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Abstract: Polydimethylsiloxane (PDMS) is an elastomer with excellent optical, electrical and me-
chanical properties, which makes it well-suited for several engineering applications. Due to its
biocompatibility, PDMS is widely used for biomedical purposes. This widespread use has also led to
the massification of the soft-lithography technique, introduced for facilitating the rapid prototyping
of micro and nanostructures using elastomeric materials, most notably PDMS. This technique has
allowed advances in microfluidic, electronic and biomedical fields. In this review, an overview of the
properties of PDMS and some of its commonly used treatments, aiming at the suitability to those
fields’ needs, are presented. Applications such as microchips in the biomedical field, replication of
cardiovascular flow and medical implants are also reviewed.

Keywords: polydimethylsiloxane; PDMS properties; PDMS applications; microfluidics;
biomedical engineering

1. Introduction

Polydimethylsiloxane (PDMS) is an elastomeric polymer with interesting properties
for biomedical applications, including physiological indifference, excellent resistance to
biodegradation, biocompatibility, chemical stability, gas permeability, good mechanical
properties, excellent optical transparency and simple fabrication by replica moulding [1–5].
Due to these characteristics, PDMS has been widely used in micropumps [6], catheter sur-
faces [7], dressings and bandages [8], microvalves [9], optical systems [10,11], in the in vitro
study of diseases [12,13], in implants [14,15], in microfluidics and photonics [16–19]. More-
over, soft-lithography technology has driven the use of PDMS in microelectromechanical
systems (MEMS) applications and in microfluidic components [17,18,20]. Soft-lithography
techniques such as micro-contact printing, replica moulding, micro-transfer moulding,
micro-moulding in capillaries and solvent-assisted micro-moulding usually require the use
of PDMS to create an elastomeric stamp or mould that incorporates nano- and microstruc-
tures for the transfer of patterns onto a subsequent substrate [18,21].

MEMS are approaches that use electronic and mechanical technologies to deal with
biomedical problems on the micro-scale [22]. MEMS-based devices have been widely used
in the biomedical area for applications such as diagnostics and therapeutics. These systems
can be microsensors or microtransducers, and are helpful in areas such as physics, me-
chanics, electronics and biomedicals, as they can provide very precise and fast results [23].

J. Funct. Biomater. 2022, 13, 2. https://doi.org/10.3390/jfb13010002 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb13010002
https://doi.org/10.3390/jfb13010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0003-2414-073X
https://orcid.org/0000-0003-2290-808X
https://orcid.org/0000-0001-6300-148X
https://orcid.org/0000-0002-5829-6081
https://orcid.org/0000-0003-3428-637X
https://orcid.org/0000-0003-2460-0556
https://doi.org/10.3390/jfb13010002
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb13010002?type=check_update&version=2


J. Funct. Biomater. 2022, 13, 2 2 of 20

The investigation and improvement of already existing MEMS are more and more common.
As they are increasingly commercialized, the necessity to find processes and materials that
enable mass production while reducing cost has emerged [21]. MEMS are traditionally
silicon-based and the pursuit for a more biologically friendly material is needed. Polymers
allow rapid prototyping and mass production techniques as well as having a lower cost in
relation to silicon, making them particularly attractive for the development of MEMS [21].
Photolithography is the most commonly used technique in microfabrication, however,
this method is expensive [24]. With the introduction of polymers in microsystems, new
manufacturing techniques have been studied, such as soft-lithography, which can be a
cheaper method comparatively to photolithography, even when a costly mould is needed
for patterning; once a mould is created, it can be reused several times [20]. Additionally,
there are alternatives which are attempting to reduce the cost of the moulds, relying on
cleanroom less approaches [25]. Candidate polymers for the production of MEMS are poly-
carbonate (PC), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), polyethylene
(PE) and PDMS [21].

Additionally, PDMS is the most commonly used material in the manufacturing of
microfluidic devices, which are an important technology for the development of systems
such as drug delivery, DNA sequencing, clinical diagnostics, point of care testing and
chemical synthesis [26]. The used materials in these systems should be biocompatible,
optically transparent and provide fast prototyping and low fabrication cost [27], features
found in PDMS.

In addition to applications in microfluidics, PDMS has been widely used in the fabri-
cation of biomodels (flow phantom) for the in vitro hemodynamic study of diseases such
as aneurysms and stenosis [28–31]. The biomodels developed in PDMS allow good replica-
bility of the lumen of the arteries and good transparency, being ideal for the application
of optical techniques of micro particle image velocimetry (micro-PIV), particle image ve-
locimetry (PIV), particle tracking velocimetry (PTV) and non-evasive techniques [32–34].
These experimental tests have provided a greater understanding of these pathologies, vali-
dated numerical techniques and tested medical devices such as stents [35–37].

