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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Reversible phosphorylation by protein kinases is one of the core mechanisms by which bio-

logical signals are propagated and processed. Mitogen-activated protein kinases, or

MAPKs, are conserved throughout eukaryotes where they regulate cell cycle, development,

and stress response. Here, we review advances in our understanding of the function and

biochemistry of MAPK signaling in apicomplexan parasites. As expected for well-conserved

signaling modules, MAPKs have been found to have multiple essential roles regulating both

Toxoplasma tachyzoite replication and sexual differentiation in Plasmodium. However, api-

complexan MAPK signaling is notable for the lack of the canonical kinase cascade that nor-

mally regulates the networks, and therefore must be regulated by a distinct mechanism. We

highlight what few regulatory relationships have been established to date, and discuss the

challenges to the field in elucidating the complete MAPK signaling networks in these

parasites.

Introduction

The mitogen-activated protein kinases (MAPKs), together with their regulators, comprise a

core eukaryotic signaling module. The canonical MAPK module translates extracellular signals

across a 3-tiered kinase cascade to provoke cellular responses (Fig 1; [1–4]). Typically, MAPKs

respond to cellular stresses as well as growth and developmental cues (“mitogens”). Originally

discovered in mammals and yeast, the MAPK cascades of standard model organisms have

been largely well characterized. Apicomplexan parasites, however, encode atypical MAPKs

whose functional networks are just beginning to be understood. Notably, apicomplexan para-

sites do not encode for any predicted G protein-coupled receptors or receptor kinases, which

serve as the initiators of many MAPK cascades in model organisms. Apicomplexan parasites

also lack STE family kinases [5–7] that are integral components of canonical MAPK cascades.

Genetic data from Toxoplasma have demonstrated that catalytic activity is critical to each of

the 3 apicomplexan MAPK cellular functions [8–10]. These data indicate that the kinases are

activated despite the lack of a canonical cascade, which begs the question: What is the mecha-

nism of activation? Moreover, the identities of both the regulators and downstream targets of
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apicomplexan MAPKs remain largely unknown. Many questions remain in the biology of the

apicomplexan MAPKs: What proteins do they phosphorylate to carry out their functions?

What upstream signals do they respond to? By what mechanism do they become activated—by

a non-standard activating kinase, an allosteric activator, or simply by scaffolding and regula-

tory inhibition? We also have much to learn about negative regulation of the pathways. Are

apicomplexan MAPK signals tuned by phosphatases? By protein homeostasis? We will discuss

these ideas as they relate to Apicomplexa in the context of the broader understanding of

MAPK signaling in other organisms.

1) Overview of apicomplexan MAPKs

1.1) Clarification of apicomplexan MAPK nomenclature

Three distinct MAPKs have been identified in Apicomplexa: ERK7, MAPKL1, and MAPK2

(Fig 1B, Table 1). Two of the 3 apicomplexan MAPKs are found in Plasmodium. The

Fig 1. Overview of MAPK signaling. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 4:Pleaseverifythatallentriesarecorrect:(A) In a canonical MAPK signaling cascade, a signal results in activation of the upstream MAP3K (the “MAPK kinase

kinase”), which phosphorylates and activates the MAP2K (the “MAPK kinase”), which in turn phosphorylates its target MAPK on both Thr and Tyr.

Apicomplexan parasites lack the STE kinase family, to which all MAP2Ks belong. They therefore encode no MAP2Ks or MAP3Ks. (B) Domain architecture of

the apicomplexan MAPKs (not to scale). ERK7 and MAPKL1 both have long CTEs that are predicted to be intrinsically disordered by IUPRED [75]. The ERK7

CTE contains sequence repeats (green; Sarcocystidae only). In Toxoplasma, both phosphorylation (yellow diamonds) and fucosylation (orange hexagons) sites

have been identified. The Plasmodium ERK7 CTE also has one or more predicted nuclear localization signals (purple rectangles), though no post-translational

modifications of the CTE have been identified as of yet. The Toxoplasma MAPKL1 CTE is also phosphorylated. Many MAPKL1 family members have an

extended activation loop that reaches a maximum of approximately 100 residues in Sarcocystidae. Most MAPK2 proteins have a disordered N-terminal

extension. The activation motifs for each of the apicomplexan MAPK subfamilies are indicated above the kinase domain. CTE, C-terminal extension; MAPK,

mitogen-activated protein kinase.

https://doi.org/10.1371/journal.ppat.1010849.g001

Table 1. Apicomplexan MAPK gene models.

