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We present an analysis of protein interaction network data via the comparison of models of
network evolution to the observed data. We take a Bayesian approach and perform posterior
density estimation using an approximate Bayesian computation with sequential Monte Carlo
method. Our approach allows us to perform model selection over a selection of potential net-
work growth models. The methodology we apply uses a distance defined in terms of graph
spectra which captures the network data more naturally than previously used summary stat-
istics such as the degree distribution. Furthermore, we include the effects of sampling into the
analysis, to properly correct for the incompleteness of existing datasets, and have analysed
the performance of our method under various degrees of sampling. We consider a number
of models focusing not only on the biologically relevant class of duplication models, but
also including models of scale-free network growth that have previously been claimed to
describe such data. We find a preference for a duplication-divergence with linear preferential
attachment model in the majority of the interaction datasets considered. We also illustrate
how our method can be used to perform multi-model inference of network parameters to esti-
mate properties of the full network from sampled data.
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1. INTRODUCTION

Protein—protein interactions are one of the mechanisms
by which biological organisms build complicated and
flexible molecular machineries from relatively modest
numbers of protein-coding genes. Similar to the way
in which we can derive information about the evolution
of genes and genomes through currently available high-
throughput genome sequencing data, the availability of
high-throughput protein interaction data from Yeast-2-
Hybrid experiments and various other protocols gives
us a snapshot of the evolutionary process by which
the rich and complex structure of protein interactions
in the cell is formed.

The nature of current protein interaction network
(PIN) data presents challenges in analysing the data
and performing inference that takes into account the
global network structure. When considering evolution-
ary models we are faced with the problem of
comparing the network structure produced by the
model to that of the observed interaction network. A
possible way of overcoming this problem is to calculate
summary statistics describing some aspect of the data
and compare these with predictions from evolutionary
models. Several previous studies in the literature have
applied summary statistics to compare the fit of net-
work models to observed data [1-4], shedding some
light on aspects of network evolution and organization.
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Early studies suggested that the scale-free (SF) network
models [5] might fit the observed PIN data well [3,6],
but there have since been several and statistically
robust challenges to this claim [7-9].

Considering more realistic biologically grounded
models of network evolution has provided insights
into potential mechanisms of PIN formation, and pro-
vides more readily interpretable and applicable results
than those found by considering more general random
graph models; in particular, it has become apparent
that it is important to consider models of network
growth (instead of static random graph models) even
though they are vastly oversimplified compared with
the real process of network evolution. A number of
models have been proposed and analysed with respect
to the observed data [1,2,10—12], all with the same gen-
eral mechanism of node duplication, corresponding to
gene duplication and subsequent divergence in function
and of interactions.

Assessing the fit of various network growth models to
the Drosophila melanogaster protein interaction network,
Middendorf et al. [13] found that a duplication model best
describes the data. A similar result was found in Ratmann
et al. [4], where combining several different network stat-
istics to compare the fit of models with the Treponema
pallidum PIN, a model combining duplication divergence
scheme with linear preferential attachment (LPA) was
found to best explain the data. Plausible models should
therefore include aspects of duplication followed by the
ability of interactions to diverge and change with time.

This journal is © 2012 The Royal Society
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Comparing models of network evolution—even if
they are (by design) vastly oversimplified compared
with the true process—holds the promise of allowing
us to weigh up the relative contributions of different
processes. For example, we may assess the relative role
that duplication of individual proteins might have
played in the evolution of natural systems. Ultimately,
we would like to understand different processes and
their roles in network evolution in a way that mirrors
what is possible for sequence-based comparative ana-
lyses. Here, too, models are oversimplified (even if less
severely) but have allowed us to disentangle different
aspects affecting sequence evolution (codon usage,
secondary structure constraints, etc.). More immedi-
ately, however, such evolutionary models also allow us
to apply the comparative method to networks more
meaningfully than mere lists of network characteristics
would be. Comparative biology predates the availability
of sequence information, of course, and here we will
discuss models of network evolution in a manner akin
to that used in classical morphologically based
comparative studies [14].

