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Abstract

Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy
products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to
septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive
immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-
17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore,
these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the
secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22
has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of
IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our
findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic
and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ
damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of
LM or protection of tissues from pathogen- or immune-mediated damage.
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Introduction

Listeria monocytogenes (LM) is an intracellular, gram-positive

bacterium found in soil and water and is a common contaminant

of processed meats and dairy products. Ingestion of LM results in

translocation of the bacterium through the intestinal epithelial

layer. Ultimately, LM disseminates through the blood, infecting

the spleen and liver. LM infection can cause septicemia and

meningitis in immunocompromised individuals, as well as

spontaneous abortions in pregnant women [1]. In the mouse

model of mucosal intra-gastric (i.g.) infection, LM is not able to

efficiently adhere to the epithelial layer and is thus not able to

easily pass through the intestine [1]. This can be overcome by

infecting mice through the i.g. route with high doses of LM [2,3,4]

or using the systemic intravenous (i.v.) route of infection [4]. The

systemic model of infection is widely used to study immune

responses to LM.

Both innate and adaptive immune responses to LM are

important for clearance of the pathogen and for protection against

re-exposure. Many cell types, cytokines/chemokines, and effector

molecules contribute to these immune responses. Although it is

known that the IL-12/IFN-c pathway is important for activation

of macrophages and clearance of LM, the recently discovered IL-

23 cytokine pathway has not been extensively studied during LM

infection. IL-23, a member of the IL-12 family of cytokines, shares

a p40 subunit with IL-12, but is also comprised of a unique p19

subunit [5,6]. IL-23 is secreted by macrophages and dendritic cells

in response to invading pathogens, including LM [7,8]. Although

IL-23 is in the IL-12 family, IL-23 does not have the same

functions as IL-12. Instead, IL-23 expands and maintains IL-17

secreting T cells, which are known to produce IL-17A, IL-17F,

and IL-22 [9]. IL-23 has been described to play a protective role

against extracellular or vacuole-bound pathogens such as Klebsiella

pneumoniae [10,11], Citrobacter rodentium [12,13], and Salmonella

enterica [14,15], as well as against infections with Toxoplasma gondii

[16,17] and Candida albicans [18,19,20]. We have recently shown

that IL-23 is required for the production of IL-17A and IL-17F

during LM infection and that the IL-23/IL-17 axis is required for

survival and clearance of LM from the spleen and liver [21]. We,

and others, have also established that the IL-23/IL-17 axis is

required for the optimal recruitment of neutrophils to the liver, but

not the spleen, during a primary LM infection [21,22]. The

mechanism by which IL-23 offers protection against LM in the

spleen, however, remains unknown.

IL-23 can also directly induce the production of IL-22 from T

cells, natural killer (NK) cells, NK T cells, and lymphoid tissue

inducer (LTi) cells [13,23]. IL-22 has the ability to induce the

production of antimicrobial peptides [9,24,23,25], as seen in
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Citrobacter rodentium infection [13] and Klebsiella pneumoniae infection

[26]. These antimicrobial peptides can reduce bacterial burdens

and protect the host from death. In addition to inducing the

production of antimicrobial peptides, IL-22 can also protect tissues

against damage. In the Klebsiella pneumoniae model, production of

IL-22 was able to protect lung tissue [26]. IL-22 can also protect

hepatocytes against acute liver inflammation induced by ConA

[27].

A previous publication presented data showing that IL-22

deficient and wild-type C57Bl/6 (B6) mice did not differ in LM

burdens in the spleen or liver at day 3 post i.v. infection [27].

However, that study did not investigate the clearance of LM in IL-

22 deficient mice during later time-points or during secondary

immune responses. Our data using IL-23 deficient mice has shown

that increased bacterial burdens are not evident in these mice at

early time-points post infection. IL-23 deficient mice only begin to

show increased bacterial burdens at day 5 post infection, when

compared to B6 mice [21]. These facts would suggest that IL-22

deficient mice might only show increased bacterial burdens at later

time-points post LM infection. Furthermore, the IL-23/IL-22 axis

has been predominantly shown to provide protection at mucosal

surfaces, suggesting that this axis may be important during oral

LM infection. The current study investigates the production of IL-

22, and the role that IL-22 plays during primary and secondary

LM infection, using both systemic and mucosal routes of infection.