ERK7 MAPKL1 MAPK2

C. parvum cgd2_1960 (4–379) cgd3_3030 (14–390) cgd_4340 (130–551)

G. niphandrodes GNI_004780 (4–413) Missing GNI_086080 (9–395)

P. falciparum PF3D7_1431500 (14–357) Missing PF3D7_1113900 (97–491)

T. gondii TG�_233010 (4–351) TG�_312570 (68–548) TG�_207820 (136–535)

V. brassicaformis Vbra_1579 (4–348) Vbra_18778 (42–387) Vbra_2957 (5–409)

Vbra_20001 (12–402)

Numbers indicate approximate boundaries of kinase domains in the sequence.

https://doi.org/10.1371/journal.ppat.1010849.t001
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Plasmodium ortholog of ERK7 was identified concurrently by 2 groups, who named it

PfMAP-1/PfMRP [11,12]. The second Plasmodium MAPK was identified as PfMAP-2 [13].

Toxoplasma gondii encodes all 3 of the apicomplexan MAPKs. These are called TgMAPKL1

[8] (originally named TgMAPK1 [14]), TgMAPK2 (the ortholog of PfMAP-2, also called

TgMAPK3 [15]), and TgERK7 (also called TgMAPK2 [15,16]). The lack of consistent naming

conventions has led to some confusion in the field, and, for the sake of clarity, we will refer to

these kinases as ERK7 (e.g., TgERK7, PfMAP-1; found in all Apicomplexa), MAPKL1 (e.g.,

TgMAPKL1; missing in Plasmodium), and MAPK2 (e.g., TgMAPK2, PfMAP-2; Alveolate-spe-

cific; found in all Apicomplexa) from here on.

1.2) Evolution of MAPK signaling in Apicomplexa

Mammalian ERK7 (called “ERK8” or “MAPK15” in humans) has been described as able to

robustly autophosphorylate both the Thr/Tyr of its activation loop, and thus autoactivate [17].

Such autoactivation is an unusual property of a MAPK, since the cascades are typically charac-

terized as tightly regulated. Other members of the CMGC kinase family autophosphorylate on

their activation loop Tyr [18], and ancestral reconstruction of the MAPK family supports a

model where the ancestral MAPK was autoactivating [19], and traded this activity to enable

more tightly responsive signaling. ERK7s are early-branching MAPKs and appear to be the

most broadly conserved members of the family throughout eukaryotes [10,19]. Thus, an

ERK7-like molecule is likely the original MAPK.

While it is possible that ERK7 is the ancestor of all extant apicomplexan MAPKs, such a

model is not supported by phylogenetic analysis (Fig 2). The number of available apicom-

plexan genomes has exploded in recent years and have been supplemented by the genomic

sequences of closely related organisms such as those of the phylum Chromerida [20]. Notably,

Chromerida, unlike Apicomplexa, appear to encode the upstream activating MAPK kinases

(or “MAP2Ks”) and a much larger number of MAPKs (Fig 2), suggesting they possess a func-

tional canonical MAPK cascade. Comparing the MAPKs across Apicomplexa with a diverse

set of outgroups reveals that ERK7 from apicomplexan species branches with the orthologs

from all other organisms compared (Fig 2). Furthermore, the MAPKL1 and MAPK2 clades

clearly branch well outside of the ERK7 family. MAPK2 is well conserved throughout Alveo-

late phyla (Fig 2; [6,7,9]). There is strong support for MAPKL1 orthologs both in Cryptosporid-
ium and in the Chromerids. It would therefore appear that each of the 3 apicomplexan

MAPKs were found in the ancestral organism and that these proteins originally evolved in the

context of a fully functional MAPK cascade.

1.3) Apicomplexan MAPKs are each atypical

While the apicomplexan MAPKs are divergent, phylogenetic analysis robustly supports their

identification as bona fide members of the family [5] (Fig 2). Typical MAPK proteins have little

more than a kinase domain and have specialized their functions by variation in the MAPK

scaffolding domains ([21]; described in detail below). Each of the 3 apicomplexan MAPKs

have regions apart from the kinase domain (Fig 1B). Both ERK7 and MAPKL1 have sizeable

C-terminal extensions (CTEs) that are predicted to be largely intrinsically disordered, while

MAPK2 contains a shorter N-terminal extension. Many MAPKL1 proteins also have an exten-

sion in the activation loop region between the DFG and APE motifs, which is most extensive

(approximately 100 residues) and potentially structured in Sarcocystidae.