Evolutionary analysis at the level of network organiza-
tion is fraught with considerable technical challenges: the
data are often noisy and incomplete; networks are notor-
iously hard to describe in terms of summary statistics;
and calibrating evolutionary models against the available
data (or summary statistics) is also non-trivial. Here, we
develop a flexible and robust inferential framework
to deal with these three issues. Our approach is aimed
at estimating the ‘effective’ parameters of models of net-
work evolution against network data, and choosing
between different plausible models of network evolution
whenever possible. We employ a Bayesian framework
that allows us to deal with different candidate models
and the uncertainties and problems inherent to the
PIN data; and we use concepts from spectral graph
theory to describe the networks, rather than relying on
summary statistics.

Because the likelihood of general network growth
models is computationally difficult to evaluate, we
adopt an approximate Bayesian computation (ABC)
approach; in ABC procedures the data (or summary
statistics thereof) of model simulations (with par-
ameters, 0, drawn from the prior) are compared with
the real data and if a suitable distance measure between
the data/summary statistics falls below a tolerance
level, €, then 6 is accepted as a draw from the (ABC)
posterior distribution. If € — 0, then the ABC posterior
will be in agreement with the exact posterior, as long as
the whole data are used. Use of summary statistics can
be problematic for parameter inference and model selec-
tion if statistics are not sufficient. This is unlikely ever
to be the case for networks and therefore the spectral
perspective taken here, which captures the whole
data, is particularly pertinent.

Below we outline the ABC framework employed here
and its use in parameter estimation, model selection and
model averaging contexts. After discussing the spectral
graph measures, we outline different evolutionary
models, and describe how we can analyse incomplete
network datasets. We then illustrate our approach
against simulated data before considering real
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protein—protein interaction data. We conclude with a
discussion of the results and will make the case for the
statistically informed analysis of such simple models
in the context of evolutionary systems biology.

2. METHODS

2.1. Approximate Bayesian computation and
sequential Monte Carlo methods

Models of network evolution differ in their complexity
and in the details of the evolutionary process that
they capture. Statistical model selection techniques
are therefore required in order to compare their relative
ability to capture the observed network data and
explain the underlying evolutionary mechanisms. In
particular, such approaches allow us to strike a compro-
mise between the complexity of a model, and its ability
to describe observed data. Here, we adopt a Bayesian
framework, which treats the problems of parameter esti-
mation and model selection analogously and does not
require the post hoc use of, for example, an information
criterion (in fact, the popular Bayesian information cri-
terion, BIC, is an approximation to the conventional
Bayesian model selection framework).

Given an observed protein interaction dataset, D,
and a set of models m; i=1, 2,..., M, the Bayesian
approach requires us to calculate the posterior prob-
ability distributions of the different models and their
respective parameter sets 6;, We hence seek to evaluate
Pml(01'|D)7 given by

me(D‘H’é)sz(ei)
Pmi(D) ’

P,.(6;|D) = (2.1)
where P, (D) is the evidence for the data under
model m;

P, (D)= JQ P(D|6;)P(6,)d6;.

The complexity of the data and the models, however,
makes evaluation of the likelihood terms, P(D|6), diffi-
cult and often impractical. To this end, ABC schemes
have recently gained in popularity, especially in the
fields of population, evolutionary and systems biology.
In ABC frameworks, we forego evaluation of the likeli-
hood in favour of comparing simulation outputs,
D' ~ my(0';) (for parameters sampled from the prior,
0'; ~ P(6;)), with the actual data, via a suitable distance
measure, d(D', D). This allows us to approximate the
posterior distribution as

P(6|D) ~ P(8]d(D, D) < e). (2.2)

Here, it is important to note that the distance measure
d(D', D) can also be applied to summary statistics of
the data, ¢(D), rather than the actual data. This is
especially attractive if the data are sufficiently complex
such that the probability of observing the data is mark-
edly reduced compared with observing the realized
value of the summary statistic. But if the statistic is not
sufficient (in the sense that P(6|D) = P(6|t(D))), then
parameter estimation and model selection become
skewed compared with the full Bayesian approach.
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Although it is possible to perform ABC using a
simple rejection scheme, such a method will of course
not be able to cope with models that have many
parameters; however, several improved computational
schemes exist and here we have chosen to apply the
sequential Monte Carlo (SMC) method of Toni &
Stumpf [15], which allows us to combine model selection
and posterior density estimation in a single framework.
SMC methods [16,17] operate on a population of
weighted particles that correspond to points in the
parameter space, with the particle weights set so that
the empirical distribution of the weighted particles con-
verges asymptotically to the desired target distribution
as the number of particles N — oco. The basic ABC-
SMC approach taken from Toni et al. [18] is outlined
in algorithm 1. In brief, we proceed by constructing a
set of intermediate distributions that start from the
prior, P(6;), and converge towards the (ABC) posterior,
equation (2.2). Each intermediate distribution P,(6) is
characterized by a population of particles which fulfil
the criterion