PDMS has also been investigated in the field of medical implants [38–42]. These types
of implants are usually made with titanium or its alloys; however, such materials do
not allow a good osseointegration [39]. In order to overcome this limitation, PDMS has
been studied to produce coatings with microscale features that help the bonding between
the implant and the bone. The main characteristics for its use in implants are its high
biocompatibility, excellent resistance to biodegradation and flexibility, which makes PDMS
one of the most successful polymers in implanted devices, presenting only mild foreign
body reactions [43–45]. Common applications include cardiac pacemakers, cuff and book
electrodes in the PNS, cochlear implants, bladder and pain controllers and planar electrode
arrays in the CNS [45,46].

In this review, research on PDMS properties, their fabrication processes and their
characterization methods are reported. Moreover, their use in MEMS applications, mi-
crofluidics, medical implants and hemodynamic studies is investigated. Written in a concise,
but complete manner, we believe that this manuscript joins together the main advantages,
disadvantages and challenges of PMDS when biomedical applications are needed and,
therefore, can be extremely useful for researchers looking to learn about this biomaterial
and its applicability in this biomedical field.

2. PDMS Properties

Silicon, glass and polymers are the typical materials used for micro devices fabrication:
silicon, because of its thermal conductivity and the availability of advanced fabrication
technologies; glass, mainly due to its transparency; polymers, because of its low cost, opti-
cal transparency and flexibility. Compared to glass and silicon, PDMS turns out to be the
most promising elastomer, because the other two materials have a high manufacturing cost,
require greater labour intensity and are rigid in nature. The variable elasticity of PDMS
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in medical applications is also favourable; its modulus of elasticity is 1–3 MPa (compared
to ~50 GPa of glass) [2,47]. PDMS is also chemically inert, thermally stable, permeable to
gases, simple to handle and manipulate, exhibits isotropic and homogeneous properties
and can replicate submicron features to develop microstructures [19,21,48]. Additionally,
this elastomer is optically transparent, can work as a thermal and electrical insulator
and degrades quickly in the natural environment [49]. PDMS presents a hyperelastic
behaviour, which is the ability of a material to undergo large deformations before rup-
ture [50]. This characteristic is also found in biological tissues and, for that reason, PDMS
is a well-suited material to mimic, for example, blood vessels [49]. Another characteristic of
this elastomer is its biocompatibility, which means that PDMS is compatible with biologic
tissues [49]. PDMS presents a transmittance up to 90% for the wavelength from 390 nm to
780 nm [51–53] and, due to this characteristic, PDMS-based microsystems allow the direct
observation of the mimicked blood flow inside the mimicked vessels and the integration of
optical detection systems, hence playing an important role in this field.

With the purpose of extending the lifespan of a chip, PDMS is used to embed or
encapsulate electronic components by casting. Due to its thermal and electrical insulation
capability, PDMS protects the components from environmental factors and mechanical
shock within a large temperature range (−50–200 ◦C) [23,48]. In Table 1, some physical
properties of PDMS are listed.

Table 1. Typical properties of cured PDMS.

Property (Unity) Result References

Transmittance at range 390 nm to 780 nm (%) 75–92 [54,55]
Index of refraction 1.4 [56]

Thermal conductivity (W/m·K) 0.2–0.27 [57,58]
Specific heat (kJ/kg·K) 1.46 [56]

Dielectric strength (kV/mm) 19 [57]
Dielectric constant 2.3–2.8 [56]

Electrical conductivity (ohm·m) 4 × 1013 [56]
Volume resistivity (ohm·cm) 2.9 × 1014 [57]

Young’s modulus [kPa] 360–870 [59]
Poisson ratio 0.5 [60]

Tensile strength (MPa) 2.24–6.7 [56,57]
Hardness [Shore A] 41–43 [55,61]

Viscosity (Pa·s) 3.5 [57]
Hydrophobicity—contact angle (◦) ~108◦ ± 7◦ [62]

Melting Point (◦C) −49.9 to −40 [63]

Despite these advantages, PDMS has some properties that can present a limitation in
some applications. Due to its CH3 groups, PDMS presents a hydrophobic surface (contact
angle with water ~108◦ ± 7◦) [62,64,65], often limiting its application in solutions composed
of biological samples [66]. Additionally, PDMS tends to swell when combined with certain
reagents [17,48]. In some applications, the absorption of small molecules flowing through
the channels makes it difficult to quantitatively analyse experiments in proteomic drug
discovery and cell culture [67,68]. In microchannels, the hydrophobicity of PDMS generates
complications that include impedance to the flow of polar liquids, which makes it difficult
to wet its surface with aqueous solvents [49]. On the other hand, much effort has been
made to make the PDMS surface hydrophilic and resistant to protein adsorption [19,69–73].

