiome analyses suggest alternative
perspectives for predictive techniques [201]. Novel biomarkers will help to stratify the
cancer patients and find the best treatment plans for each one [202]. There is a close and
dependent relationship between the use of novel sources of data, knowledge of the elements
involved in cancer development, and innovative predictive approaches to help in clinical
decisions. The current review was focused on CADs based on imaging data, but the future
of the predictive approaches should be based on multimodal analyses.

Another relevant feature of future approaches will be the transparency of the models
in order to allow the clinicians to understand and trust the model’s decision. Current
methods include black-boxes that do not provide an explanation for the prediction ob-
tained. For the next generation of CADs, “more than good” performance on the prediction
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will be needed, as well as the reasons for the prediction, in order to verify that correct
information is used by the model and to extract new knowledge from the interpretation of
the explanations. The ability to find causal relationships between the extracted features
and the predictions is a challenging problem and constitutes a key step toward explaining
model decisions [203,204].

Lack of large datasets remains a problem for healthcare solutions since models cannot
learn how to deal with complex data due to insufficient training samples [205,206]. The
difficult access to the medical data has slowed the progress of CAD development. Some
alternatives have been proposed, such as federated learning; however, this limitation is not
completely solved.

CADs dedicated to lung cancer—even with the current limitations and open challenges
discussed here—are shown to be of great help to clinicians, regarding the multiple decisions
that comprise clinical routines in lung cancer, from the initial evaluation and diagnosis to
the treatment plan. AI-based solutions contribute to a more accurate and quick diagnosis
in the early stages, reducing human error, and decreasing the costs. AI applications in
healthcare could create a new era in cancer management.
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