R
P(0D) = P(O)%Z (d(D, D) < &),

s

(2.3)

where R is the number of repeated simulations for fixed
parameters and €, > € > ... > e ensures that succes-
sive populations increasingly resemble the posterior (for
which &7 has to be sufficiently small).

This sequence is generated in practice through a
sequential importance sampling procedure, which
weights the different particles appropriately. To start
with all particles are sampled independently from the
prior, P(6), and accepted or rejected according to
whether simulated datasets agree with the observed
data within the tolerance €, giving an initial set of N
particles 6; for i € {1,..., N}.

In order to construct the next population of particles
(for tolerance €;), we have to propose new particles
from the 6;—; making up population ¢— 1. To do
S0, we resample particles from the population at step
t — 1 based on the particle weights, and then perturb
these particles using a kernel in order to explore par-
ameter space and reduce the degeneracy of the
sample. Since our model parameters all take continuous
values, we can construct our kernel by simply displacing
particles by a distance drawn from a multivariate
Gaussian distribution with zero mean and an appropri-
ately selected variance to perturb the population of
particles between successive iterations, so that

0 ~N(6',%)

for some diagonal bandwidth matrix 3, where 6’ is a
particle drawn from the present population, and 6" is
a new proposal. Other transition kernels are also
possible, however.

Having selected and perturbed a particle to give us
the proposed new parameters 0” for the particle, the
model is simulated with the new parameters to generate
a test dataset IV, and the distance between this simu-
lated data and the observed data D is calculated,
using the distance measure d(D', D) that we describe
in §2.4. Then the proposed particle is accepted as

(2.4)
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Algorithm 1. Basic ABC-SMC algorithm.
N «— Number of particles;
T < Number of steps;
fort—1to T'do
1 —1;
while i < =N do
if t=1 then
Sample ¢' ~ P(6);
else ) )
Sample ¢ from 6;_; according to wi_1;
Perturb ¢ by K(#) to 6”;
end
Simulate IV from 0” R times;
s(0) — 1" I(d(D',, D) < n,);
if s> 0 then
g, — 0"
if t=1 then
wi — s(0")
else

Pe")s(0")
S vl K (6, 0")

J=1

7
Wy «—

end
1— 1+ 1;
end
end
Normalize w;
end

being representative of the desired distribution only if
it falls within a distance €; of the observed data and
we can use equation (2.3) as an approximation of the
likelihood,

R
(0= DD <) (29)

If s(6) =0, the particle is rejected and instead a
new particle from the 6;_; is sampled and a new
perturbation proposed.

To calculate the weight of the perturbed particle the
method described in Del Moral et al. [17] is applied,
whereby w; for the new parameters 6” is calculated
using our approximation of the likelihood s(6) from
equation (2.5) as

s(0")
wi = P(6")5(6")
ngyzl U}LIK(GLD 9”)

itt=0,

otherwise. (2.6)

This is repeated until the desired number of particles
have been sampled to give a new population 6; and the
process is repeated using a progressively stricter
sequence of distances €; > € > --- > € at each step.
This procedure is outlined in algorithm 1.

