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Abstract

Non-rigid deformation of a template to fit 3D scans of human subjects is widely used to develop 

statistical models of 3D human shapes and poses. Complex optimization problems must be 

solved to use these models to parameterize scans of pregnant women, thus limiting their use 

in antenatal point-of-care tools in low-resource settings. Moreover, these models were developed 

using datasets that did not contain any 3D scans of pregnant women. In this study, we developed 

a statistical shape model of the torso of pregnant women at greater than 36 weeks of gestation 

using fast and simple vertex-based deformation of a cylindrical template constrained along the 

radial direction. The 3D scans were pre-processed to remove noisy outlier points and segment 

the torso based on anatomical landmarks. A cylindrical template mesh T  was then fitted onto the 

segmented scan of the torso by moving each vertex of T  in the direction of the radial vector. This 

process is computationally inexpensive taking only 14.80 seconds to deform a template with 9090 

vertices. Principal component analysis (PCA) was performed on the deformed vertex co-ordinates 

to find the directions of maximum variance. The first 10 principal vectors of our model explained 

79.03% of the total variance and reconstructed unseen scans with a mean error of 2.43 cm. We 

also used the PCA weights of the first 10 principal vectors to accurately predict anthropometric 

measurements of the pregnant women.
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I. INTRODUCTION

The ease of use, accuracy, and precision of 3D scanning technologies [1], [2] have made 

them increasingly popular as a tool for obtaining reliable anthropometric measurements. 

Conventional anthropometry suffers from several drawbacks, such as large measurement 

errors, poor reliability [3], operator-to-operator variability [2], and the long time required 

to collect multiple measurements. Digital anthropometric tools address these drawbacks and 

have been shown to be faster while having higher reliability and precision [1], [2], [4]. These 

tools are used to collect traditional anthropometric measurements such as height or body 

circumference. However, the definitions of these measurements are often unclear because of 

proprietary software and are unique to each manufacturer [5], making it difficult to leverage 

the potential of 3D data to develop universal prognostic models that can be used as clinical 

interventions.

Low-cost, handheld 3D scanners have been validated for recording various anthropometric 

measurements, such as height, body circumference and body volume [6], [7], [8]. In 

biological anthropology, landmarks and semilandmarks are used to analyze shape variations 

of specific anatomical regions using 3D geometric morphometrics [9]. These landmarks 

are either detected manually [7], [9] or estimated automatically from the scan [6], [7], [8], 

[10]. Manual detection of landmarks is time-consuming and the presence of noise and holes 

in raw scans make automated landmark detection challenging. Previous studies have used 

non-rigid vertex-based deformations of predefined templates to obtain clean scans [11], [12], 

[13], [14], [15]. An additional benefit of template deformation is the standardization of 

mesh topology across all participants making it easy to develop a statistical shape model. 

This model could also enable accurate and automatic detection of homologous anatomical 

landmarks and semilandmarks for 3D geometric morphometrics. The predefined templates 

can be custom-generated [11], [12] or derived from existing models such as SCAPE [16] or 

SMPL [17], and undergo shape deformation and pose deformation to fit the observed scan 

[18]. However, solving these deformation parameters is computationally expensive and can 

take hours on point-of-care tools that include smartphones and tablets.

Maternal anthropometric measurements constitute an important component of the WHO 

(World Health Organization) guidelines for antenatal care, especially as a metric for 

characterizing under-nutrition [19]. These measurements have also been effective in 

predicting risk of cephalopelvic disproportion (CPD) [6], [20], [21]. CPD is a mismatch 

in the size of the maternal pelvis and fetal head that often leads to obstructed labor 

and requires delivery by Cesarean section (C/S) [20]. Emergency C/S facilities are rarely 

available to women living in low-resource settings and a lack of timely access to these 

facilities leads to a higher incidence of maternal and perinatal mortality due to CPD-related 

obstructed labor [6], [20]. Maternal anthropometric measurements have been strongly linked 
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with pregnancy outcomes [6], [20], [21], [22], [23], and analyzing 3D shape variations in 

pregnant women could help determine the risk of CPD in the early stages of gestation. This 

would enable high-risk women to be referred early to healthcare facilities where emergency 