Materials and Methods

Ethics statement
Animal studies were performed under the approval of the

Institutional Animal Care and Use Committee at the University of

North Texas Health Science Center. The Office of Laboratory

Animal Welfare Assurance Number for The University of North

Texas Health Science Center Animal Facility is A3711-01. All

efforts were made to minimize suffering to the animals.

Mice
B6 mice were purchased from Charles Rivers/National Cancer

Institute. IL-23p19 knock out (KO) and IL-22 KO mice

backcrossed at least 8 times on a B6 background (Taconic) have

been previously described [28,29], and were bred at the University

of North Texas Health Science Center. Age and gender matched

male or female mice between 5 to 12 weeks of age were used for

each experiment. Mice were housed with food and water ad

libitum in sterile microisolator cages with sterile bedding at the

University of North Texas Health Science Center American

Association for the Accreditation of Laboratory Animal Care

accredited animal facility.

Listeria monocytogenes infections and quantification of
bacterial burden

LM 10403s was grown on brain-heart infusion (BHI) agar plates

(BD Bacto) and virulent stocks were maintained by passage

through B6 mice. To determine bacterial burdens in mouse

intestines during mucosal infection, streptomycin resistant LM

(LM/strepr) was used. For infection of mice, log-phase cultures of

LM or LM/strepr were grown in BHI broth, washed twice, and

diluted in PBS to the desired concentration. For primary systemic

infections, unless otherwise stated, mice were i.v. injected with

,16104 LM via the lateral tail vein. For secondary systemic

infections, mice were i.v. infected with ,16103 LM, then allowed

six weeks to recover and clear the primary infection before being

i.v. re-infected with ,16106 LM. For primary mucosal infections,

unless otherwise stated, mice were i.g. infected with ,16107 LM/

strepr via the esophageal cavity using a gavage needle. For

secondary mucosal infections, mice were i.g. infected with

,16107 LM/strepr, then i.g. re-infected six weeks later with

,16108 LM/strepr. To determine LM colony forming units

(CFUs), spleens and livers from infected mice were homogenized

in sterile double distilled H2O. Small intestines from i.g. infected

mice were extracted by cutting below the stomach and above the

cecum, flushed with PBS to remove debris, and homogenized in

sterile double distilled H2O. Serial dilutions (1:10) of the tissues

were prepared and 50 ml of each dilution was plated on BHI or

BHI/strep agar plates. After overnight incubation at 37uC,

colonies were counted, and LM CFUs recovered from each tissue

were calculated.

In vitro procedures
Mouse serum was obtained by removing the supernatant from

whole blood following centrifugation at 14,000 rpm for 30 min.

For experiments using splenocytes for culture or direct ex vivo

staining, spleens were homogenized with frosted microscope slides

and red blood cells were lysed in Tris-ammonium chloride.

Splenocytes were cultured in complete RPMI 1640 medium

supplemented with 10% fetal calf serum (Atlanta Biologicals), L-

glutamine, vitamins, penicillin/streptomycin, nonessential amino

acids, and sodium pyruvate (all supplements from Invitrogen-

Gibco). Splenocytes were cultured in the presence of heat-killed

LM (HKLM) with a multiplicity of infection of 50:1 or 10 ng/mL

IL-23. Liver leukocytes were prepared as previously described

[30]. Isolation of liver leukocytes was performed after resuspend-

ing cell pellets obtained from homogenized livers in 35% Percoll

medium and layering the cells upon 67.5% Percoll medium. The

gradient was centrifuged at 6006 g for 20 minutes, and low-

density cells were collected from the gradient interface. Cell

culture was performed at 37uC in humidified air containing 5%

CO2.

