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ARTICLE

Bayesian Forecasting Utilizing Bleeding Information to 
Support Dose Individualization of Factor VIII

João A. Abrantes1, Alexander Solms2, Dirk Garmann3, Elisabet I. Nielsen1, Siv Jönsson1 and Mats O. Karlsson1,*

Bayesian forecasting for dose individualization of prophylactic factor VIII replacement therapy using pharmacokinetic 
samples is challenged by large interindividual variability in the bleeding risk. A pharmacokinetic-repeated time-to-event 
model-based forecasting approach was developed to contrast the ability to predict the future occurrence of bleeds based 
on individual (i) pharmacokinetic, (ii) bleeding, and (iii) pharmacokinetic, bleeding and covariate information using observed 
data from the Long-Term Efficacy Open-Label Program in Severe Hemophilia A Disease (LEOPOLD) clinical trials (172 severe 
hemophilia A patients taking prophylactic treatment). The predictive performance assessed by the area under receiver op-
erating characteristic (ROC) curves was 0.67 (95% confidence interval (CI), 0.65–0.69), 0.78 (95% CI, 0.76–0.80), and 0.79 
(95% CI, 0.77–0.81) for patients ≥ 12 years when using pharmacokinetics, bleeds, and all data, respectively, suggesting that 
individual bleed information adds value to the optimization of prophylactic dosing regimens in severe hemophilia A. Further 
steps to optimize the proposed tool for factor VIII dose adaptation in the clinic are required.

Hemophilia A is a congenital X-linked bleeding disor-
der caused by a reduced or defective coagulation factor 
VIII (FVIII), and the severity is inversely correlated with the 
amount of functional FVIII an individual is able to produce. 
Patients with severe hemophilia (endogenous plasma FVIII 
activity < 1 IU/dL) experience spontaneous bleeds into the 
joints or muscles, starting typically during the first year of 
age.1 Long-term prophylaxis with replacement FVIII prod-
ucts has been shown to be more effective than on-demand 
(episodic) treatment to prevent bleeding and joint damage. 
However, this strategy is costly and relies on the intravenous 
administration of FVIII products two to three times weekly to 
maintain a trough FVIII activity above 1 IU/dL. This threshold 
is supported by the finding that a greater time spent below 
this level leads to the occurrence of more spontaneous bleeds 

and that patients with moderate hemophilia (1–5  IU/dL)  
bleed less frequently.2,3

In recent years, model-based therapeutic drug monitor-
ing based on individual plasma FVIII activity observations 
has been encouraged as a way to optimize dosing regimens 
in prophylaxis (pharmacokinetic (PK)-based/driven/guided/
tailored prophylaxis).4,5 Briefly, this method uses Bayesian 
estimation to produce individual empirical Bayes estimates 
(EBEs) of PK parameters based on patient information 
(dose; covariate information, e.g., weight; and individual 
plasma FVIII activity measurements) and a prior popula-
tion PK model. The population PK of FVIII activity has been 
extensively studied using a two-compartment model.6–8 
Concerning FVIII activity measurement, two or three blood 
samples are recommended to be collected at least 12 hours 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  In recent years, model-based therapeutic drug 
monitoring using individual pharmacokinetic sam-
ples for dose individualization of factor VIII replace-
ment products in prophylactic treatment has received 
ample attention. However, the large interindividual 
variability in bleeding risk partly limits the value of the 
approach.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  An integrated pharmacokinetic-repeated time-to-event 
model was used in Bayesian forecasting of bleeds to con-
trast different sources of patient information (factor VIII 

activity observations, bleeds and factor VIII activity, and 
bleeds and covariates) in their ability to predict the occur-
rence of bleeds.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Individual bleed information may add value to the opti-
mization of prophylactic dosing regimens in severe hemo-
philia A.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The model-based approach suggested in this work 
considers bleeds, the efficacy end point of interest, and 
can be further developed to individualize dosing regimens.
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apart in the period 4–48 hours postdose.5,9 Among the re-
cent efforts toward PK-based prophylaxis is the creation of 
tools for Bayesian forecasting of PK parameters for dose in-
dividualization specific to hemophilia products, for instance, 
the Web-Accessible Population Pharmacokinetic Service—
Hemophilia (WAPPS-Hemo, McMaster University, Hamilton, 
Ontario, Canada; www.wapps-hemo.org) or the medical 
device myPKFit® (Shire Pharmaceutical Holdings Ireland 
Limited, Dublin, Ireland; www.mypkf​it.com).10,11