2.2. ABC-SMC model selection

As mentioned previously, in order to include the differ-
ent models under consideration into the inference
procedure, we may simply treat models and parameters
analogously and we can encode the choice of the model
as a discrete parameter, following the methodology of
Toni & Stumpf [15].
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In such a context, model selection is then performed
by considering the posterior density of each model
marginalized over the parameters,

P(m) = Po(m;) | P(DI0)P(8)
0;

(2.7)

under some prior distribution Py(m;) over the models
m; € M. Taking this approach we can simply add an
ordinal parameter indicating the model m’ of each par-
ticle j € {1, ..., N} used in the ABC-SMC algorithm,
and doing so enables us to approximate equation
(2.7), the marginal posterior probability distribution
of the models for the population of particles at step t, as

Pi(m)= > w

i|lmi=m

(2.8)

Then the procedure outlined in algorithm 1 is modi-
fied so that to generate a particle from population ¢,
first a model is chosen according to its (marginal) prob-
ability, P;—1(m), before one of the corresponding
particles is chosen. To perturb the resampled particle,
two separate kernels, K, and K, are used; the first is
used to propose a new model and the second to perturb
the model parameters. Here, for our kernel on the choice
of model, we propose to move to a new model chosen
uniformly at random with probability p, or to stay
with the current model with probability 1 — p,
although other choices of kernel are again possible.
The update of the particle weights then also takes the
model parameter into account,

. s(0") if t=0,
Wi = 71;5‘(9;73’?(3’5 otherwise, (2.9)
where
M
W(m', 0") =" Py (my) Ky (m”, m;)
J
2 ’
wt_lKG(el ) Bk)
AP Dy e

This procedure is outlined in algorithm 2, and
described in more detail in Toni & Stumpf [15]. After
performing the inference procedure, the final population
of particles at step T can then be used with equation
(2.8) to derive the posterior model probabilities.

2.3. Model averaging

In many circumstances, it is not possible to decide in
favour of any particular model; in such cases, the pos-
terior probability of several candidates is appreciable
and comparable and analysis should proceed by pooling
the results/predictions from these models, weighted
by the relative evidence in their favour. This is precisely
the aim of the Bayesian model averaging. As had pre-
viously been explored in Stumpf & Thorne [19], when
fitting several different models to interaction network
data, it is possible to improve the accuracy of predictions
by averaging inferred statistics over all of the models [20].
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Algorithm 2. ABC-SMC model selection algorithm.
N «— Number of particles;
T «— Number of steps;
for t<—1to T'do

1 1;
while : < =N do
if t=1 then

Sample m” ~ Py(m);
Sample ¢ ~ P, (6);

else
Sample m’ ~P,_; (m); _
Sample ¢ from 6, ,—; according to wyy ;—1;
Perturb m/ by Kypm) to m’;
Perturb ¢ by Ky(6) to ¢;

end

Simulate D' from m”, 6’ R times;

R
s(m' 6) — 15" T(d(D',. D) < m,);
if s> 0 then
my «— m’";
0, — 0",
if t=1 then
wy — s(m”, §");
else
i P(0")s(m”, 9")_
wf, — W(m”, 0//) ’
end
1— 11+ 1;
end
end
Normalize w;
end

Our method gives us the posterior probabilities for
each model under consideration as

P(M) = w(z),
z|m(z)=M

(2.11)

and so we can easily average an inferred parameter or
statistic over all of the models by simply taking the
weighted average of the value given by each model

Oy = > P(M)6,. (2.12)

It has to be borne in mind, however, that the role
of parameters (such as the rate of duplication) can
differ quite considerably between models depending
on the other factors considered by different models.
Nevertheless even then predictions (e.g. for the total
number of interactions in a network, or any aspects of
the graph spectrum) can improve under such a model
averaging scheme.

2.4. Network distance measure

Given a graph G comprising a set of nodes N and edges
(i,j) € E with i,j € N, the adjacency matrix A of the
graph is defined as the |N|-|N] matrix having entries

1
Qi = 0

The adjacency matrix captures all aspects of the
network structure and is therefore a complete represen-
tation of the observed data, rather than a summary

if (i.4) € E,

otherwise. (213)
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statistic (such as degree distribution, clustering or cen-
trality measures, motifs or graphlets). Here, we only
consider undirected networks and so taking edges (4,5)
as an unordered pair the adjacency matrix A will be a
real symmetric matrix. Clearly, the structure of the adja-
cency matrix depends on some ordering of the nodes N
and will not be unique for an unlabelled graph. Thus, iso-
morphic graphs may not necessarily have identical
adjacency matrices, even though their network structures
are the same. Of course, a simple relabelling of nodes will
lead to identical adjacency matrices.