IL-22 ELISA
ELISAs were performed on serum and filtered, cell-free

splenocyte supernatants. Quantification of IL-22 was performed

using antibodies from PeproTech. Cytokine levels were deter-

mined by comparison with standard curves generated from

recombinant IL-22 (PeproTech) and were analyzed using a Biotek

EL808 spectrophotometer.

Annexin V staining and alanine aminotransferase assays
Splenocytes and liver leukocytes were incubated at 4uC for

15 min with saturating amounts of CD45.2 FITC (BD Pharmin-

gen) and Fc block (BD Pharmingen). Cells were then resuspended

in binding buffer (BD Pharmingen), and Annexin V PE (BD

Pharmingen) were added. Data was acquired and analyzed within

an hour of staining using a Beckman Coulter Cytomics FC500.

Serum alanine aminotransferase (ALT) levels were quantified by

colorimetric ALT enzyme assays (Biotron Diagnostics Inc.)

according to manufacturer’s directions.

Immunohistochemistry and microscopy
Immunohistochemistry was performed as previously described

[31]. Briefly, 5-mm sections of frozen spleens and livers from LM

infected B6 and IL-22 KO mice were made using a Leica CM

1850 cryostat. Antibody combinations used were purified anti-

Ly6G (1A8) (BD Pharmingen) and Difco Listeria O polyserum

(Fisher Scientific). Anti-Ly6G antibody was developed with anti-

rat Alexafluor 594 (Molecular Probes) and Difco Listeria O

polyserum was developed with anti-rabbit Alexafluor 488 (BD

IL-22 and Listeria monocytogenes Infection
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Pharmingen). Prolong Gold antifade reagent (Invitrogen) and a

cover slip were added to the stained tissues. To view the stained

tissue, an Olympus Ax70 fluorescence microscope was used and

images were captured with an Olympus DP70 digital camera.

Statistical analysis
Analyses of variances (ANOVAs) were conducted on the data

where appropriate. Bonferroni t-tests and Tukey-Kramer analyses

were used for post-hoc analyses. LM CFU data was log

transformed prior to analysis, and is represented as such in the

figures. Log rank analysis was used to analyze survival curves. A p

value of 0.05 or less was considered significant in all cases.

Results

LM induces IL-22 production during systemic infection
IL-22 has previously been shown to play a protective role during

certain mucosal bacterial infections [26,13]. To determine the role

of IL-22 during systemic infection, we first sought to determine if IL-

22 is produced during LM infection. Serum and spleens were

harvested from uninfected (UI) B6 mice or B6 and IL-23p19 KO

mice that were i.v. infected with LM for 3 days. The concentration

of IL-22 was measured in serum and splenocyte culture superna-

tants stimulated with or without HKLM or IL-23. LM infection

induced IL-22 production in B6 mice in both the serum and the

spleen as compared to UI B6 mice. In IL-23p19 KO mice, the

amount of IL-22 was reduced in the serum and splenocyte culture

supernatants with or without HKLM compared to LM infected B6

mice (Fig. 1A, B, and C). Therefore, LM infection induces the

production of IL-22, and the production of IL-22 is dependent on

IL-23 during a primary systemic i.v. infection. However, there were

no differences in IL-22 production from IL-23 stimulated

splenocytes from infected B6 and IL-23p19 KO mice (Fig. 1D).

This suggests that the cells capable of producing IL-22 are still

present in IL-23p19 KO mice, but are not able to secrete IL-22 in

the absence of IL-23. A similar pattern of IL-22 secretion was

observed at days 5 and 7 post infection (p.i.) in serum and splenocyte

supernatants, as well as in the liver (data not shown).

IL-22 is not required for survival during systemic LM
infection

Since IL-22 is being produced during LM infection and is

regulated by IL-23, we next wanted to determine if IL-22 has a

protective role during a systemic LM infection. To this end, B6,

IL-23p19 KO, and IL-22 KO mice were i.v. infected with

,3.56104 LM for a survival study. As previously established [21],

IL-23p19 KO mice were more susceptible than B6 mice (Fig. 2).