Pharmacokinetic-based prophylaxis has been reported 
to be at least as effective and safe as standard prophylaxis 
(based only on body weight), with a similar or lower FVIII 
consumption and fewer infusions (both approaches involve 
rounding up the dose to the full vial).12–17 However, maintain-
ing plasma FVIII activity values above 1 IU/dL is not always 
sufficient to prevent bleed occurrence in all patients, par-
ticularly in those more vulnerable to bleeding or with high 
physical activity.12,18–21 Other measures of exposure have 
been associated with bleeding, for instance, peak levels, 
area under the FVIII activity-time curve, or time above 20 IU/
dL, acknowledging the impact of variability on the individual 
PK and bleeding risk.22 Recently, eight plasma FVIII activity 
targets for patients with certain individual clinical character-
istics, lifestyles, or those undergoing surgery were suggested 
based on expert consensus; however, they are still lacking 
prospective assessment.23 Apart from variability in the PK of 
FVIII activity, procoagulant or anticoagulant factors, physical 
activity levels, and comorbidities may be some of the factors 
behind the high variability observed in bleeding. However, 
thus far model-based individual treatment optimization of 
FVIII products in prophylaxis relies solely on individual PK 
and body size data.

Recently, the relationship between the FVIII activity-time 
profile, covariates, and bleeding patterns in severe hemo-
philia A patients on prophylactic treatment with recombinant 
FVIII was characterized using an integrated PK-repeated 
time-to-event (PK-RTTE) model.24 This model consisted of 
a population PK model describing the longitudinal plasma 
FVIII activity, a repeated time-to-event model describing the 
time to the occurrence of bleeds, and a covariate model de-
scribing the association of covariates with PK and bleeding 
risk. Covariates were found to only explain a minor portion 
of the markedly large unexplained interindividual variability 
in the bleeding hazard.

The aims of this study were to employ the previously 
developed integrated PK-RTTE model in Bayesian forecast-
ing of bleeding events and to contrast different sources of 
patient information in their ability to predict the future oc-
currence of bleeds in severe hemophilia A patients receiving 
prophylactic FVIII replacement therapy.

METHODS

This study was based on observed data collected during 
clinical trials. Initially, EBEs were obtained by Bayesian 
forecasting, employing a PK-RTTE model and alternative 
information scenarios. Second, the EBEs were used to cal-
culate the probability for each patient to have a bleed in 
the upcoming 24-hour period. Third, the individual bleed-
ing probability was compared with the actual occurrence 

of a bleed in the upcoming 24-hour period. Finally, the pre-
dictive performance given by the alternative information 
scenarios was compared with probability threshold-depen-
dent and threshold-independent analyses with graphical 
illustrations.

Data
Dose information, plasma FVIII activity, time of bleeds, 
and covariate data collected during the Long-Term 
Efficacy Open-Label Program in Severe Hemophilia A 
Disease (LEOPOLD) program were used for this evalua-
tion. This three-part comprehensive clinical trial program 
aimed at assessing the PK, efficacy, and safety of a full-
length recombinant human FVIII, BAY 81-8973 (octocog 
alfa, Kovaltry®; Bayer, Berkeley, CA, USA) in patients 
with severe hemophilia A.25–27 The trials LEOPOLD I and 
LEOPOLD II included previously treated patients aged 
12–64 years, and LEOPOLD kids included patients aged 
<  12  years. The individual treatment schedule was sta-
blished at the discretion of the investigator within the 
ranges 20–50  IU/kg 2–3×/week (LEOPOLD I), 20–40  IU/
kg 2–3×/week (LEOPOLD II), and 25–50 IU/kg at least 2×/
week (LEOPOLD kids). In the LEOPOLD I and II trials, the 
individual treatment schedule established at study start 
was maintained throughout the study. In the LEOPOLD 
kids trial, the dosing regimen could be adapted to the in-
dividual needs during the study. In our analysis, the data 
were divided into the following two subgroups: patients 
aged < 12 years, including data from patients enrolled in 
LEOPOLD kids; and patients aged ≥  12  years, including 
data from patients enrolled in LEOPOLD I and LEOPOLD 
II.