A simple distance measure between graphs having
adjacency matrices A and B, known as the edit dis-
tance, is to enumerate the number of edges that are
not shared by both graphs,

D(A,B) = Z Z (@ — big)™.

However, for unlabelled graphs, we are interested in
some mapping h from i € N4 to 7 € Np that minimizes
the distance

D'w(A,B) = > (aij — buyus)’
T

over all possible mappings of nodes between the two
graphs, since there is no fixed correspondence between
the unlabelled nodes. This mapping can be formulated
by applying some permutation matrix P to the matrix
B. Then we seek to evaluate D'p for P equal to the
(unknown) optimal permutation matrix P, correspond-
ing to the mapping that minimizes the distance D'p,

(2.14)

(2.15)

Dh(A,B)=||A— PBP"|? = min Dp(4, B). (2.16)

Since the evolutionary models we consider produce
unlabelled graphs (although we could label them, any such
labelling would necessarily be arbitrary and this would
impose an undesirable loss of generality in the models), we
require the latter form of the distance measure, D},.

Considering all possible permutations for pairs of net-
works of some 5000 nodes, such as the Saccharomyces
cerevisae PIN, would be prohibitively expensive, but
fortunately it is possible to approximate an optimal per-
mutation. Considering the distance measure D}, we can
then apply the theorem of Umeyama [21], which gives
us an approximate lower bound on the edit distance
between two graphs as

Djp(A,B) = Y (i — B))?,

g

(2.17)

where it is assumed that both A and B are Hermitian
matrices and «; and B; are the ordered eigenvalues of A
and B. Although this distance measure only gives us a
lower bound on the edit distance between the graphs, it
has been shown in Wilson & Zhu [22] that this distance
measure is an excellent approximation and accurately
reflects the edit distance measure between two graphs.
The distance given by equation (2.17) is an approxi-
mation of the distance between the complete data and
not summary statistics of the network as had been used
previously in composite likelihood [19] and ABC analyses
[4] of networks.
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The matrix eigenvalue calculation can itself be com-
putationally expensive, and so in our implementation,
we have used highly optimized commercial LAPACK
routines running on GPGPU hardware that provides
performance several orders of magnitude faster than a
regular CPU for problems of the size we consider here.

2.5. Network growth models

Many random network models have been proposed in
the literature, and here we have chosen models with a
preference for those with some biological relevance, in
the hope that they may help us to elucidate the pro-
cesses of mnetwork evolution. It would entirely be
possible to also consider static network models, such
as Erdos—Rényi [23] or geometric graphs [24], but
these provide no insights into the generative mechan-
isms underlying the evolution of biological networks.
We have chosen to take the prior probabilities P(6)
of the model parameters and the prior P(m) of the
models themselves to be uniform over some appropriate
range, since in the absence of any prior knowledge
directly corresponding to the model parameters or a
concrete preference for any particular model this
seems to be the most parsimonious approach. Below,
we will discuss the models in the necessary detail
required to understand our results and discussion.

2.5.1. Duplication models

We have considered two different duplication divergence
models based on those proposed in the literature. The sim-
plest model we examine is the duplication—divergence—
heterodimerization model [2,12], allowing for interactions
to form between the original and the duplicated node, cor-
responding to heterodimerization. This model, which we
will refer to as a duplication attachment (DA), illustrated
in figure 1, selects a node uniformly at random from the net-
work and duplicates the node, keeping each edge with some
probability 1 — & or diverging and losing the interaction
with probability 8, always leaving he edges of the original
node intact. Furthermore, an edge between the origi-
nal and duplicated nodes is added with probability «,
corresponding to the duplication of a heterodimer.

We also consider a DA preserving complementarity
(DAC) model, similar in construction to those described
in Ispolatov et al. [12] and Vazquez et al. [2], where the
complementarity of edges is preserved, but allowing
edges to be lost from both the original and duplicated
node when divergence occurs, rather than only asymme-
trically from the original node. As shown in figure 1,
either the edge of the original node and its counterpart
from the duplicated node are both kept with probability
1 — 6, or in the case that divergence occurs (with prob-
ability 8) one of the edges is selected at random and
deleted, so that at least one of the pair is always kept.
Again an edge is also added between the original and
duplicated nodes with probability a.