C/S is available. Existing parametric models of human shape [16], [17] are learned on large 

publicly available data-sets of 3D scans [12], [24], [25], which do not include any data from 

the pregnant population. This makes it challenging to use these models to characterize shape 

variations in pregnant women. Even though there are pregnancy-related shape models that 

use MRI or ultrasound data to characterize specific structures, such as the uterus or the 

pelvic floor [26], [27], there is a strong need for a statistical model that characterizes the 

morphological shape of pregnant women using 3D scans.

The objective of this study was to address these gaps and we make two novel contributions 

to that end. First, we introduce a simple, constrained optimization to parameterize 3D 

scans, which is computationally inexpensive and can be performed on standard tablets and 

smartphones, enabling its use as a point-of-care tool for routine antenatal care. Second, 

we developed a statistical model to represent the shape variations of the torso of pregnant 

women, at or near term. Our model used the radial deformation of a cylindrical template 

mesh to fit the observed 3D scan (Fig. 1). Each vertex of the template was constrained 

to move in the radial direction, making it easy to solve the optimization problem. The 

methods and model presented in this study can be used to characterize, in real-time, the 

morphological shape variations in the pregnant population which can then be correlated with 

the risk of adverse maternal outcomes like CPD.

II. METHODS

A. COLLECTION OF 3D SCANS FROM PARTICIPANTS

Data collection was approved by the Institutional Review Board (IRB) at Addis Ababa 

University, College of Health Sciences (Protocol number: 054/15/gyn) and the Georgia 

Institute of Technology IRB (Protocol number: H19320). In this study, we used 225 3D 

scans of primigravida women, aged between 18 and 40 years, with singleton pregnancies 

collected after 36 weeks of gestation. Following previously described methods, 3D meshes 

were collected by trained nurses using a Structure 3D Sensor (Occipital, Inc.) across two 

health facilities (Woreda 11 Health Center and Gandhi Memorial Hospital) in Addis Ababa, 

Ethiopia [6]. The participants were asked to remove any loose clothing items and stand 

with their arms lifted to at least 45◦, and their feet were placed approximately 50 cm apart 

(Fig. 2). Participants with hair extending beyond the shoulder were asked to tie it up to 

prevent occlusion of the back or shoulders (Fig. 3). The time taken by a trained nurse to 

collect a 3D scan using this method was between 3 to 5 minutes. Along with the 3D scans, 

eight anthropometric measurements were collected for each participant: height, weight, 

shoulder width, shoulder height, waist circumference, waist height, hip circumference, and 

trochanteric height using previously described methods [6]. To assess inter-user variability, 

12 additional participants were recruited with the same demographics as described above. 

For each participant, 3D scans and anthropometric measurements were obtained by three 

different trained nurses. The 3D mesh processing, template fitting, and subsequent statistical 

NAYAK et al. Page 3

IEEE Access. Author manuscript; available in PMC 2024 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis were all performed on a MacBook Pro (Apple, Inc.) with an Apple M1 chip and 16 

GB RAM.

B. MESH PRE-PROCESSING

Raw scans were processed to remove outlier objects along with the floor plane. The 

approximate positions of the left and right armpits, left and right shoulders, and groin were 

marked manually on each scan. These landmarks were used to segment the scan into five 

regions (Fig. 4). All regions except the torso were removed. Each scan was then rotated to a 

frontal position and normalized to fit a unit sphere centered at origin as follows:

vi = vi − μS
max∥ vi − μS ∥2

,

(1)

where vi is the itℎ vertex of segmented scan S, μS is the centroid of S, and ∥ . ∥2 represents 

the L2 norm.