However, there were no differences in survival between B6 and IL-

22 KO mice, and no differences in weight loss (data not shown)

during LM infection, suggesting that IL-22 is not required for

survival during a systemic i.v. LM infection. To determine if IL-22

was important during a high-dose infection, B6 and IL-22 KO

mice were i.v. infected with ,105 LM. By day 4 p.i., 8/9 B6 and

9/9 IL-22 KO mice had succumbed to the infection. Collectively,

these data indicate that although IL-23 is required for protection

against i.v. LM infection, IL-22 is dispensable.

LM induces IL-22 production during mucosal infection
During the natural route of human infection, LM is ingested

from contaminated meats and dairy products. LM is able to move

Figure 1. The production of IL-22 during primary systemic LM infection requires IL-23. Serum and spleens were harvested from
uninfected B6 mice (UI B6) and B6 and IL-23p19 KO mice i.v. infected with ,16104 LM for 3 days. The concentration of IL-22 was measured using
ELISA in serum (A) and overnight splenocyte supernatants from un-stimulated (B), HKLM stimulated (C), or IL-23 stimulated (D) cultures. One-way
ANOVAs detected significant effects of mouse strain (p#0.05). An * indicates a significant difference from infected B6 (p#0.05). These data are
representative of two independent experiments. All data are expressed as the mean + SEM (n = 5/group).
doi:10.1371/journal.pone.0017171.g001

IL-22 and Listeria monocytogenes Infection
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through the intestinal epithelial layer and is transported by the

circulating blood to the spleen and liver. To mimic the route of

infection in humans, we utilized an oral mucosal model of

infection in mice. To determine if IL-22 production requires the

presence of IL-23 during mucosal LM infection, serum and spleens

were harvested from B6 and IL-23p19 KO mice that were i.g.

infected with LM/strepr for 3 days. The concentration of IL-22

was measured in the serum and splenocyte culture supernatants

stimulated with or without HKLM or IL-23. In IL-23p19 KO

mice, the amount of IL-22 was reduced in the serum and

splenocyte culture supernatants with or without HKLM compared

to LM infected B6 mice (Fig. 3A, B, and C). Therefore,

production of IL-22 is dependent on IL-23 during a primary

mucosal LM infection. However, there were no differences in IL-

22 production in splenocytes re-stimulated with IL-23 (Fig. 3D).

This again suggests that the cells capable of producing IL-22 are

still present in IL-23p19 KO mice, but are not able to secrete IL-

22 in the absence of IL-23.

IL-22 is not required for survival during mucosal LM
infection

To discern if IL-22 was required for survival during a mucosal

LM infection, mice were i.g. infected with ,16108 LM/strepr and

observed for 12 days. Weights and clinical signs of illness (posture

and condition of fur) of these mice were also observed. There were

no differences in survival (Fig. 4), weight (data not shown), or

clinical signs of illness (data not shown) between B6 and IL-22 KO

mice, suggesting that IL-22 production is not required for survival

during a primary mucosal LM infection.

IL-22 is not required for clearance of LM during infection
Although no differences were observed in overall survival

between B6 and IL-22 KO mice, IL-22 could still be impacting the

kinetics of clearance of LM from the spleen or liver during

infection. To test this possibility, B6 and IL-22 KO mice were

Figure 2. IL-22 is not required for survival during a systemic LM
infection. B6, IL-22 KO, and IL-23p19 KO mice were i.v. infected with
,3.56104 LM for a survival study. These data are combined from four
independent experiments. A log rank analysis detected a significant
difference between the survival curves of IL-23p19 KO mice and both B6
and IL-22 KO mice, (p#0.05), (B6 n = 24; IL-22 KO n = 24; IL-23p19 KO
n = 9).
doi:10.1371/journal.pone.0017171.g002

Figure 3. The production of IL-22 during primary mucosal LM infection requires IL-23. Serum and spleens were harvested from B6 and IL-
23p19 KO mice i.g. infected with ,16107 LM/strepr for 3 days. The concentration of IL-22 was measured using ELISA in serum (A) and overnight
splenocyte supernatants from un-stimulated (B), HKLM stimulated (C), or IL-23 stimulated (D) cultures. A two-way ANOVA detected significant effects
of mouse strain (p#0.05). An * indicates a significant difference from B6 (p#0.05). These data are representative of two independent experiments. All
data are expressed as the mean + SEM (n = 4/group).
doi:10.1371/journal.pone.0017171.g003