The ERK7 CTE is a hallmark of this MAPK subfamily and has been implicated in regulation

of kinase activity and subcellular localization in the mammalian protein [22]. Notably, the

TgERK7 CTE is extensively post-translationally modified, including a number of
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phosphorylation [23] and fucosylation sites [24], though their functional importance has yet to

be investigated. Furthermore, the ERK7 CTE in P. berghei is required for its nuclear localiza-

tion, due to 2 nuclear localization signals (NLSs) in the region [25]. Intriguingly, ERK7 nuclear

localization is not conserved in all Apicomplexan, as the NLS are notably absent in the Crypto-
sporidium and Toxoplasma proteins, and TgERK7 does not localize to the parasite nucleus, at

least in tachyzoites [10].

Dual phosphorylation on the activation loop Thr/Tyr is the key to MAPK regulation (Fig

1A). The MAPK2 subfamily is therefore quite unusual in that it replaced the TxY activation

motif with a TxH. This indicates that the MAPK2 family must be activated in a totally distinct

mechanism from typical MAPKs, even in organisms that encode the full MAPK cascade. While

His is not normally considered a phosphorylatable residue in eukaryotes, this may be due to dif-

ficulty in detection. Indeed, His acts as a transition phosphoacceptor in bacterial and plant

2-component signaling [26]. Furthermore, recent advances in mass spectrometry [27,28] and

development of phospho-His-specific antibodies [29] have revealed potential roles for phospho-

His in metazoan biology. Finally, Apicomplexa encode for members of the nucleoside diphos-

phate kinase family (e.g., TGME49_295350), which has been suggested to moonlight as a His

kinase in metazoa [30]. Nevertheless, it is unclear how the conserved activation loop His affects

MAPK2 activation or function, and certainly remains untested whether this residue is phos-

phorylated in parasites. Intriguingly, some (but not all) red algae encode MAPKs with a similar

TxH motif to MAPK2 [31]. It is thus tantalizing to hypothesize that the MAPK2 family evolved

from horizontal gene transfer from the red algal secondary endosymbiont shared among Alveo-

lates. Phylogenetic analysis of available sequences, however, suggests that a TxH activation

motif may have evolved multiple times in the MAPKs of red algal-derived lineages (Fig 2).

2) Regulation of the apicomplexan MAPKs

2.1) Phosphorylation is the first layer of MAPK regulation

As described above, MAPKs are unusual in requiring phosphorylation on both a Thr and Tyr

in their activation loops in order to signal, though the MAP2Ks that carry this out are missing

in Apicomplexa (Fig 1A). While ERK7 family members autoactivate, and therefore do not

require an upstream kinase [17,19], it unclear, however, whether the same is true for MAPKL1

or MAPK2. No interacting partners have yet been identified for a MAPKL1 protein. In Plas-
modium, 2 NEK kinases, PfNEK1 and PfNEK3, have been demonstrated to be able to phos-

phorylate the PfMAPK2 activation loop in vitro, and therefore have been suggested to act as

activating kinases for this protein [32,33]. However, such an activating relationship between

the kinases has not been rigorously validated. It has yet to be demonstrated thatAU : PleasecheckifthechangesmadeinthesentenceIthasyettobedemonstratedthatneither:::arecorrect:PfNEK1 nor

PfNEK3 are required for PfMAPK2 function within the parasites. Importantly, kinases that are

bona fide activators of MAPKs typically contain a docking sequence motif that facilitates effi-

ciency and specificity of activation (Fig 3; described below). Thus, identification of apicom-

plexan MAPKs regulators is likely to come from interactome studies.

Fig 2. Phylogenetic analysis of the apicomplexan MAPKs. Phylogenetic trees of multiple sequence alignments of the MAPKs from the indicated

organisms were estimated using IQTREE2 [76]. Subtrees were collapsed for space considerations, indicated by triangles. When present, numbers to the

right of the triangles indicate number of kinases in the subtree. Expanded subtrees for the apicomplexan MAPK clades are shown in inset boxes. MAPK

activation loop motifs (e.g., TDY, TxH) have been indicated, where appropriate, to demonstrate that the TxH motif is not confined to the MAPK2 clade.