Strategies employed in attempting to solve PDMS hydrophobicity include surface
activation methods such as: oxygen plasma; UV/ozone treatments; corona discharges,
which are widely used for PDMS surface oxidation to promote microchannel wettability.
The main benefits of these methods are the short treatment time and easy operation;
however, the PDMS surface recovers its hydrophobicity when in contact with air within a
few minutes [74–76]. The hydrophilic treatments and some examples are discussed further
in Section 5.
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Another method is physisorption, which is a simple and efficient approach that
relies on surface hydrophobic or electrostatic interactions. This method includes the
following techniques: layer-by-layer deposition; non-ionic surfactants; charged polymers.
The disadvantages are the lack of covalent bonds between PDMS and surface modifiers,
which lead to the loss of modifiers quickly through desorption [77–79].

In order to improve the difficulties encountered in physisorption, chemical mod-
ification methods allow for maintaining a long-term stability of the modified surface.
These methods include: chemical vapor deposition, surface segregation and self-assembled
monolayers, silanization, and polymer brushes via grafting methods [1,62,80–82].

Adding waxes such as paraffin or beeswax to PDMS has been demonstrated to poten-
tially increase the corrosion resistance, hydrophobicity and thermal and optical properties
of PDMS, which is useful in applications such as sensors, wearable devices and superhy-
drophobic coating [83].

Although the methods listed above have been successful in improving the hydrophilic-
ity of the PDMS surface, they have some limitations, such as chemical instability, the need
for specific equipment, limited manufacturing process for large scale and some meth-
ods cause loss of transparency, loss of mechanical properties and do not provide the
hydrophilic surface for a long period of time [62]. Considering these facts, the work of
Gökaltun et al. [84] presents a simplified method of easy manufacture, which uses copoly-
mers composed of poly(ethylene glycol) and PDMS segments (PDMS-PEG) to reduce
the hydrophobicity of PDMS without changing its transparency, biocompatibility and
mechanical properties, with a durability of 20 months.

3. PDMS Manufacturing Process

Sylgard® 184 Silicone Elastomer Kit is the most used commercial PDMS. It consists
of a monomer and a curing agent, which are usually combined at a weight ratio of 10:1.
The compound is mixed and then degassed with a desiccator in order to prevent the
formation of micro-bubbles. The PDMS solution is poured over the master mould and then
cured in the oven [23]. The curing time depends on the temperature of the oven and on the
size of the PDMS sample. The higher the hardening temperature, the less time it will take
for the PDMS to cure. After the curing process, the piece is taken out of the mould [57].
Note that, for very specific applications and complex geometries, it is usually advised to
perform the curing process at room temperature for at least 48 h [55,85]. In Table 2 are
listed curing times and temperatures recommended by the manufacturer.

Table 2. Recommended curing times and temperatures to produce PDMS samples [57].

Temperature (◦C) Time

25 48 h
100 35 min
125 20 min
150 10 min

The monomer and the curing agent can be mixed at a different ratio besides the 10:1 [86]
and, as a consequence, some properties change, namely, mechanical [87], optical [88] and
gas permeability [89]. Mixing at a higher ratio of cure agent results in a faster hardening
time, in a less sticky cured PDMS and in a more fragile PDMS sample. In contrast, mixing
with less cure agent results in a longer hardening time, in a stickier cured PDMS and in
better mechanical properties. Khanafer et al. [87] found that elastic modulus increases as
the mixing ratios increase up to 9:1, after which the elastic modulus starts to decrease as
the mixing ratio continues to increase.
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4. Methods to Characterize PDMS

A wide range of tests are performed to characterize elastomers. Some common tests
are scanning electron microscopy, gravimetry, goniometry, nanoindentation, tensile test,
X-ray photoelectron spectroscopy and Fourier Transform infrared spectroscopy [21]:

• Scanning electron microscopy (SEM) allows thickness measurement and qualitative
characterization of PDMS samples [18,42,90–92];

• Gravimetry is a method based on gravitational techniques to quantify changes in
PDMS sample weight. For example, this method is useful when it is needed to verify
if there was or not degradation of the PDMS after chemical immersion [93];

• In order to obtain information on surface hydrophilicity, a goniometry test is per-
formed. Micro water droplets are dropped on the PDMS surface and then the contact
angle is measured. This technique allows for verification of if there was or not a change
in the wettability of the PDMS after certain treatments [19,39,42,94];

• Nanoindentation offers the possibility of studying mechanical properties of the outer-
most layer of PDMS, which is susceptible to destruction due to different treatments,
such as UV irradiation [95];

• Tensile testing allows Young Modulus measurement of PDMS. The Young Modulus
can be affected by treatments that may be applied to PDMS, by hardening temperature
and time, and by the mixing ratio used to fabricate the PDMS samples [42,96,97];

• X-ray photoelectron spectroscopy (XPS) is a technique based on the photoelectric effect,
which allows identification of the elemental composition of the material. This method
is useful when it is needed to verify if any changes in surface composition occurred
after the PDMS received any treatment [38,39,98];

• Fourier Transform infrared spectroscopy (FTIR) is a method used to obtain the infrared
spectrum of absorption or transmission of the PDMS sample. This technique allows
examination of the effect of some treatment on the cross-linking of PDMS [38,42,99].