IL-22 and Listeria monocytogenes Infection
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infected with LM and bacterial burdens were determined in the

spleen and liver. There were no differences in LM CFUs between

B6 and IL-22 KO mice at days 1, 3, 5, and 7 p.i. (Fig. 5A, B, C,
and D). We next wanted to confirm that IL-23, but not IL-22, is

required for bacterial clearance from the spleen and liver. To this

end, B6, IL-23p19 KO, and IL-22 KO mice were infected with

LM and CFUs were determined at day 5 p.i. As previously

published [21], IL-23p19 KO mice had higher CFUs than B6

mice. IL-23p19 KO mice also had higher CFUs than IL-22 KO

mice, and there was no statistically significant difference between

B6 and IL-22 KO mice (Fig. S1). These data suggest that IL-22 is

not required for clearance of LM from the spleen or liver during a

systemic LM infection.

To determine the impact of IL-22 on bacterial clearance during

a mucosal LM infection, B6 and IL-22 KO mice were i.g. infected

with LM/strepr and spleens, livers, and intestines were harvested

at days 1 and 3 p.i. There were no LM CFU differences between

B6 and IL-22 KO mice at days 1 and 3 p.i. (data not shown), again

suggesting that IL-22 is not required for clearance of LM during

mucosal infection.

IL-22 is not required for protection of tissues during LM
infection

While our data suggest that IL-22 is not required for bacterial

clearance during systemic or mucosal LM infection, other models

have found that IL-22 protects cells from apoptosis, thereby

limiting tissue damage [26,27,32,33]. However, the ability of IL-

22 to prevent apoptosis and tissue damage during LM infection is

unknown. The peak of apoptosis during LM infection is day 2 p.i.

[34], therefore we chose this time-point to investigate the

requirement of IL-22 for protection of splenocytes and liver

leukocytes from apoptosis. As evident in Fig. 6A, B and C, LM

infection induced a significant increase in apoptosis in splenocytes.

However, there were no differences in the overall percentage of

cells undergoing apoptosis in the spleens (Fig. 6A and C) of B6

and IL-22 KO mice at day 2 post i.v. infection. In addition, there

were no differences in the percentage of non-hematopoietic

epithelial cells (CD45.2-) undergoing apoptosis in the spleens of B6

and IL-22 KO mice during LM infection (Fig. 6B). Likewise,

although LM infection induced an increase in apoptosis in the

liver, there were no differences between percentages of apoptotic

cells between B6 and IL-22 KO mice (Fig. 6D, E, and F).
Furthermore, there were no differences in apoptosis between B6

and IL-22 KO mice at days 1, 3, and 5 p.i. (data not shown).

In order to more thoroughly investigate the role that IL-22

might be playing in preventing tissue damage during LM

infection, liver damage was assessed by measuring alanine

Figure 4. IL-22 is not required for survival during mucosal LM
infection. B6 and IL-22 KO mice were i.g. infected with ,16108 LM/
strepr for a survival study. These data are combined from two
independent experiments. A log rank analysis did not detect a
significant difference between the survival curves of B6 and IL-22 KO
mice, (p.0.05), (n = 13/group).
doi:10.1371/journal.pone.0017171.g004

Figure 5. IL-22 is not required for clearance of bacteria from the spleen and liver during a primary systemic LM infection. B6 and IL-
22 KO mice were i.v. infected with ,16104 LM. Spleens and livers were harvested and bacterial burdens were determined at day 1 (A), day 3 (B), day 5
(C), and day 7 (D) p.i. Two-way ANOVAs did not detect significant effects of mouse strain (p.0.05). These data are combined from two independent
experiments. All data are expressed as the mean + SEM (n = 10/group).
doi:10.1371/journal.pone.0017171.g005

IL-22 and Listeria monocytogenes Infection
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aminotransferase (ALT) in the serum. There were no differences in

serum ALT levels between B6 and IL-22 KO mice during systemic

LM infection at day 2 p.i. (Fig. 7), which is the peak of liver

damage during LM infection [35]. This result suggests that IL-22

does not play a role in protecting tissues from damage during

systemic LM infection. Similar results were observed at 1, 3, and 5

days post LM infection (data not shown).