2.5.2. Scale-free models

A network is considered SF if the degree distribution of
the nodes follows a power-law distribution in the limit
of infinite network size, so that for node degrees k£,
P(k) ~ k™, for some scaling coefficient a. We consider
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Figure 1. (a) Duplication attachment (DA) model. A node (red) is chosen to be duplicated and the duplicated node inherits the
interactions of the original with probability 1 — §, or diverges and loses the interaction with probability 8. An edge between the
original and duplicated nodes is added with probability ¢, modelling the possibility of a self-interaction that is preserved. (b)
Duplication attachment with complementarity (DAC) model. The model proceeds as the DA model, except that at least one
edge in each of the green/blue pairs will be kept in the case of a divergence event, but either the interaction of the original or
the duplicated node may be lost. (¢) Linear preferential attachment (LPA) model [5]. At each time step, a new node is added
to the network, and edges formed to the existing nodes with a probability proportional to their degree, so that edges are prefer-
entially added to existing nodes of high degree. (d) General SF model [25]. The general SF model is a more sophisticated
preferential attachment scheme whereby the scaling coefficient of the resulting degree distribution can be altered by the
model parameters. Edges begin with weight 1, and as new nodes are added to the network at each time step, a random existing
edge is chosen based on the edge weights, and a node at one end of the edge selected at random is chosen for the new node to be

connected to. The edge weight of the chosen edge is then increased by the parameter m.

both the LPA scheme of Barabasi & Albert [5] and the
more complex scheme of Dorogovtsev & Mendes [25]
that allows for the specification of the scaling
coefficient as a model parameter.

The LPA model of Barabasi & Albert [5] grows the
network by adding a single node at each time step,
and attaching edges from this node to those in the exist-
ing network with a probability proportional to their
degree, and is illustrated in figure 1. Thus for a node
in the network of degree k the probability of attach-
ment is k/2M, where M is the total number of edges
in the network. We also allow for multiple edges to be
added at each step by sampling the number of edges
to add from a Poisson distribution with mean m. If
we did not do so, then it would not be possible to
grow networks with a ratio of nodes to edges other
than 1:1; the Poisson distribution is a convenient way
of ensuring that the number of nodes and edges in the
real network can be achieved in the simulated data.

Such a scheme will produce a network with a degree
distribution whose scaling coefficient is always 3 [5],
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whereas the generalized SF method of Dorogovtsev &
Mendes [25] allows us to further parametrize the
model to vary the scaling coefficient of the degree distri-
bution. We omit the details but describe the model
briefly below, and illustrate the growth step in
figure 1. Edges in the network are assigned weights,
all of which are initially set to 1. At each time step, a
new node is added to the network, and again a
number of edges sampled from Pois(m) is added from
this node. Rather than adding edges preferentially
based on the degree of nodes, the edge weights are
used to select an edge, and the new node is attached
to a randomly selected end of the chosen edge. Finally,
the weight of the selected edge is increased by (the par-
ameter) . Such a scheme generates a network with
scaling coefficient 2 + (1/(1 + 2w)) [25].

2.5.3. Generalized models
We also consider two alternative models that allow for
both duplication-divergence dynamics, as well as
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random addition of edges by either a uniform random
attachment [26] or a preferential attachment scheme
[5]. Both models employ a parameter p, the probability
of performing a duplication move at each step, while a
random edge addition move is performed with prob-
ability 1 — p. Again, we allow for multiple edges to be
added during each step for the random edge addition
moves, with the number of edges to be attached
drawn from a Poisson distribution with parameter m.

The first such model combines the DA preserving com-
plementarity scheme described above with a simple
random addition of edges (DACR). During a random
edge addition step, the new node is added to the network,
and then a number of edges is sampled according to
Pois(m), and each edge is assigned to two nodes chosen
uniformly at random from the network.

The second model again uses the duplication diver-
gence preserving complementarity scheme but uses
LPA for the edge addition steps (DACL). Thus,
during a random edge addition step the new node is
added to the network, a number of edges is sampled
according to Pois(m), and we attach each edge from
the new node to the existing nodes with a probability
proportional to their degree.