A total of 51 patients were < 12 years and were observed 
for a median period of 6.1 months (range 3.8–7.2). Of these, 
28 patients (55%) had at least one bleed, and in total 101 
bleeds were reported during the study (median 1 bleed/pa-
tient, range 0–9). A total of 121 patients were ≥ 12 years and 
were observed for a median period of 12.1 months (range 
3.08–13.1). Of these, 88 patients (73%) had at least one 
bleed, and a total of 532 bleeds were reported (median 2 
bleeds/patient, range 0–33). When assessing the predic-
tive performance, only 530 bleeds were considered as two 
bleeds occurred during day 1, and no forecast was avail-
able for this day. On day 1, 41 patients <  12  years (80% 
of total) and 107 patients ≥ 12 years (88% of total) had at 
least one FVIII observation (Table 1). In all studies, a FVIII 
activity measurement postdose (15–30 minutes) was avail-
able at the start of the observation period, and peak and 
trough samples were collected repeatedly during the course 
of the study to determine FVIII recovery. In addition, dense 
PK sampling was measured during the study in a subset of 
patients.

Furthermore, information concerning 11 covariates was 
available, including patient and study characteristics at 
the study start: age; body weight; body mass index; lean 
body weight (LBW); race; von Willebrand factor; number 
of bleeds in the 12 months prestudy period; previous ther-
apy history (on demand or prophylaxis); number of target 
joints for bleeds; ratio of the number of bleeds in the 12-
month prestudy period to the number of target joints for 

http://www.wapps-hemo.org
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bleeds at study start; and study. More information can be 
found in the PK-RTTE model development study and in the 
Supplemental Text.24

Model
The Bayesian prior model was the integrated population PK-
RTTE model previously developed based on the LEOPOLD 
data.24 The PK component consisted of a two-compartment 
model parameterized in terms of clearances (clearance (CL), 
inter-compartmental clearance (Q)) and volumes of distribu-
tion (central volume of distribution (V1), peripheral volume 
of distribution (V2)). Central CL and V1 were allometrically 
scaled using LBW. Interindividual variability was included 
on CL (30.2 percent coefficient of variation (%CV)), V1 
(15.1%CV), and on residual unexplained variability (63.1% 
CV), with individual random effects �CL

i
, �V1

i
, and ��

i
, respec-

tively. The repeated time to the occurrence of bleeds was 
described in a parametric survival model using a Gompertz 
hazard function. The individual time-varying bleeding hazard 
(hi(t)) was given by:

where 2.96 year−1 and −0.566 year−1 are the scale and the 
shape factors of the Gompertz distribution, respectively; t 
is the time from the start of the study; FVIIIi(t) is the model- 
predicted individual time-varying FVIII activity; 10.2  IU/

dL is the FVIII activity level resulting in half-maximum in-
hibition of the hazard; and �hi (t)

i
 is the individual random 

effect accounting for the individual deviation from the typ-
ical bleeding hazard (136% CV). Covariates were included 
using the full random effects modeling approach28,29 in 
which covariate values were included as observations, 
their distributions modeled as random effects, and the in-
teraction with the model parameters carried out through 
the covariance elements. For further information, see the 
Supplemental Text.

Bayesian forecasting
Empirical Bayes estimates of PK and bleeding hazard 
parameters were obtained through the minimization of a 
maximum a posteriori Bayesian objective function.30 The 
EBEs were estimated for each patient based on the infor-
mation available from the start of the study up to the end 
of each consecutive 24-hour period throughout the study. 
Eventually, each patient had ni sets of EBEs, with ni equal 
to the number of study days for that patient. This procedure 
was repeated for three information scenarios, where infor-
mation observed up to the end of each 24-hour period was 
included in the estimation of the EBEs:

1.	 PK: Only plasma FVIII activity levels were included, 
the EBEs related to PK were estimated, and the 
remaining EBEs were set to zero.