5. PDMS Microfabrication

PDMS is patterned through commonly used microfabrication techniques, such as
soft-lithography and spin coating. However, especially due to its hydrophobic nature,
some of the techniques must be employed alongside with hydrophilic treatments, such
as oxygen plasma. Soft-lithography, which is a group of techniques that use patterned
elastomers as stamp, mould or mask to generate micropatterns, was developed to allow
processing elastomers [100]. However, the fabrication of the most microfluidic devices
still relies on photolithography for fabricating SU-8 masters that usually serve as the
PDMS mould [20]. Photolithography is a microfabrication technique used to process
photoresists, commonly employed in CMOS microelectronics fabrication [101]. The soft-
lithography can be performed in several types, such as microcontact printing (µCP), replica
moulding (REM), micro-transfer moulding (µTM), micro-moulding in capillaries (MIMIC),
solvent-assisted micro-moulding (SAMIM), phase-shift photolithography, cast moulding,
embossing and injection. Some of these techniques are briefly described below [100]:

1. Microcontact printing: uses the relief pattern on the surface of a PDMS stamp to
form patterns of self-assembled monolayers (SAMs) on the surfaces of substrates
by contact;

2. Replica moulding: replicates the relief pattern on the surface of a PDMS mould by
using this structure as a mould for forming structures in a second UV-curable (or
thermally curable) prepolymer;

3. Micro-transfer moulding: a thin layer of liquid prepolymer is applied to the patterned
surface of a PDMS mould. It is then placed in contact with the surface of a substrate
and the liquid prepolymer is cured to a solid. After peeling off the mould, a patterned
micro-structure is left on the surface of the substrate;

4. Micro-moulding in capillaries: a PDMS mould is placed on the surface of a substrate
to form a network of empty channels between them. The channels are filled with a
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low viscosity prepolymer, which is then cured to a solid. The mould is removed and a
patterned micro-structure is left on the surface of the substrate;

5. Solvent-assisted micro-moulding: a PDMS mould is wetted with a solvent, and it is
placed in contact with a substrate (typically an organic polymer). The solvent starts to
dissolve the substrate into a fluid or gel that is moulded against the relief structures in
the mould. When the fluid solidifies, it forms a pattern relief structure complementary
to that in the surface of the mould.

The soft-lithography process begins with the preparation of the elastomeric stamp
or the mould by cast moulding. Most of the time, cast moulding implies the use of
photolithographic techniques to fabricate the master. PDMS is the most widely used
elastomer for this process because of its outstanding properties: low interfacial free energy,
it does not swell with humidity, good thermal stability, optical transparency, isotropy and
homogeneity [100].

Additionally, spin coating is a common microfabrication method for producing poly-
mer films of controlled and uniform thickness. In this process, a liquid film is spread by
centrifugal force onto a rotating substrate. This technique is commonly used for deposition
of polymer resist layers in the photolithographic processing of a master mould. It is formu-
lation dependent: increased amounts of cross-linker agent in the formulation decrease film
thickness [21,102].

The hydrophobic nature of PDMS brings, in some cases, limitations in the micro-
fabrication processes. There are applications, such as cell culture, immunoassay and
biomolecule separation, where the modification of the hydrophobic surface of native
PDMS to a hydrophilic surface is indispensable. For example, when endothelial cell
seeding is needed, hydrophilic modification of the PDMS surface is indispensable for a
successful seeding [103]. However, it is important that the hydrophilic treatment does
not affect its transparency, as transparency is a key property that makes PDMS the ma-
terial of choice for certain applications. Oxygen plasma is the most employed treatment
that leads to an increase in PDMS surface hydrophilicity because of its short treatment
time, its easy operation and that it does not affect the PDMS transparency [21,65,104,105].
However, this treatment is also known for losing its effects within minutes after expo-
sure to air. For this reason, a variety of well-studied treatments have emerged for this
purpose [19,69–73]. Additionally, some articles reported that oxygen plasma may dam-
age PDMS surface [62,106] and, therefore, Shin et al. reported three different treatments
that do not require oxygen plasma pre-treatment, including Teflon coating, commercially
available water-repellents and perfluorodecyltrichlorosilane (FDTS) [107]. The authors
showed that the Teflon and the water-repellent decreased the hydrophobicity of PDMS
with great chemical stability and without significantly affecting its transparency. UV/ozone
treatments and corona discharge are also commonly employed hydrophilic treatments;
however, as with oxygen plasma treatment, PDMS quickly recovers its hydrophobicity [62].
There have been efforts to improve some of these treatments; however, the best way to
achieve an effective and long-lasting treatment seems to be the combination of a surface
activation with a covalent surface functionalization [19,106]. For example, Zhao et al. [108]
proposed a method where PDMS is firstly activated by oxygen plasma treatment and then it
is coated with a zwitterionic poly(methacrylate) copolymer (PMGT). This method allowed
for decreasing the water contact angle (WCA) of native PDMS from 108◦ to 30◦, with a
duration of at least 200 h. Further, Zhou et al. [19] suggest a combination of gas-phase with
wet chemical methods in order to achieve a better surface stability in a shorter treatment
time. Examples of these treatments are the combination of UV or plasma treatment and
silanization, the combination of UV or plasma treatment and graft polymerization and the
combination of plasma treatment and layer-by-layer (LBL) assembly.