C. RADIAL DEFORMATION OF CYLINDRICAL TEMPLATE

Cylindrical template mesh T  was deformed to fit the segmented scanned mesh S, as shown 

in Fig. 1. Template T , with a unit radius and height of two units, was centered at the 

origin and oriented in the y-direction. The number of vertices NT of T  was controlled by 

two factors: (i) the differential angle Δθr (in degrees) subtended at the centerline of the 

cylinder by neighboring vertices on the same xz plane, as shown in Fig. 5a, and (ii) the 

cross-sectional distance Δy between individual xz planes along the y-axis, as shown in Fig. 

5b. Template T  was compressed uniformly along the y-axis to align with the height of S. 

This is followed by deformation of each vertex xi, i = 1, 2, ……NT of T  given by

xi = xi + tiri,

(2)

where ri is the direction of the radial vector from xi towards the centerline of the cylinder 

along the xz plane and ti is the radial deformation, that is, the shortest distance between 

xi and the front-facing surfaces of S along ri. Radial deformation was calculated using 

the Moller-Trumbore algorithm [28], which efficiently checks for ray-face intersections 

in three-dimensions. If the scan had holes along the surface (Fig. 6), some of the radial 

rays would pass through S without intersecting any face. The radial deformations of these 

vertices were calculated by iteratively averaging the radial deformations of the neighboring 

vertices.

Radial deformation of the cylindrical mesh was implemented for six different values of NT. 

The average time taken for each deformation and the average error between the deformed 

template T ′ and original scan S were calculated for each NT. The reconstruction error ER is 

given by
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ER = i = 1
NT ∥ xi − vi

S ∥2 − i = 1
NS ∥ xi

T − vi ∥2
NT + NS

,

(3)

where NS is the total number of vertices in S, yi
S is the closest point in S to xi and xi

T is the 

closest point in deformed template T ′ to yi.

D. STATISTICAL MODELLING OF SHAPE VARIATIONS

To develop the statistical model, the data-set was randomly divided into training (n = 180) 

and testing set (n = 45). This was done to demonstrate the ability of our model to generalize 

to unseen scans, i.e., the scans in the testing set. The x, y and z co-ordinates of the deformed 

template vertices in the training set were concatenated into 180 vectors, each of length 

3NT . NT was chosen to be 9090. Principal component analysis (PCA) was then performed 

on these vectors to determine the directions of maximum variance. To test the model, 

the reconstruction error was calculated for the scans in the testing set using the first 10, 

25, 50, and 100 principal vectors, according to (3). In addition, we also developed and 

tested the statistical shape model using the metrics of compactness, generalization, and 

specificity for the first 10, 25, 50, and 100 principal vectors [29]. The compactness of the 

model, which was developed using all the 225 scans, was defined as the ratio of the total 

variance explained by the principal vectors. The generalization error was calculated using 

leave-one-out cross-validation for all the 225 scans [30] and the specificity was calculated as 

the average minimum distance of uniformly distributed, randomly generated scans (n = 100) 

from the training set (n = 225) [29].

We also trained a linear regression model to find a function f pi ai that maps a set of 

PCA weights pi to a set of anthropometric measurements ai. The weights for the first 10 

principal vectors of the training set were taken as the independent variable for f pi  and 

the dependent variable was the set of eight anthropometric measurements collected for 

each participant. The cube root of the weight was used for the regression model to make 

it comparable to the other measurements because the weight is roughly proportional to 

volume [11]. The inter-user variability of the trained regression model was compared with 

that of anthropometric measurements obtained by trained nurses using a tape measure. The 

variability of the measurements was defined as the standard deviation between repeated 

measurements of the same participant (n = 12). To obtain the predicted anthropometric 

measurements, a cylindrical template (NT = 9090) was deformed to fit the three different 

3D scans of each participant. The weights of the first 10 principal vectors of the deformed 

vertices were then used to predict the anthropometric measurements. All comparisons of 

significance were performed using two-tailed T-tests.