2.	 Bleed: Only the times of bleeding events were in-
cluded, the EBEs related to the bleeding hazard were 
estimated, and the remaining EBEs were set to zero.

3.	 All: Plasma FVIII activity levels and time of bleeding 
events as well as all covariate information were in-
cluded in the estimation of all EBEs.

For Bleed and All, a right-censored observation 
was assumed at the end of each 24-hour period. For all 
scenarios, patients’ dose information, predicted time-vary-
ing FVIII activity, and observed LBW were used during 
forecasting.

Bleeding probabilistic forecast
The individual forecasted probability of having a bleed in 
the upcoming 24-hour period, Pi(bleeding), was calculated 
as follows:

where Si(t) is the probability of not having a bleed between  
t and t + 24 derived from the time-varying hazard hi(t), and t is 
the end of the observation period for estimation of the EBEs.

Doses registered during the forecasted 24-hour period 
were considered in the calculation of hi(t) (Eq. 1) to reflect the 
true individual FVIII activity levels and are therefore reflected 
in Pi(bleeding). However, doses administered between the 
occurrence of a bleed and the end of the corresponding 24-
hour period were considered to be on-demand doses and 
therefore not included in the probabilistic forecast. The fore-
casted number of total bleeds during the study time was 
calculated as the sum of the Pi(bleeding) values over the 
whole study period.

(1)hi(t)=2.96 ⋅e−0.566⋅(t−1) ⋅

(

1−
FVIIIi(t)

FVIIIi(t)+10.2

)

⋅e
�
hi (t)

i

(2)Pi(bleeding)=1−Si(t+24)=1−e− ∫ t+24
t

hi (t)dt

Table 1  Number of patients, PK observations, and reported bleeds 
over time, stratified by age group

Age 
group Month

No. patients 
in the studya

No. PK 
observations No. bleeds

< 12 years 1 51 104 18

2 51 98 15

3 51 64 27

4 50 4 12

5 49 0 13

6 46 20 13

7 2 72 3

8 0 2 0

Total 51 364 101

≥ 12 years 1 121 131 57

2 121 0 57

3 121 18 53

4 120 14 45

5 119 0 58

6 119 152 51

7 119 355 22

8 119 0 44

9 119 0 26

10 119 0 32

11 118 0 34

12 97 18 44

13 2 110 9

14 0 0 0

Total 121 798 532

PK, pharmacokinetics.
aNumber of patients still in the study at the end of the month.
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Variation of Bayesian forecasting observation period
In the default case, the EBE estimation was based on obser-
vations from the start of the study. In addition, observation 
periods including the past 15 days or 1, 2, 3, or 6 months 
for each patient were explored using the Bleed information 
scenario. This step was performed to assess the influence 
of varying the observation period for EBE estimation within 
each patient and learn about the trade-off between a longer 
period (more individual information accumulated for future 
predictions) and the most recent period (the most up-to-
date information).

Predictive performance assessment
The predictive performance was assessed by comparing 
Pi(bleeding), with the observed occurrence of a bleed in the 
forecasted day using the following analyses with graphical 
illustrations. Separation plots were used to illustrate how 
the individual probabilistic forecast matched with the occur-
rence of a bleed.31 In these plots, Pi(bleeding) was plotted in 
ascending order of Pi(bleeding), highlighting the Pi(bleeding) 
associated with the bleed occurrence in the forecasted day. 
In addition, we performed receiver operating characteris-
tic (ROC) analyses to compare the predictive performance 
between scenarios.32,33 An ROC curve that overlaps the di-
agonal line, i.e., the random-classifier baseline, corresponds 
to an uninformative test, equivalent to a random classifier, 
and the closer the ROC curve is to the upper left corner, the 
higher the overall performance of the test. The ROC curves 
were compared using the area under the curve (AUC), cal-
culated with the trapezoidal rule, with higher AUC values 
indicating higher accuracy.34 The optimal threshold with re-
spect to Pi(bleeding) for the discrimination between bleeds 
and no bleeds was determined by the Youden’s J statis-
tics.35 The 95% confidence intervals (CI) of ROC-related 
summary indices were calculated based on a stratified 
bootstrap (2,000 replicates). Furthermore, we performed 
precision-recall (PR) analyses to assess the performance of 
information scenarios when considering precision. The AUC 
calculation of the PR curve was calculated using nonlinear 
interpolation, as suggested by Davis and Goadrich.36