Organisms: Metazoan (human, mouse, fruit fly), Apicomplexa (T. gondii, E. falciformis, E. maxima, C. parvum, G. niphandrodes, P. berghei, P. falciparum,

P. vivax), Chromerid (C. velia, V. brassicaformis), Dinoflagellate (S. microadriaticum), Ciliate (T. thermophila), green plant (A. thaliana, C. reinhardtii), red

algae (C. crispus, P. purpureum, P. yezoensis). Note: The estimated number of MAPKs in V. brassicaformis is approximately 40 and approximately 75 in C.

velia; note that analysis is complicated by current low quality of genome build and lack of verification of gene models by transcript sequencing. MAPK,

mitogen-activated protein kinase.

https://doi.org/10.1371/journal.ppat.1010849.g002
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As MAPKs require dual phosphorylation to activate, they can also be deactivated by

dephosphorylation, which is carried out by specific dual-specificity phosphatases (DUSPs).

DUSPs are a critical component of tuning MAPK response [34,35] and recognize their cognate

MAPKs through scaffolding interactions on the D-site (described below; Fig 3). Note that

kinases that robustly autoactivate, such as ERK7, cannot be primarily regulated by dephos-

phorylation without some additional inhibitory interaction, as the dephosphorylated kinase

would quickly reactivate. MAPKL1 and MAPK2, however, may well be regulated by a more

typical mechanism. We note that putative DUSP family members are encoded in all

Fig 3. MAPKs use docking sites to recognize substrates and regulators. (A) Canonical MAPKs use the conserved D-site (orange) to recognize kinase-

interaction-motifs such as that of MKP3 bound to ERK2 (blue; PDB: 2FYS). This site lies distal to the active site and substrate recognition region. Some

MAPKs use a second docking site, the F-site (yellow) to recognize F-x-F-P motifs such as that found in ORP45 (purple; PDB: 7OPM). (B) The inhibitory

scaffold AC9 wraps around the Toxoplasma ERK7 kinase domain (blue; PDB: 6V6A) and occupies both the D-site (orange), active site, and substrate-

recognition region. The site where the F-site would be localized on the TgERK7 structure is indicated in yellow, though no F-site binding partners have yet

been identified for an apicomplexan MAPK. It is possible that apicomplexan MAPKs do not use F-site recognition. (C) Alignment of the sequences

comprising the D-site of the indicated MAPKs. Polar (mostly acidic) sites that are thought to provide specificity to the KIMs recognized are indicated by

arrowheads and red text. Sites that typically make backbone or hydrophobic interactions with KIMs are boxed. (Hs–human; Tg–T. gondii; Cp–C. parvum;

Pf–P. falciparum) KIM, kinase-interacting motif; MAPK, mitogen-activated protein kinase.

https://doi.org/10.1371/journal.ppat.1010849.g003
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apicomplexan genomes (e.g., 9 in Toxoplasma, 3 in P. falciparum), though these have not yet

been phenotypically or biochemically characterized. Importantly, many DUSPs regulate

diverse substrates beyond MAPKs [36], so it is entirely possible these proteins regulate pro-

cesses distinct from MAPK signaling in Apicomplexa.

2.2) Scaffolding interactions define the architecture of a MAPK cascade

Pawson and colleagues spearheaded the understanding of signaling cascades as being assem-

bled by combinations of interactions between modular domains [37,38]. While scaffolding

proteins certainly guide the architecture of canonical MAPK cascades [39–42], MAPKs, in

general, recognize both their regulators and substrates using conserved docking sites on the

kinase domain [43]. Docking site interactions typically have affinities in the high nanomolar to

low micromolar range and have been demonstrated to be the main drivers of signaling speci-

ficity [21]. Therefore, defining such docking interactions for the apicomplexan MAPKs is

potentially the most direct method by which we can identify potential activators and substrates

and thus delineate their signaling pathways.

Two distinct docking sites have been identified on the MAPK kinase domain. The first,

called the D-site or common docking (CD) domain, is thought to be present in all MAPKs.