Sterilization is a required procedure for most biomedical applications. In some cases,
this process must be done alongside the microfabrication process. There are three mainly
used sterilization methods: cleaning with ethanol, ultraviolet light exposure and the
steam autoclave procedure. Sterilization does not significantly affect PDMS hydropho-
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bicity. However, steam autoclaving increases the storage modulus and ultimate tensile
stress [21,109–114].

6. PDMS Applications
6.1. PDMS-Based Microchip

Microfluidic devices have been widely studied and developed and, in order to take
them to the market, they must be low-cost and capable of mass production. The use of
PDMS to fabricate these devices makes it possible to achieve those goals. Nowadays,
there are a variety of PDMS-based microchips that have been developed, most of them
alongside glass [115–121]. The combination of PDMS and glass has been employed with
great results. In Figure 1 is presented a schematic illustration of the fabrication of a
glass/PDMS microchip. For example, Schöning et al. [116] developed a PDMS/glass
separation microchip, based on typical semiconductor-compatible production methods,
and which provides a simplification of the electrophoresis-based biosensor set-up.
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Figure 1. Schematic illustration of the fabrication for glass/PDMS microchip: (a) PDMS layer
fabricated by replica moulding; (b) part of SPE channel in PDMS layer was cut off; (c) PDMS layer
was sealed with the thin glass cover slip; (d) MISPE monolithic capillary column was coupled with
glass/PDMS chip to form the final chip. A, B, C, D: holes, E: sample reservoir, F: buffer reservoir,
G: sample waste reservoir, H: buffer waste reservoir, I: separation channel, J: SPE channel, K: MISPE
monolithic capillary column and L: epoxy glue. Reprinted with permission from reference [115].
Copyright 2020 Elsevier.

Temperature gradient generation is a commonly used process in microfluidics.
Ha et al. [122] presented a PDMS microchip that allows temperature gradient generation
using sound waves as a heating mechanism. The use of PDMS allowed the fabrication of a
transparent, dynamic, inexpensive and easy-to-fabricate system.

The hydrophobic nature of PDMS usually brings issues to the microchips.
Qiang Niu et al. [120] developed a PDMS/glass microchip for PCR; however, the team
came across the formation of bubbles on the PDMS surface during the sample loading.
To overcome this, they implemented an irreversible bonding and sealing between the glass
and PDMS. Additionally, protein adsorption occurred on the chip surface, which was
overcome by treating the surface with BSA (Bovine Serum Albumin). Table 3 presents a list
of PDMS-based microchips, as well as the motivations that led the authors to use PDMS in
their devices.
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Table 3. Applications of PDMS-based microchips and respective motivations for using PDMS.

Application PDMS Preparation Motivations for Using PDMS Reference

On-line sample pre-treatment and
contactless conductivity detection

Mixing ratio—10:1, w/w
Degassing time—20 min

Curing temperature—80 ◦C
Curing time—30 min

Oxygen plasma treatment for 1–2 min

Low-cost, easy manufacture,
suitability for mass production,

transparency and elasticity.
[115]

Genetic analysis by functional
integration of polymerase chain
reaction (PCR) and capillary gel

electrophoresis (CGE)

Mixing ratio—10:1, w/w
Degassing time—15 min

Curing temperature—65 ◦C
Curing time—1 h

Post-curing temperature—135 ◦C
Post-curing time—15 min

Hydrophilic treatment with HCl solution at 25 ◦C for 4 h

Low-cost, suitability for microscale
moulding, high reproducibility on

a micrometre scale, high gas
permeability, low thermal

conductivity and transparency.

[118]

Polymerase chain reaction (PCR)
Mixing ratio—10:1, w/w

Curing temperature—95 ◦C
Curing time—30 min

Low thermal conductivity, simple
fabrication, low-cost, disposability,

biocompatibility,
irreversible bonding with glass

and transparency.

[120]

Electrophoresis device for
continuous on-line in vivo

monitoring of micro
dialysis samples

Mixing ratio—10.5:1.5, w/w
5 mm-thick layer curing temperature—90 ◦C

5 mm-thick layer curing time—25–30 min
1 mm-thick layer curing temperature–90 ◦C
1 mm-thick layer curing time—15–18 min

Post-curing temperature—85 ◦C
Post-curing time—overnight

Easy manufacture, good
reproductivity and transparency. [121]

Generation of temperature
gradient Mixing ratio—10:1, w/w

Low-cost, transparency, easy
manufacture and low
thermal conductivity

[122]

6.2. PDMS Biomodels for Hemodynamic Studies

As mentioned above, PDMS can be very useful in the fabrication of microchips that
allow analysing samples. Reports on the use of this material for the replication of car-
diovascular flow are also found in the literature. This type of application allows a better
understanding and study of cardiovascular diseases, such as aneurysms.