Further visualization of LM induced damage in B6 and IL-22

KO mice during systemic infection was accomplished by perform-

ing immunohistochemistry on livers obtained from mice infected for

3 days with LM. LM lesions and neutrophils were clearly identified

in both B6 and IL-22 KO livers. However, no differences in the

number and size of lesions were apparent (data not shown).

Collectively, the data from apoptosis assays, ALT assays, and

immunohistochemistry suggest that IL-22 is not required for tissue

protection during a primary systemic LM infection.

IL-22 production does not require IL-23 during a
secondary LM infection

IL-22 production is dependent on IL-23 during primary

systemic and mucosal LM infections (Fig. 1 and 3). We were

interested in determining if IL-22 production was dependent on

IL-23 during a secondary systemic i.v. LM infection. To this end,

B6 and IL-23p19 KO mice were infected with LM and allowed six

weeks to recover. These immunized B6 and IL-23p19 KO mice

were then re-infected with LM and spleens were harvested at day 2

p.i. The concentration of IL-22 was measured in the serum and

splenocyte culture supernatants stimulated with or without HKLM

or IL-23. Unlike what was observed during the primary LM

infection (Fig. 1), there were no differences between B6 and IL-

23p19 KO mice (Fig. 8A, B, C, and D). These data suggest that

a factor other than IL-23 is able to induce the production of IL-22

during a secondary systemic LM infection.

IL-22 is not required for clearance of LM or tissue
protection during secondary infection

IL-22 is not required for clearance of LM from the spleen or

liver during a primary LM infection (Fig. 5). However, these data

do not preclude IL-22 from having a role during a secondary LM

infection. To determine if IL-22 impacts the clearance of LM after

a secondary exposure to the pathogen, B6 and IL-22 KO mice

were re-infected six weeks after a primary LM infection. There

were no differences in LM CFUs between B6 and IL-22 KO mice

in the spleen or liver at day 2 post secondary infection (Fig. 9). To

determine the impact of IL-22 on bacterial clearance during a

secondary mucosal LM infection, B6 and IL-22 KO mice were re-

infected via the mucosal i.g. route of infection six weeks after a

primary mucosal LM/strepr infection. There were no differences

in LM/strepr CFUs between B6 and IL-22 KO mice in the spleen,

liver, or intestine (data not shown).

Figure 6. IL-22 does not impact apoptosis in spleens during primary systemic LM infection. B6 and IL-22 KO mice were i.v. infected with
,16104 LM for 2 days. Splenocytes and liver leukocytes from uninfected B6 (UI B6), and LM infected B6 and IL-22 KO were harvested and the
percentage of apoptotic cells was determined by flow cytometry based on expression of Annexin V. The percentage of apoptosis in all splenocytes
(A) and non-hematopoietic, CD45.2-, cells (B) is shown. Representative Annexin V staining of splenocytes is shown in (C). The percentage of apoptosis
in all liver leukocytes (D) and non-hematopoietic, CD45.2-, cells (E) is shown. Representative Annexin V staining of liver leukocytes is shown in (F).
One-way ANOVAs detected significant effects when comparing uninfected to infected samples (p#0.05). An * indicates a significant difference from
uninfected B6 (p#0.05). These data are representative of two independent experiments. All data are expressed as the mean + SEM (n = 5/group).
doi:10.1371/journal.pone.0017171.g006