The D-site lies on the face opposite of the kinase active site and binds so-called “kinase-inter-

acting motifs” or KIMs [43–46] (Fig 3). Most often, KIMs are short linear sequence motifs

containing an N-terminal basic patch followed by a hydrophobic patch (e.g., [K/R]-X-[K/R]-

X2-4-[I/L]-X-[I/L]) and are unfolded until binding [47,48]. Some interacting proteins, how-

ever, such as the dual-specificity phosphatases that down-regulate canonical MAPKs, bind the

D-site using a folded surface [49]. The second site, called the F-site or DEF-site, lies on the C-

lobe just below the activation loop [47,50] and typically recognizes short linear motifs contain-

ing the sequence F-X-F-P [51] (Fig 3). While the D-site appears conserved in all MAPKs, the

F-site binding seems to be missing in some MAPKs and has therefore been proposed to pro-

vide an additional layer of specificity to substrate recognition [51–53]. Even though the motifs

recognized by the 2 docking sites are relatively relaxed, there is a surprising degree of func-

tional specificity in practice, suggesting there is still much to learn about the determinants of

recognition. We note that the primary sequence and structural elements of both docking sites

appear intact in each of the 3 apicomplexan MAPKs, suggesting that they recognize similar

motifs those found in metazoan proteins.

2.3) Regulation by inhibitory interactions

In addition to regulation by phosphorylation, MAPKs, like other kinases, may be inactivated

by binding inhibitor proteins. The scaffolding protein PEA-15 sequesters metazoan ERK2 in

the cytoplasm [54]. PEA-15 binds near the ERK2 F-site, which results in conformational

changes to the activation loop, the Gly-rich loop, and the α-C helix, inactivating the kinase

[53]. A number of pathogens, such as KSHV and Yersinia, use proteins with optimized dock-

ing site motifs to compete off the endogenous partners of kinases such as mammalian RSK

and ERK2 [50,55], thereby blocking kinase function.

Such a mechanism of regulation is likely especially important for kinases such as ERK7 that

are autoactivating. Indeed, we have found that that an inhibitory scaffold is essential to ERK7

function in Toxoplasma. We demonstrated that Toxoplasma apical cap protein 9 (AC9) binds

tightly to the ERK7 kinase domain, and is required for its recruitment to the parasite apical

cap, and thus for its essential function [56]. AC9 interacts with TgERK7 with a surprisingly

large interface, wrapping around the kinase to occupy the D-site docking domain, the ATP

binding site, and the substrate recognition site of the kinase [56] (Fig 3 –docking domain).
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While the net binding affinity of AC9 for ERK7 is relatively high (KD approximately 50 nM),

the distribution of the binding energy over such a large surface leads to an interaction that is

relatively dynamic. This led to a model whereby AC9 acts both to concentrate TgERK7 at its

site of action and to block phosphorylation of nonspecific substrates. AC9 can be effectively

competed off by substrates containing motifs that recognize the D-site with only moderate

affinity (1 to 10 μM) [56]. In fact, we recently found that another apical cap protein, AC10, is

one such substrate of ERK7 [57]. Furthermore, it appears that AC9 and AC10 use multivalent

interactions to form an amorphous oligomer at the apical cap IMC to concentrate TgERK7 at

this site [57] and facilitate its function.

2.4) Regulation by protein homeostasis

Another major mechanism of kinase regulation is, of course, protein homeostasis. Each of the

3 Toxoplasma MAPKs show strong cell cycle dependence of their transcript levels (see

EupathDB; [58,59]). All 3 Toxoplasma MAPKs have transcript levels that vary with the tachy-

zoite cell cycle (ToxoDB v53). While TgERK7 protein is found throughout the cell cycle [10],

TgMAPKL1 is found only during S-phase and mitosis [60]. TgMAPK2 protein levels also

appear cell cycle regulated, and the protein is undetectable from late budding through cytoki-

nesis [9]. Notably, the TgMAPK2-AID phenotype was not completely rescued by expression of

a non-degradable (i.e., not AID-tagged) copy of the protein [9]. Thus, a careful balance of pro-

tein expression and degradation may be critical to the tuning of apicomplexan MAPK

signaling.

3) Biological functions associated with the apicomplexan MAPKs

Recent work has defined functions for each of the apicomplexan MAPKs (Fig 4). As the major-

ity of work has been conducted in Toxoplasma and Plasmodium, we will focus on the current

understanding of MAPK function in those organisms.