III. RESULTS

The time taken for our template deformation increased almost linearly with an increase 

in NT (Table 1). The average deformation error also showed a generally decreasing trend 

with increasing NT and started to plateau beyond NT = 36000. Decreasing the cross-sectional 
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distance Δy beyond 0.01 units, while keeping NT nearly constant leads to an increase in the 

deformation error (Table 1). This could be attributed to the intrinsic resolution of S which 

is a function of the scanning device. The first 10 principal vectors of the trained PCA shape 

model explained 79.1% of the total variance. This increased to 90.4%, 95.3%, 98.3% for 

the first 25, 50 and 100 principal vectors, respectively. The major principal directions of the 

developed model are shown in Fig. 7. The first principal vector affects the curvature of the 

spine and bust size. The second principal vector affected the torso circumference and the 

length of the torso and the third principal vector influenced the hip size as well as the torso 

length. These vectors were then used to successfully reconstruct the unseen scans, i.e., the 

scans in the testing set (n = 45). As expected, the mean reconstruction error decreased when 

the number of principal vectors k increased (Table 2). The largest decrease was observed 

when k was increased from 10 to 25. The reconstruction is visualized using Hausdorff 

distance (Fig. 8) and by overlaying the reconstructed scans on the original ones(Fig.9).The 

compactness, generalization and specificity of the model is shown in Table 3. As the number 

of principal vectors increase, the model becomes more compact and generalizes better but 

the specificity error increases (Table 3).

The average error (%) between the actual and predicted anthropometric measurements is 

shown in Table 4. The average error for all predicted measurements, except for the weight, 

was below 5%. No improvement was observed in the average error % after increasing the 

number of vertices, NT, of the cylindrical template. The predicted measurements of shoulder 

width, waist height and trochanteric height showed a significant reduction (p < 0.005) in 

inter-user variability when compared to the actual measurements taken using the tape 

measure (Fig. 10). No significant differences were observed in the inter-user variability 

of the other anthropometric measurements.

IV. DISCUSSION

Existing 3D shape models of the human body use both shape and posture parameters 

to characterize the variations observed in the human population [12], [16], [17]. Owing 

to the complexity of the human pose and shape, these models require solving expensive 

optimization problems to obtain the deformation parameters. In addition, these models 

have been trained on datasets [12], [24], [25] that do not include any 3D scans of 

pregnant women. In this paper, we present the first statistical shape model to characterize 

morphological variations in a pregnant population.

Our shape model focuses only on the torso regions of the participants. Pose-related 

parameters have little prognostic value for assessing the risk of adverse events in the 

pregnant population. In the standing posture, these parameters are primarily affected by 

the differences in the positioning of the arms and legs (Fig. 2). To eliminate the effect 

of these parameters on our model, we segmented the arms and legs. We also removed 

the head and neck region to prevent facial or hairstyle variations (Fig. 3) from affecting 

the model. The segmented torso region might still be affected by pose-related variations 

arising from presence of quasi-similar postures [30]. The choice of cylindrical template was 

inspired by previous studies [31], [32], which used either cylinders or truncated cones as 

part of the template to model the human shape. The constrained radial deformations used 

NAYAK et al. Page 6

IEEE Access. Author manuscript; available in PMC 2024 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for developing the model assume that the transverse plane of the scan is perpendicular to 

the y-axis. This is a reasonable assumption considering the average tilt of the floor plane 

with respect to the y-axis was 0.61 degrees for the 225 scans and the maximum tilt angle 

was 1.67 degrees. The regularization term used in previous vertex-based deformation models 

[11], [12], [18] is also omitted because our proposed deformation is not isometric. This 

further simplifies the optimization process. The results also demonstrate smooth surfaces 

without requiring any additional constraints, as shown in Fig. 1, Fig. 5 and Fig. 6. Our 

proposed deformation is quick, taking only 14.80 seconds to deform 9090 vertices, and can 

potentially be used in point-of-care applications.