The individual prediction error (PEi) for the ith patient was 
calculated as: 

where Bleedforecast is the number of forecasted bleeds and 
Bleedobserved is the number of observed bleeds during the 
whole individual study period.

Software
Bayesian forecasting was performed using NONMEM version 
7.4.3 (ICON Development Solutions, Ellicott City, MD), and 
Perl-speaks-NONMEM version 4.8.1 was used for NONMEM 
run control.37,38 Data management and graphical analyses 
were performed using R 3.5.1 (http://www.rproj​ect.org/).

RESULTS
Bayesian forecasting
The median forecasting period for patients aged < 12 years 
was 183 days (range 113–217 days), and for patients aged 
≥ 12 years was 365 days (range 93–394 days). The values of 
�
CL
i

 and �hi (t)
i

 over time, obtained through Bayesian forecast-
ing, are represented in Figure 1.

For the information scenario PK, �CL
i

 values were zero 
at the start of the study and changed when PK observa-
tions became available, and �hi (t)

i
 values were set to zero 

because no information about bleeds was provided. In con-
trast, when bleeds were considered, �CL

i
 values were set to 

zero and �hi (t)
i

 values were zero at the start of the study and 
increased when a subject had a bleed or decreased other-
wise. For All, �CL

i
 and �hi (t)

i
 were informed by covariates, PK, 

and bleed data from the start of the study.

Bleeding probabilistic forecast
The observed and model-predicted plasma FVIII activity, 
time of bleeds, and forecasted Pi(bleeding) for the three 
information scenarios for three illustrative patients through-
out the first 12 weeks is shown in Figure 2.

The probability of having a bleed on a certain day is in-
versely correlated with the plasma FVIII activity predicted 
for that same day, as expected given the FVIII activity– 

(3)PEi=Bleedforecast−Bleedobserved

Figure 1  Longitudinal changes in �CL
i

 (left) and �hi (t)
i

 (right) when updated on a 24-hour basis based on each information scenario from 
the start of the study. Plots for �V1

i
 and ��

i
 are available in Supplemental Material Figure S1.
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hazard relationship defined in the Bayesian prior model. At 
the start of the study, the bleeding probabilities associated 
with PK or Bleed are similar, provided that no bleeds oc-
curred. Throughout time, the forecasted probability given 
by PK remains relatively constant, regardless of the occur-
rence of bleeds, and is a function of dosing schedule and 
PK parameters, with the latter reevaluated when PK mea-
surements are available. In contrast, the probability using 
only bleed data tends to decrease provided that no bleeds 
occurred (patient 1, patient 2 before bleed on day 49, patient 
3 before bleed on day 7) or to increase if a patient has a 
bleed (patient 2 after day 49 and patient 3 after bleed on day 
7). Moreover, the forecast based on Bleed tends to become 
closer to the forecast based on all information throughout 
time, and both tend to decrease over time, provided that no 
bleeds occur.

Predictive performance
The total number of observed bleeds during the evaluation 
period was 101 bleeds for the group aged < 12 years, and 
530 bleeds for the group aged ≥ 12 years. At a population 
level, the forecasted number of bleeds during the same pe-
riod for the group aged < 12 years was 66 (PK), 96 (Bleed), 
and 90 bleeds (All), and for the group aged ≥ 12 years was 
218 (PK), 461 (Bleed), and 500 bleeds (All). The difference 
in Pi(bleeding) between days when bleeds occurred and 
no-bleed days was higher for Bleed and All than for PK, 
as represented in Figure 3. In addition, the occurrence of 
bleeds was associated with a sharper change in Pi(bleeding) 
for the Bleed and All scenarios when compared  with PK, 
which was observed for both age groups.