3.1) MAPKL1

TgMAPKL1 localizes to the outer core of the centrosome of dividing Toxoplasma tachyzoites,

and use of a temperature-sensitive allele demonstrated that its loss-of-function results in over-

duplication of centrosomes [60]. This led to the model that nuclear and cellular division are

controlled separately in Toxoplasma and related organisms [60]; MAPKL1 and other outer

core centrosome components are proposed to control parasite budding, while inner core com-

ponents control nuclear division. Given its tight association with the centrosome, MAPKL1

likely has multiple tight interacting partners, though no interactome study for this kinase has

yet been published.

Notably, MAPKL1 has been demonstrated to be susceptible to inhibition by at least 2 avail-

able compounds that are marketed as selective. The ALK4,5,7 inhibitor SB505124 was demon-

strated to block parasite replication both by inhibiting MAPKL1 and by altering host HIF1α
signaling [8]. MAPKL1 also has a relatively small “gatekeeper” residue (Ser191) that renders it

susceptible to inhibition by bumped inhibitors such as 1NM-PP1 [61]. Notably, TgCDPK1 is

also potently inhibited by bumped inhibitors, blocking parasite motility and invasion [62]. The

block on cell cycle could be rescued, however, by mutating the MAPKL1 gatekeeper to a more

typical, bulky Tyr, verifying MAPKL1 as the relevant target [61]. While these studies highlight

the potential (and mostly untapped) value of pharmacological inhibition to study biological

function of apicomplexan kinases, they also demonstrate the importance of verifying specific-

ity of a given drug when using it a new system (i.e., most parasites), and thus serve as impor-

tant cautionary tales.
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3.2) MAPK2

In Plasmodium, MAPK2 was found to be essential for male gametogenesis and ex-flagellation,

a process by which the male gametocytes undergo 3 rounds of replication leading to the pro-

duction of 4 flagellated gametes [63,64]. While MAPK2 was demonstrated dispensable in P.

berghei asexual stages, early attempts to knock out the kinase in P. falciparum in the blood

stages [65] led to the hypothesis that MAPK2 may have different functions in the 2 species in

the asexual stages. However, a recent, unconditional, knockout of PfMAPK2 demonstrates

that MAPK2 is dispensable in the asexual stages of both species [63,64]. Notably, while Plasmo-
dium MAPK2 is primarily nuclear-localized in gametocytes [63], expression of an exogenous

copy in the blood stages yields primarily cytosolic localization [65].

Somewhat surprisingly, given its function in Plasmodium and conservation throughout

Alveolates, MAPK2 is essential in the asexual tachyzoite stage of Toxoplasma [9], though its

role in the sexual stages has yet to be tested. When TgMAPK2 was conditionally depleted

Fig 4. MAPK function in Toxoplasma tachyzoite replication. ERK7 (red kinase) localizes to the maternal and

daughter bud apical caps, just below the conoid (orange rings). MAPKL1 (green kinase) localizes to the

pericentrosomal material surrounding the centrosome (green circle). MAPK2 (yellow kinase) is cytosolic. Right panels

show phenotypes resulting from knockdown of each of MAPKs. Loss of ERK7 results in destruction of the conoid.

Loss of MAPKL1 and MAPK2 has opposing effects on centrosome duplication. MAPK, mitogen-activated protein

kinase.

https://doi.org/10.1371/journal.ppat.1010849.g004
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using the auxin-inducible degron system, parasite replication was arrested prior to the initia-

tion of centrosome duplication and daughter cell budding [9]. This appeared to be a true

arrest, as wash-out of auxin (and restoration of TgMAPK2 protein), rescued the phenotype in

the majority of parasites. Remarkably, both the parasite cell and its organelles continued to

grow in size without segregation of contents into buds or parasite division [9]. Thus,

TgMAPK2 is required for maintaining the coupling of cell growth with division.