The statistical shape model successfully characterizes the variations observed in 3D scans of 

the torso of pregnant women. The model accurately reconstructs most regions of the torso, 

except the region between the belly and the hip and areas with higher curvature such as the 

sides of the breast (Fig. 8).

In future studies, we plan to use the radial deformation and the statistical shape model 

for assessing the risk of CPD. The radial deformation allows us to encode any mesh as a 

vector of length NT, consisting of the radial distances of the mesh from a fixed cylinder. 

This encoding can potentially be used as a feature vector for predicting the risk of CPD. 

The PCA vectors obtained from the statistical shape model represent the morphological 

shape of a pregnant woman and previous studies have successfully used morphological 

features to predict CPD [6], [20], [21], [22], [23]. We could use these vectors, individually 

or in combination with the radial encoding, as inputs to a model that would determine the 

probability that a pregnant woman develops CPD during labor.

The PCA vectors of our deformation model served as features for predicting anthropometric 

measurements using linear regression. The predicted values for all measurements, except 

the weight, closely matched with the actual measurements. For two different values of 

NT, the height prediction had the minimum error and the hip circumference prediction 

had the maximum error. The prediction error was not affected by the number of 

vertices, NT, of cylindrical template T . The poor prediction of weight the can be 

attributed to the fact that we used only the torso region to develop our model. 

The predicted anthropometric measurements also showed lower inter-user variability 

compared to traditional anthropometric measurements obtained using a tape measure. The 

predicted measurements of shoulder width, waist height, and trochanteric height showed 

significantly reduced inter-user variability (Fig. 10). Our proposed model can be used as 

a more reproducible alternative to traditional tape measurements for collecting maternal 

anthropometric data.

The model proposed in this study has several limitations. First, it was developed using 

a small data-set of only 225 scans. A larger dataset would allow the model to capture 

a wider range of variations and improve the prediction of anthropometric measurements. 

Furthermore, the use of PCA on a small set of training scans prevents the model from 

fully spanning the high-dimensional space of non-rigid transformations [33]. This can 

be addressed in future work by incorporating alternative strategies like wavelet-based 

decomposition coupled with PCA [33]. Second, the model characterizes the shape variations 
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of only the torso region using a cross-sectional encoding. Performing PCA directly on the 

cross-sectional encoding prevents the statistical shape model from being isometric-invariant. 

The model cannot be extended robustly to rigid transformations and non-rigid bending of the 

raw 3D scan. This could be addressed in future work by leveraging deep learning techniques 

that would use larger datasets to learn intuitive and efficient cross-sectional encodings 

[34]. These techniques could also characterize shape variations across different regions in 

addition to the torso. Finally, the developed model did not capture the growth or longitudinal 

shape changes observed during pregnancy. This could be addressed in future studies by 

training a model on 3D scans of pregnant women across different gestational periods. Our 

eventual goal is to develop a point-of-care tool that uses statistical shape models to analyze, 

in real-time, the shape variations in 3D scans of pregnant women and assess the risk of 

CPD-related obstructed labor at the earliest possible stages of gestation.

V. CONCLUSION

This paper presents a fast, constrained optimization to parameterize 3D scans and 

uses the deformation parameters to build a statistical model that represents the shape 

variations of the torso of pregnant women beyond 36 weeks of gestation. The model 

successfully characterized the shape changes of the torso of the pregnant population, adapted 

well to unobserved 3D scans, and accurately predicted various maternal anthropometric 