An aneurysm is characterized by artery wall weakness, which can lead to artery rup-
ture and, consequently, to death. Hemodynamic studies have been done to understand
aneurysms; however, they cannot explain the mechanical effects on the expansion of the
aneurysm walls [49]. To understand these mechanical effects, studies were conducted
where an intercranial aneurysm model was developed using PDMS to simulate the mechan-
ical behaviour of blood vessels [49,123]. PDMS is a well-suited material for this purpose due
to its hyperelastic behaviour, which is very similar to that of blood vessels, and the ability
to make circular microchannels. Another advantage of using PDMS is that it is transparent,
which facilitates monitoring of the blood flow. Additionally, recent studies show that is
possible to seed a culture of endothelial cells on the microchannels’ walls, which allows
the creation of a very similar environment to that found in microcirculation [90,124,125].
Lima et al. [126] proposed a microfluidic device containing rectangular microchannels in
PDMS, where in vitro blood flow measurements were conducted by means of a confocal
micro-PIV system. The authors demonstrated that, by using soft-lithography, it is possible
to produce precise and reproductible rectangular microchannels and to perform detailed
blood flow studies. The same authors have performed a similar study, this time by using
circular PDMS microchannels [127]. Although there are already several studies using circu-
lar microchannels [127–130], the majority of the PDMS microchannels used to study in vitro
blood flow phenomena have rectangular cross sections. Hence, by using rectangular PDMS
microchannels, several research works have been performed on different kinds of constric-
tions to study the deformability behaviour of blood cells [131–136] and air bubbles [137,138].
Cell deformability is a biomarker which can be used to distinguish between healthy and
diseased cells. Microfluidic models have been developed in order to better understand and,



J. Funct. Biomater. 2022, 13, 2 9 of 20

consequently, diagnose diseases such as malaria [139,140], cancer [141,142] and end-stage
kidney disease [143]. Most studies aim to better understand red blood cells (RBC); however,
Rodrigues et al. [144] developed a novel integrative microfluidic device which is capable
of assessing the deformation index of both white blood cells (WBC) and RBC. The same
author also presented a microfluidic tool to study the hemocompatibility of nanoparticles
synthesized for theragnostic applications [145]. Additionally, by using microchannels hav-
ing bifurcations and confluences, several studies have been carried out to better understand
the influence of these complex geometries on blood flow behaviour [146–152].

Rectangular microchannels are the most common geometry obtained by soft-lithography.
However, this kind of geometry can lead to some erratic measurements because the shear
stress imposed on the cell is different and, consequently, the pressure build-up in the
channel is not the same as if it were built-up in a circular section [124]. Hence, studies have
been conducted to establish methods that allow the construction of circular microchannels
of PDMS. For example, Fiddes et al. [124] proposed a method which begins by fabricating
rectangular microchannels using soft-lithography techniques, followed by the introduc-
tion of a stream gas and a solution of the silicone oligomer in an organic solvent. Then,
through the polymerization of the oligomer and the removal of the solvent, the authors
demonstrated the ability to control the shape and the diameter of the microchannel’s cross-
section. Additionally, Choi et al. [90] showed that, combining soft-lithography techniques
with the reflow phenomenon of a positive photoresist, it is possible to generate circular
PDMS microfluidic channels. In Figure 2 are presented some examples of biomodels for
hemodynamic studies.
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Figure 2. Example of PDMS biomodels for hemodynamic studies: (a) rectangular PDMS microchannel
to study in vitro blood and ensemble velocity profiles (U) obtained in the middle plane by means of a
confocal micro-PIV system (adapted from [126]); (b) schematic diagram of the blood collection and
cells deformability tests in PDMS microfluidic device (from [143]); (c) circular PDMS microchannels
to study in vitro blood behavior (adapted from [152]).



J. Funct. Biomater. 2022, 13, 2 10 of 20

It is important to notice that, despite the ability to mimic the cardiovascular vessels
behaviour through PDMS microchannels, there would always be missing points. For that
reason, it is of great importance to combine the PDMS micro devices with well-suited
measurement techniques. Rodrigues et al. [123] proposed the use of the Digital Image
Correlation (DIC) method, which proved to be suitable to study small displacements
happening in in vitro models. A summary of the advantages and limitations of some of the
methods used to fabricate microchannels is presented in Table 4.

Table 4. Advantages and limitations of techniques used to fabricate microchannels.