Intriguingly, MAPKL1 and MAPK2 loss-of-function in Toxoplasma both manifest in

opposing phenotypes associated with centrosome duplication. While the loss of TgMAPKL1

results in over-duplication of the centrosome, loss of TgMAPK2 blocks duplication. Interest-

ingly, while TgMAPKL1 is tightly associated with the centrosome [60], TgMAPK2 is broadly

cytosolic and does not co-localize with any known cellular structures, including the centro-

some [9]. Thus, TgMAPK2 likely facilitates centrosome duplication more indirectly than does

TgMAPKL1. As with MAPKL1, there are, as of yet, no validated interactors for MAPK2 in any

organism, so both its upstream regulators and downstream targets are a mystery. Notably,

MAPKs often regulate transcription factor localization and activity, including the AP2 tran-

scription factors in plants [66,67], which are also conserved in Apicomplexa [68,69]. One pos-

sibility that deserves consideration is that kinases, such as MAPK2, play a similar role in

Apicomplexa.

3.3) ERK7

Compared to metazoa, where it is one of the most poorly understood MAPKs, in Apicom-

plexa, the best understood MAPK pathway is that of Toxoplasma ERK7, which is essential to

the tachyzoite lytic cycle [10]. TgERK7 localizes to the apical cap of the parasite inner mem-

brane complex (IMC), both in daughter buds and in mature parasites [10], though its staining

becomes weaker in the mature parasites as they approach cytokinesis. When TgERK7 was

inducibly knocked-down with the auxin-degron system, Toxoplasma tachyzoites replicated

normally within a vacuole, but were immotile and therefore incapable of egress and invasion

of new host cells [10]. In parasites without ERK7, these phenotypes are all due to the loss of the

parasite conoid, the central organizing hub of the apical complex. As the conoid was preserved

in early daughter buds, but missing in mature parasites grown without ERK7, the kinase was

posited to play a role late in conoid assembly [10]. Recent findings have called into question

this mechanism of action.

We recently completed an interactome study of TgERK7 [70]. In addition to its known reg-

ulatory scaffolds AC9 [56] and AC10 [57], we identified a putative E3 ligase called CSAR1 that

directly interacted with the ERK7 by yeast-2-hybrid. Remarkably, knockout of CSAR1 sup-

pressed the ERK7 loss-of-function phenotype, allowing parasites to mature with intact

conoids. Thus, it appears loss-of-function of ERK7 leads to an aberrant function in CSAR1,

causing the premature degradation of daughter conoids [70]. This idea is consistent with

recent proteomics that indicated loss of ERK7 results in degradation of components of the api-

cal complex [71]. Intriguingly, ERK7 has been strongly linked both to the biogenesis and

maintenance of primary cilia in metazoa [72,73] as well as to regulation of ubiquitin-mediated

degradation of specific proteins [74]. It seems likely, therefore, that different apicomplexan

parasites have adapted conserved ERK7 functions to their varied life cycles.

In stark contrast to findings in Toxoplasma, the Plasmodium falciparum ERK7 ortholog

(PfMAP-1) is apparently dispensable both for the blood stage and mosquito stages of the para-

site’s life cycle [65]. What the kinase is doing in these parasites is therefore unknown. Plasmo-
dium ERK7 localization is dynamic as parasites develop: P. berghei ERK7 was found to be

enriched in the parasite nuclei in early liver stage schizonts. In the cytomere stage, PbERK7
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was instead concentrated to comma- and ring-shaped structures that no longer co-localized

with the nucleus, while in merozoites ERK7 displayed uniform cytosolic localization [25]. It is

unfortunate that PbERK7 localization has not yet been experimentally compared with any

additional marker, such as the IMC. Notably, PbERK7 expression is much higher in parasite

stages such as ookinetes and sporozoites, suggesting its localization and function may be dis-

tinct in these stages.

Concluding remarks

Much of the fungal and metazoan MAPK signaling networks were elucidated by a combina-

tion of genetic screens, early systems biology methods (e.g., yeast-2-hybrid), and painstaking

biochemistry. Identifying the full complement of activators, negative regulators, scaffolds, and

downstream substrates of the apicomplexan MAPKs will take similar efforts. Importantly, the

depth of understanding of human MAPK signaling has led to>10 FDA-approved small mole-

cules to date (with more in clinical trials) and a plethora of tool compounds that target these

pathways. Kinase signaling therefore represents an, as yet, untapped bounty of targets to treat

apicomplexan infections. Of course, modern proteomics and bioinformatics methods can

greatly accelerate discovery. However, to gain the depth of knowledge required to unravel the

complexity of parasite kinase signaling will require the same kind of careful, hypothesis-driven

cell biological, and biochemical work that enabled our current understanding in well-studied

models.
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