The ROC curves indicated Bleed and All superior to PK, 
with the former having higher true positive rates and lower 

Figure 2  Observed and model-predicted plasma FVIII activity (upper panels), forecasted bleeding probability (Pi(bleeding)) (lower 
panels), and observed time of bleeds for three illustrative patients with no bleeds (patient 1), one bleed (patient 2), and multiple bleeds 
(patient 3). FVIII, factor VIII.
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false positive rates at all cut-off values (Figure 4). For the 
group aged < 12 years, the AUC for PK was 0.67 (95% CI, 
0.61–0.72), being slightly lower than for Bleed and All with 
AUC 0.74 (95% CI, 0.69–0.79) and 0.77 (95% CI, 0.73–0.81), 
respectively (Table 2). For the group aged ≥ 12 years, the dif-
ference between scenarios was more evident with the AUC 
for PK of 0.67 (95% CI, 0.65–0.69) being considerably lower 
than for Bleed, 0.78 (95% CI, 0.76–0.80). Bleed and All had 
similar performances (Table 2).

A similar trend was found in the PR analysis (Figure S2), 
with the information scenarios All and Bleed being superior 

to PK, with PK closer to the performance of a random clas-
sifier. For the group aged <  12  years, the AUC of the PR 
curves were 0.023 (PK), 0.030 (Bleed), 0.033 (All), and 0.011 
(random classifier). For the group aged ≥ 12 years, the AUC 
of the PR curves were 0.028 (PK), 0.064 (Bleed), 0.064 (All), 
and 0.012 (random classifier).

Variation of Bayesian forecasting observation period
The prediction error related to the forecast of bleeds for the 
whole study while varying the observation period is shown 
in Figure 5 for the Bleed scenario (chosen given the minor 

Figure 3  Separation plots for the bleeding probabilistic forecast Pi(bleeding) for the information scenarios PK, Bleed, and All (note 
difference in y-axis scale). Bleed events are represented with red vertical bars, and no-bleed events are represented with gray vertical 
bars. Since the occurrence of bleeds was rare, vertical bars corresponding to bleed events were emphasized. The solid black line 
represents the values of Pi(bleeding) associated with bleeds (red vertical bars) or no bleeds (gray vertical bars), and the black vertical 
dashed lines represent the 25th and 50th percentiles of the bleeding event data (red vertical bars). More red vertical bars located on 
the right-hand side of the plot indicates better predictive performance.
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Figure 4  Receiver operating characteristic curves for the ability of each information scenario to predict the occurrence of bleeds. The 
dashed line is the random-classifier baseline.
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performance differences when compared with All). The 
separation plots and results of the ROC analyses can be 
found in Figures S3 and S4 and Table S1.

Bleeds in patients with a low bleeding risk were over-
predicted, improving marginally when longer observation 
periods were used to estimate the EBEs. In contrast, bleeds 
in patients with a high bleeding risk were underpredicted and 
longer observation periods were associated with improved 
forecasts. In these patients, the estimation of the EBEs was 
informed mostly by observations in the previous 60–90 days. 
Concerning the bias observed, it is important to recognize 
that any good model would underpredict bleeding values 
higher than the median number of bleeds and overpredict 
values lower than the median as a result of η-shrinkage. The 

prediction of bleeds in patients with a moderate bleeding 
risk was unbiased, and an observation period longer than 
60 days did not contribute substantially with information to 
improve the bleeding forecast.

DISCUSSION

Pharmacokinetic-based dosing with sparse plasma FVIII ac-
tivity observations has been proposed as a tool to optimize 
prophylactic dosing regimens in hemophilia A. In this study, 
we assessed the use of a PK-RTTE model for Bayesian 
forecasting of bleeding events and compared the ability to 
predict future bleeds using different sources of patient infor-
mation, namely, PK observations, bleeds, or all information 

Table 2  Summary statistics of the receiver operating characteristic analyses and the optimal thresholds

 

< 12 years old ≥ 12 years old

PK Bleed All PK Bleed All

Threshold (95% CI) 0.0095 
(0.0064–0.010)

0.0079 
(0.0061–0.017)