Figure 7. IL-22 is not required for tissue protection in livers
during primary systemic LM infection. B6 and IL-22 KO mice were
i.v. infected with ,16104 LM for 2 days. Serum from uninfected B6 (UI
B6), and LM infected B6 and IL-22 KO mice was harvested and analyzed
with an ALT detection kit. One-way ANOVAs detected significant effects
when comparing uninfected to infected samples (p#0.05). An *
indicates a significant difference from uninfected B6 (p#0.05). These
data are combined from two independent experiments. All data are
expressed as the mean + SEM (n = 10/group).
doi:10.1371/journal.pone.0017171.g007

IL-22 and Listeria monocytogenes Infection
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During a secondary systemic LM infection, there were no

differences in the percentage of apoptotic cells in spleens between

B6 and IL-22 KO mice (data not shown). Likewise, there were no

differences in serum ALT levels between B6 and IL-22 KO mice

during secondary LM infection (data not shown), suggesting that

IL-22 is not required for limiting liver damage. Collectively, these

data suggest that IL-22 is not required for optimal bacterial

clearance or tissue protection during secondary LM infection.

Discussion

To date, the primary role discovered for IL-23 is to maintain

lymphocytes that secrete IL-17A, IL-17F, and IL-22 or to directly

induce the production IL-22 [9,6]. IL-22, a downstream cytokine

of IL-23, has been previously reported to be able to induce the

secretion of antimicrobial peptides [9,6] as well as protect tissues

from damage by preventing apoptosis [26,27]. IL-22 is induced

during certain infectious models including Salmonella enterica [14],

Toxoplasma gondii [36], Citrobacter rodentium [13], Klebsiella pneumoniae

[26], and in an induced model of colitis [37]. We now provide

evidence that IL-22 is produced during LM infection. During both

a primary systemic and primary mucosal infection, the optimal

production of IL-22 during LM infection requires IL-23. When

IL-23 was added back into splenocyte cultures from IL-23p19 KO

mice, the production of IL-22 was restored, suggesting that the

cells that are capable of producing IL-22 are present in IL-23p19

KO mice. This is in contrast to IL-17 secreting lymphocytes

during LM infection, which require IL-23 for maintenance and

differentiation [21]. Our data suggest that IL-23 is required for the

optimal production of IL-22 from splenocytes, but not for the

maintenance or differentiation of these cells. At day 2 post-

secondary LM infection, IL-22 production is not regulated by IL-

23. This suggests IL-22 is not completely dependent on IL-23 for

production during secondary exposure to LM, and another factor

is able to induce the production of IL-22. Previously published

literature suggests that IL-6 or IL-12 may also be able to induce

IL-22 secretion [32,29,38,27,39], providing evidence that IL-22

production is not exclusively associated with the IL-23/IL-17 axis

[40].

Figure 8. IL-23 is not required for IL-22 production during a secondary systemic LM infection. B6 and IL-23p19 KO were i.v. infected with
,16103 LM, then re-infected six-weeks later with ,16106 LM. Serum and spleens were harvested 2 days p.i. The concentration of IL-22 was
measured using ELISA in serum (A) and overnight splenocyte supernatants from un-stimulated (B), HKLM stimulated (C), or IL-23 stimulated (D)
cultures. A two-way ANOVA did not detect significant effects of mouse strain (p.0.05). These data are representative of two independent
experiments. All data are expressed as the mean + SEM (n = 4/group).
doi:10.1371/journal.pone.0017171.g008

Figure 9. IL-22 is not required for clearance of bacteria from
the spleen and liver during a secondary systemic LM infection.
B6 and IL-22 KO mice were i.v. infected with ,16103 LM, then re-
infected six-weeks later with ,16106 LM. Spleens and livers were
harvested 2 days p.i. and bacterial burdens were determined. A two-
way ANOVA did not detect a significant effect of mouse strain (p.0.05).
These data are combined from two independent experiments. All data
are expressed as the mean + SEM (n = 9/group).
doi:10.1371/journal.pone.0017171.g009
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There were no differences in bacterial clearance between B6

and IL-22 KO mice during primary or secondary systemic or

mucosal LM infection. The equivalent bacterial clearance in B6

and IL-22 KO mice during a secondary LM infection implies that

IL-22 is not involved in the generation of effector T cells against

LM as previously shown [27]. Furthermore, these findings suggest

that IL-22 is not required for the optimal generation or

maintenance of memory T cells specific for LM. Although IL-22

is known to be able to induce the production of antimicrobial

peptides, this potential increased production of antimicrobial

peptides may not be required for bacterial clearance during LM

infection. Antimicrobial peptides, such as RegIIIc and b-defensins,

are important for LM clearance during mucosal infection [41,42].