Geometry Method Advantages Limitations Application Reference

Rectangular Soft lithography

Generation of precise,
reproducible and versatile

microchannels;
Precise control of

experimental parameters and
accurate measurements;
Inexpensive, simple and

rapid method.

Different geometry from
in vivo microvessels;

Difficulties in achieving stable
cell seeding at the corners of

the channel.

Integration of confocal
micro-PIV with a

PDMS microchannel to
obtain blood

velocity profiles

[126]

Circular

Wire casting technique

Simple and
inexpensive method;

Possibility of fabricating
microchannels with
different diameters;

No need for a clean room or
specialized equipment.

It is not possible to generate
well-defined complex

structures, such
as bifurcations.

In vitro
hemodynamic studies [127]

Partially cured PDMS
combined with

thermal air
expansion molding

Inexpensive and
simple method;

Possibility of
fabricating multiple

diameters of circular channel
from 100 µm to 500 µm and

different cross-sections.

It can be hard to fabricate a
perfect circular channel.

Evaluate the clotting
events in pathological

vessels and testing
device for antiplatelet

and anticoagulant
therapeutics

[128]

Combination of soft
lithography with the

reflow phenomenon of
a positive

photoresist

Simple and efficient method;
Possibility of fabricating

microchannels with multiple
diameters (from 100 µm to

400 µm) and various
channel designs.

It can be hard to control the
thickness of the photoresist,

leading to a difficulty in
generate perfect

circular channels;
Bonding the two semi-circular

channels perfectly can be
challenging.

This method allows
endothelial cells

culture, making this
project suitable for
drug screening and
chemical/biological

diagnostics

[90]

Reshaping
rectangular

microchannels through
polymerization of the

liquid silicone
oligomer around a

gas steam

Ability of controlling the
diameter from 40 µm to

100 µm;
Possibility of fabricating

constrictions.

Relatively complex and
expensive method;

Difficulty in controlling the
exact diameter of the channel.

Mimic in vivo systems
for cell flow studies [124]

6.3. PDMS-Based Blood Analogues

Blood analogues are fluids commonly used to perform hemodynamic experiments
due mainly to safety problems related to the use of real blood in these experiments. Initially,
blood analogues were simple fluids composed by mixtures of glycerol and water or by
xanthan gum diluted in glycerine and/or water [153,154]. However, by using these kinds
of blood analogues, it is not possible to study different kinds of flow phenomena that
happen at the micro scale level, such as the cell-free layer, plasma skimming and cell
margination [101,155,156]. These microcirculation phenomena do not happen by using
blood analogue fluids without solid elements, such as microparticles and microcapsules.
Hence, during the past years, several works have been developing different kinds of
particulate blood analogue fluids containing microparticles with varying stiffness, shape
and size for biomedical applications [157–166].
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Due to its unique mechanical properties, PDMS has also been used to produce flexible
microparticles to be used in blood analogue fluids. Recently, Muñoz-Sánchez et al. [167]
proposed a flow-focusing technique to produce flexible PDMS microparticles for biomedical
applications (Figure 3). The PDMS microparticles were produced by using different kinds
of ratios (base/curing agent), and rheological measurements performed with a ratio of
6:4 have demonstrated the ability to reproduce the steady shear viscosity curve of ovine
RBCs suspended in Dextran 40 [167–169]. Although it is possible to produce flexible PDMS
microparticles with a high degree of monodispersity by using the flow-focusing technique,
the production rate is relatively low. In order to overcome this limitation, Choi et al. [170]
and Lopez et al. [171] have proposed a simple emulsification technique to obtain a mass
production of PDMS microparticles. More recently, Carneiro et al. [172] have developed
another method, based on a multi-stage membrane emulsification process, to obtain high
throughput production of PDMS microparticles. The development of blood analogue fluids
with PDMS microparticles that mimic the behaviour of RBCs is still at an early stage of
development. The most critical challenges that need to be solved are the mass production
of monodisperse PDMS microparticles, stiffness, aggregation and fast agglomeration of
the PDMS particles within microchannels with complex geometries, such as constrictions
and bifurcations.
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6.4. PDMS-Based Coatings for Medical Implants

PDMS has been widely studied to integrate medical implants, especially due to
its biocompatibility. Such implants are usually fabricated with biomedical grade metals
(e.g., tantalum, zirconium, niobium), as well as titanium and its alloys [174]. However, these
present some limitations concerning blood compatibility, bone conductivity and bioactiv-
ity [38]. When developing an implant, some important aspects should be taken in consid-
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eration: biocompatibility, osseointegration, corrosion resistance and micro-invasiveness.
Osseointegration is related to the effective linkage between the metal and the bone. A weak
bonding can lead to the formation of biofilms on implants, which can cause infections.
Recent studies have demonstrated that the surface modification of implants, in order to
achieve nano-/microscale features, brings great advantages concerning osseointegration [39].