0.0086 
(0.0059–0.012)

0.0058 
(0.0051–0.0070)

0.011 
(0.0079–0.015)

0.014 
(0.010–0.015)

AUC (95% CI) 0.67 (0.61–0.72) 0.74 (0.69–0.79) 0.77 (0.73–0.81) 0.67 (0.65–0.69) 0.78 (0.76–0.80) 0.79 (0.77–0.81)

Sensitivity (95% CI) 0.47 (0.39–0.81) 0.73 (0.53–0.90) 0.73 (0.64–0.86) 0.58 (0.47–0.68) 0.69 (0.62–0.78) 0.69 (0.65–0.77)

Specificity (95% CI) 0.81 (0.46–0.87) 0.65 (0.53–0.84) 0.71 (0.60–0.76) 0.68 (0.59–0.80) 0.73 (0.65–0.81) 0.76 (0.69–0.78)

J 0.28 0.38 0.44 0.26 0.43 0.45

AUC, area under the receiver operating characteristic curve; CI, confidence interval; J, Youden’s J statistics.

Figure 5  Percentiles of the prediction error (PEi) while varying the Bayesian forecasting observation period length, stratified by 
bleeding risk and age group for the scenario Bleed. Bleeding risk was categorized as low risk if patients did not bleed during the study 
(< 12 years, N = 23 patients; ≥ 12 years, N = 33); moderate risk if 1–2 bleeds were observed in the group aged < 12 years (N = 11) or 
1–4 bleeds in the group aged ≥ 12 years (N = 49), and high risk if ≥ 3 bleeds were observed in the group aged < 12 years (N = 17) or ≥ 5 
bleeds in the group aged ≥ 12 years (N = 39).
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available. The PK data, time of bleeds, and covariates were 
those observed in children and adults during the LEOPOLD 
studies. The Bayesian forecasting of bleeds based on indi-
vidual daily bleeding information was found to perform better 
than forecasting based on individual PK information only.

The forecasted number of bleeds during the study 
was lower for PK than for the other approaches because 
no bleeding information was used. The distribution of the 
number of observed bleeds was positively skewed (median 
2 bleeds, mean 3.7 bleeds), and the bleeding hazard was 
modeled using a log-normal distribution. Therefore, in the 
absence of bleeding information, the typical hazard was 
translated into the median number of bleeds, which resulted 
in an underprediction of the number of bleeds in patients 
with a high bleeding risk. Separation plots can be used to 
compare predictors of events without having to consider 
probability thresholds. In these plots, the information sce-
nario Bleed had a similar performance when compared with 
All, and both were superior to PK. The same conclusion 
can be drawn from the ROC analysis with AUC values for 
Bleed being substantially higher than PK and only slightly 
worse than All. We also performed a PR analysis because 
the ROC analysis could be misleading in the presence of an 
imbalanced class distribution, as the number of no bleeds 
outweighs considerably the number of bleeds (bleeds oc-
curred during only ~ 1% of the forecasted days).39 The PR 
analysis was in agreement with the ROC analysis with re-
spect to the ranking of the approaches. However, the PR 
analysis, which specifically focus on precision, revealed a 
low precision for all information scenarios. This is expected 
because the occurrence of a bleed has a sustained effect 
on Pi(bleeding), which remains above the optimal probability 
thresholds, thus leading to many false positive values.

Overall, the minor improvement of including all information, 
compared with only including bleeds, confirms the previous 
observation that covariates are weak predictors of the occur-
rence of bleeds.24 Past observed bleeding information driving 
the forecast of future bleeds agrees with the theoretical 
mathematical expectations because the unexplained interin-
dividual variability on the bleeding hazard is large (136% CV). 
In addition, it agrees with clinical expectations because the 
clinical phenotype between patients with severe hemophilia A 
is known to be variable, and patients may respond differently 
to identical plasma FVIII activity levels.12,18–21 Information 
about individual PK is relevant to understand intraindividual 
fluctuations in the bleeding hazard, which might be useful to 
adapt dosing regimens to the patient’s needs (e.g., during a 
period of more intense physical exercise). According to this 
evaluation, bleed information may be more informative than 
PK to characterize the interpatient bleeding risk. However, 
both individual PK and bleeding risk may be necessary to 
decide a suitable course of action with respect to the future 
individualization of dosing regimens.