Therefore, an alternative explanation may be that IL-22 is not

regulating the production of these antimicrobial peptides.

Congruent with our findings that IL-22 does not seem to be

playing a role in innate bacterial clearance during LM infection,

Zenewicz et al saw no differences in LM burdens between B6 and

IL-22 KO mice at day 3 p.i. [27]. Importantly, our data now show

that IL-22 is dispensable for clearance of LM at days 5 and 7 p.i.,

as well as during secondary infection. These results were also

obtained using oral infection with LM. Similar results showing that

IL-22 does not play a role in pathogen clearance were seen in

other infectious models, including parasite infection with T. gondii

and Schistosoma mansoni, bacterial infection with Mycobacterium avium

and Mycobacterium tuberculosis [40], as well as fungal infection with

Candida albicans [19].

While no differences in bacterial clearance were observed

between B6 and IL-22 KO mice, IL-22 has also previously been

shown to protect tissues against damage during infection with

Klebsiella pneumoniae or ConA stimulation [26,27]. However, we

have found that IL-22 is not required for spleen or liver protection

during primary or secondary systemic LM infection. A similar

result was also seen in the livers of mice infected with S. mansoni

and T. gondii, and in the lungs of mice infected with M. tuberculosis

and M. avium [40]. As mentioned previously, the natural human

route of infection for LM is an oral mucosal infection. IL-22 might

be playing a role in protecting the intestinal tissue during a

mucosal LM infection. During an oral T. gondii infection, the

intestines of WT mice had more pathology than the intestines of

mice treated with anti-IL-22 despite the fact that parasite burdens

were the same [40]. Even though there were no differences in LM

clearance from the intestine between B6 and IL-22 KO mice

during a mucosal oral infection, differences in intestinal tissue

damage may still exist. However, the observation of no differences

in weight loss between B6 and IL-22 KO mice during mucosal LM

infection indicates that IL-22 may not be required to protect

intestinal tissue from LM induced damage. Another possibility is

that IL-22 is required for an optimal acute phase response during

LM infection. It has been previously shown that over-expression of

IL-22 can lead to systemic effects in mice that are primarily related

to an acute phase response [43]. This possibility during LM

infection warrants further investigation. It is also possible that IL-

22 plays a novel role during LM infection.

We have previously published that IL-23 is required for

clearance of bacteria from the spleen and liver during systemic

LM infection. Additionally, we have shown that the IL-23/IL-17

axis has the ability to optimally recruit neutrophils to the liver, but

not the spleen, during a primary systemic LM infection [21].

These IL-17 recruited neutrophils are likely to be playing a role in

the clearance of LM from the liver (unpublished data). In the

current study, production of IL-22 did not influence the clearance

of LM from the liver or spleen. Therefore, it is likely that the IL-

23/IL-17/neutrophil axis, but not the IL-23/IL-22/antimicrobial

peptide axis, is important for LM resistance in the liver [21]. In

conclusion, while IL-22 is produced during LM infection and this

production is regulated by IL-23, the function of IL-22 currently

remains unknown during LM infection.

Supporting Information

Figure S1 Unlike IL-23, IL-22 is not required for
clearance of bacteria from the spleen and liver during
a primary systemic LM infection. B6, IL-23p19 KO, and

IL-22 KO mice were i.v. infected with ,16104 LM. Spleens and

livers were harvested and bacterial burdens were determined at

day 5 p.i. A two-way ANOVA detected a significant effect of

mouse strain (p,0.05). An * indicates a significant difference from

B6 and IL-22 KO mice (p#0.05). Data are expressed as the mean

+ SEM (n = 5/group).
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