measurements with reduced inter-user variability.
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FIGURE 1. Our method parameterizes a given scan by deforming a cylindrical template to fit 
the shape of the scan.
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FIGURE 2. The dataset consists of scans of women beyond 36 weeks of gestation collected in the 
standing posture with the position of the arms ranging from (a) T-Pose to (b) A-Pose.
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FIGURE 3. The participants had their hair tied up in various styles and shapes. The head and 
neck regions were removed from all scans to prevent these variations from affecting our shape 
model.
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FIGURE 4. Each scan was segmented into five regions - left arm (shown in cyan), right arm 
(shown in yellow), left and right legs (shown in blue), torso (shown in red) and head and neck 
(shown in green). Only the torso region was used for shape modelling.
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FIGURE 5. (a) The angle θr subtended by neighboring vertices, depicted as red squares, on the 
same xz plane and (b) the cross-sectional distance ‘ y between individual xz planes.
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FIGURE 6. The holes in the (a) raw scan are filled to give the (b) clean deformed template.
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FIGURE 7. Meshes showing deviations by one standard deviation σ , three standard deviations 
3σ  and five standard deviations 5σ  from the mean shape (μ) along each of the first three 

principal components v1, v2, v3 .
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FIGURE 8. Heat map of the Hausdorff distance from the original scanned mesh displayed on the 
mesh reconstructed using first 25 principal vectors from (a) front, (b) side, and (c) back views. 
The green areas had the lowest Hausdorff distance while the red areas had the highest Hausdorff 
distance.
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FIGURE 9. The original scanned mesh (grey) overlaid on the reconstructed mesh (black 
wireframe) made using (a) first 10, (b) first 25, (c) first 50, and (d) first 100 principal vectors.
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FIGURE 10. Boxplots of the standard deviation of actual and predicted anthropometric 
measurements of (a) height, (b) shoulder width, (c) shoulder height, (d) waist circumference, 
(e) waist height, (f) hip circumference and (g) trochanteric height of each participant (n = 12). 
The red asterisk (*) next to the plot title indicates a significant difference (p-value < 0.005) 
between the actual and predicted measurements.
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TABLE 1.

Average time taken for deformation and average deformation error for six different values of NT.

NT Δ θr (degrees) Δy (m) Average deformation time (s) Average deformation error (m)

9090 4 0.02 14.80 0.0152

18090 4 0.01 29.12 0.0116

18180 2 0.02 29.87 0.0119

36090 4 0.005 58.22 0.0094

36180 2 0.01 58.03 0.0086

72360 1 0.01 114.21 0.0072
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TABLE 2.

Mean of reconstruction error and reconstruction error % (calculated as (error / height) * 100) between original 

scan S, belonging to testing set, and reconstructed scan for the first k principal vectors.

k Mean reconstruction error (m) Mean reconstruction error %

10 0.0243 1.45%

25 0.0208 1.23%

50 0.0192 1.14%

100 0.0179 1.07%
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TABLE 3.

Compactness, generalization, and specificity of statistical shape models built using the first k principal vectors. 

The generalization error was calculated as the average reconstruction error and the generalization error % was 

calculated as (generalization error / height) * 100.

k Ratio of explained variance Generalization error (m) Generalization error % Specificity (m)

10 0.791 0.0398 2.36% 0.0324

25 0.904 0.0375 2.22% 0.0406

50 0.953 0.0363 2.15% 0.0483

100 0.983 0.0355 2.10% 0.0520
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TABLE 4.

Average error percentage of the predicted measurements, calculated as (error / actual anthropometric 

measurement) * 100, for eight different anthropometric measurements using two different values of NT.

Anthropometric measurement Average error % (NT=9090) Average error % (NT=18090)

Height (cm) 2.98% 3.02%

Weight (kg) 10.19% 10.13%

Shoulder width (cm) 4.24% 4.26%

Shoulder height (cm) 3.59% 3.65%

Waist circumference (cm) 4.21% 4.20%

Waist height (cm) 3.81% 3.82%

Hip circumference (cm) 4.70% 4.67%

Trochanteric height (cm) 4.29% 4.31%
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