According to our results, the longer the observation pe-
riod for EBEs estimation the better, with no advantage to 
use only the most up-to-date information. Patients with a 
high bleeding risk were found to require shorter observa-
tion periods to inform the EBEs, namely, between 60 and 
90  days prior to the EBEs estimation. In contrast, patient 

with no bleeds had a much slower learning curve and re-
quired longer observation periods. However, these results 
should be interpreted with caution because in the group 
aged < 12 years the information was limited (lower number of 
bleeds and shorter observation periods) for the assessment 
of the relative merits of the different observation periods.

One limitation of this study is that the individual observed 
PK, bleed, and covariate data used for Bayesian forecasting 
were those included in the development of the prior model 
used in the forecast. The variability found in a real-world 
scenario might be higher than in the LEOPOLD clinical trials. 
However, using the same set of data decreases bias related 
to an inappropriate structural or stochastic prior model and 
provides a realistic comparison of the bleed prediction be-
tween information scenarios. The methodology applied in 
our study, using maximum a posteriori Bayesian estimation, 
to estimate the individual PK parameters using the informa-
tion scenario PK was similar to the existing tools available for 
PK-based FVIII dose individualization employing parametric 
methods. However, a limitation of our evaluation is that the 
number of PK samples and sampling times available during 
the LEOPOLD studies did not correspond necessarily to the 
2–3 samples recommended for FVIII individual PK profiling 
used in PK-based prophylaxis.5,9 On some occasions, only 
one sample was available, whereas on others more samples 
were available. In addition, the treatment with FVIII in the 
LEOPOLD studies was efficient, and patients were overall 
well protected against bleeds by allowing the dose to vary 
between patients where the individual PK (known from other 
products) and bleeding phenotype were indirectly consid-
ered. Therefore, an extrapolation of our findings to PK-based 
prophylaxis or when considering other dosing regimens has 
to be done with caution.

Several aspects related to our evaluation deserve fur-
ther study. This work focuses on forecasting bleeds. The 
translation of the findings to dose optimization through 
model-based bleed-guided and PK-guided prophylaxis in 
the clinic requires further exploration. The magnitude of the 
individual dose change in the case of dose adaption needs 
to be defined, and the identification of the threshold value 
of the ROC curves for individual dose adaptation can be 
expanded to include an efficiency criterion, accounting for 
the false-positive and false-negative cost.40 In addition, 
information about covariates may have the potential to im-
prove the predictive performance of the Bleed approach, 
in particular, when a patient is observed for the first time, 
and deserves further exploration. Finally, the model used in 
this study assumed a bleeding hazard that decreases over 
time, likely because of a treatment or trial effect, and how 
the information strategies perform in the presence of a time- 
independent hazard merits further analysis.

In this study, we evaluated if an integrated PK-RTTE model 
could be used to predict the occurrence of future bleeds 
using past observed data from clinical trials. Bayesian fore-
casting using such a model can be applied to other studies 
involving hemophilia A patients to adapt dosing regimens 
and to further assess the importance of different sources of 
patient information to include during Bayesian forecasting. 
In addition, the approach proposed in this study, through the 
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calculation of the individual bleeding probabilistic forecast 
based on the individual’s information about bleeds, could 
be implemented in a platform providing patients and clin-
ics with the prospective time-varying risk of having a bleed. 
Furthermore, this platform could alert the patient to consult 
the treating physician for a possible change in the dosing 
regimen in case the forecasted bleeding probability is above 
a certain probability threshold for a certain time period.

In conclusion, we developed an integrated PK-RTTE 
approach for bleeding forecast considering the individual 
historical bleeding pattern under prophylactic treatment with 
a recombinant FVIII product. In addition, this work presents 
promising results suggesting that individual bleeding infor-
mation adds value to the optimization of prophylactic dosing 
regimens in severe hemophilia A. Further steps to optimize 
the proposed tool for FVIII dose adaptation in the clinic are 
required.
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