The creation of microscale features on ceramics or polymers is simpler than on metal.
Considering the fact that PDMS allows the fabrication of hydrophobic and smooth sur-
faces has led to their use for developing coatings that help in the osseointegration of
implants [38–42]. Rossi de Aguiar et al. [38] studied a sol-gel coating based on PDMS for
metallic surfaces such as titanium and stainless steel. The authors demonstrated that the
hydrophobic nature of PDMS allows the formation of an anti-biofouling surface, preventing
the bacterial adhesion. Additionally, Tran et al. [39] developed a coating that involved the
hydrolysis and co-condensation of PDMS and tantalum (Ta) ethoxide to produce tantalum
oxide. This PDMS hybrid material has biocompatibility and corrosion resistance properties,
which allowed a great osseointegration. The integration of nanoparticles, such as CuO,
has been proven to improve the antibacterial characteristic of PDMS-based coatings, as
demonstrated by Tavakoli et al. [42]. Table 5 comprises a list of some PDMS-based coatings
that have been developed in the past years.

Table 5. Developments and applications of PDMS-based coatings.

Application PDMS Preparation Motivation for Using PDMS Reference

Urethanes PDMS-based hybrid
coating for metallic dental implants

Hybrid urethanesil (PDMSUr) synthesized by ring
opening polymerization of a bis(cyclic carbonate)

derived from PDMS.
Curing temperature—60 ◦C

Curing time—24 h

Create hydrophobic and smooth
surfaces, with less adhesion of bacteria,
capable of adhering to tissue cells such

as fibroblasts and osteoblasts.

[38]

Tantalum oxide-PDMS hybrid
coating for medical implants

Modified sol-gel synthesis method, Tantalum
oxide-PDMS solutions (10%, v/v).

Curing temperature—room temperature
Curing time—15 min

Medical grade PDMS has functional
groups to bind to reactive surfaces such

as activated metals or polymers.
Ability to create

micrometer-thick coatings.

[39]

Bioactive CaO-SiO2-PDMS coatings

Sol-gel dip-coating method.
The produced coatings were kept at room

temperature for 24 h for gelation.
Curing temperature—150 ◦C

Curing time—24 h

Mechanical properties and
elasticity of PDMS [40]

PDMS-based coating for a bladder
volume monitoring sensor

Mixing ratio—10:2 (w/w)
Curing temperature—80 ◦C

Curing time—2 h

Biocompatibility, 10:2 ratio to increase
tensile strength and improve

Young’s modulus
[41]

CuO-PDMS-SiO2 coatings
Mixing ratio—10:1 (w/w)

Curing temperature—150 ◦C
Curing time—90 min

Improved biocompatibility, corrosion
resistance and antibacterial property [42]

7. Conclusions and Further Perspectives

Microchips for biomedical applications are devices that allow monitoring and analysis
of samples. The use of PDMS in these devices offers great advantages such as optical
transparency, being easy-to-manufacture and having a low-cost, which are important
requirements when fabricating microchips. Additionally, the permeability to gases is a
unique advantage to culture living cells in closed microchannels, a task that is extremely
complex to achieve in glass microchannels. However, the hydrophobic nature of PDMS
brings some limitations during the fabrication and flow transport phenomena, especially
for biological applications. Developments of treatments that contradict the hydrophobic
property have been made and these limitations are easily overcome by applying simple and
fast hydrophilic treatments to PDMS. The lack of industrial processes to manufacture PDMS
is still an issue. There are already methods that allow good replications of microfabricated
PDMS; however, they are far from an industrial scale.
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Replication of the cardiovascular system using PDMS microchannels is on a good path
to be an application well-suited for the study of cardiovascular diseases. The hyper-elastic
behaviour and transparency are great advantages that make PDMS the chosen material in
these types of applications. Herein, the hydrophobic nature of PDMS can be a limitation as
well, in the blood flow itself but also when it is intended to grow endothelial cell cultures
on its walls.

Additionally, PDMS plays an important role in medical implant applications, espe-
cially due to its biocompatibility and hydrophobic nature. These characteristics allow the
production of antibacterial coatings for implants, which is a requirement when develop-
ing implants. PDMS also allows the production of smooth surfaces through processes of
microfabrication that help in the osseointegration of the implant in the body. Although
PDMS coatings are already available on the market, there are more developments that can
be made to increase their features and durability.

It is interesting to note that the hydrophobic nature of PDMS can be a limitation in
some applications, such as microchips and microchannel fabrication, but a great advantage
in others, such as in implant coatings, solar panels and face masks.

In summary, PDMS opens a wide range of possibilities to make great developments in
biomedical applications. With regards to further work, it is important to continue studying
more methods to produce PDMS-based devices on a larger scale which would further
enable these devices to reach the market. Additionally, the currently available PDMS
hydrophilic treatments need further developments and improvements as, most of the time,
they do not last long. Hence, it is important to develop new methods or improve the
existing ones in order to achieve a higher permanent hydrophilic feature for PDMS.
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