2.6. Sampling

It has previously been reported [19,27,28] that the
effects of sampling on network data can bias inferences
made under the assumption that the network structure
of the subsample is representative of the structural
properties of the full network. Since the network data
we are using are in fact only a subnetwork of the inter-
action network existing in the organism, we include this
fact in our model to prevent the effects of sampling from
biasing the results. Currently available interaction
datasets only include a subset of the genes known to
exist in the respective organism, and so we apply a
simple model of a sampling scheme to attempt to
include the incompleteness of the data in the analysis.
In the absence of more detailed information on the
experimental sampling applied in generating the data,
we take the parsimonious approach of assuming that
each protein in the full interactome is sampled uni-
formly to yield the observed interaction data.

The sampling model is incorporated into our method
by growing networks up to the size of the number of
genes known to exist in the organism in question
rather than the number of proteins in the interaction
dataset. A random subset of the nodes of the network
is then taken to reduce it in size to the same number
of nodes as the observed interaction data and the sub-
network induced by these nodes is then used in the
analysis in place of the larger network. While this meth-
odology will allow for our induced subnetworks to
include nodes of degree zero, which are absent in the
observed data, in the absence of any tractable alterna-
tive methodology, we feel such an approximation is a
suitable trade-off in allowing us to consider the effect
of sampling on the inference. Thus, in our inference of
degree distributions described in §3.2.2, we correct for
the fact that the available data never contain nodes of
degree zero.
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Algorithm 3. Network growth model simulation with
sampling.
Input: model m, parameters 0, Ny proteins in organism,
N proteins in interactome data of organism
Output: Sampled network of Ng nodes, grown from
model m with parameters 6

Grow network a with N7 nodes, according to model m
and parameters 6;
Create empty network b;
for i— 1 to Ngdo

Sample node z from Nodes(a) \ Nodes(b);

Add node z to b;
end
for (z,y) € Edges(a) do

if € Nodes(b) and y € Nodes(b) then

Add edge (z,y) to b;

end
end
return b

In order to simulate network data for a particular
model in the ABC-SMC algorithm, we apply the
method outlined in algorithm 3. This gives us a network
of the same number of nodes as the sampled interac-
tome data being used, but allows us to infer the
parameters of the full network by growing our simu-
lated models to the size of the full proteome of the
organism in question.

2.7. Implementation

The method described was implemented in a mixture of
PytHON (Www.python.org) and C ++ code [29], with
the framework of the SMC method implemented in
PyTtHON, while using C ++ to improve the performance
of the network growth model simulation code. Software
is publicly available from www.theosysbio.org. As men-
tioned previously the matrix eigenvalue computations
become prohibitively expensive for networks of the
size considered here (e.g. around 5000 nodes). There-
fore, we have used the CULAtools GPU linear algebra
library (www.culatools.com) to perform the matrix cal-
culations on GPGPU hardware, greatly increasing the
speed of the calculations compared to a conventional
CPU implementation. Using the CULAtools GPGPU
LAPACK library implementation gives approximately
a four times speed-up compared with a CPU optimized
LAPACK implementation. Even with such optimiz-
ations producing posterior estimates can be costly,
and takes around 12 h using an NVIDIA Tesla C2050
GPU and a 6 core 3.3 GHz Intel Core i7 CPU.

3. RESULTS

Network evolution is a highly complex and contingent
process; by design, the models considered here are vastly
oversimplified compared with the true evolutionary pro-
cess. Because of the correlated nature of the data it is
not expected that we can always unambiguously identify
the true data-generating process. To investigate and illus-
trate this point—generic to reverse engineering problems
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Figure 2. Posterior densities of each of the four parameters of the DACR model used to generate our test network. The actual
parameter values are shown as vertical bars in the marginal density plots for each parameter. Contour plots illustrating the
posterior densities of pairs of parameters are shown in the off-diagonal blocks.

[30,31)—we first consider synthetic data before an
analysis of real protein—protein interaction data.

3.1. Stmulated data

To evaluate the ability of our method to effectively
approximate the posterior distribution of the model
parameters, we have performed two tests on simulated
data generated from a known model. We assess the per-
formance of the method in estimating the parameters of
a single model, and in performing model selection. Since
sampling may have an impact on the ability to infer the
posterior, as the data are deteriorated, we also test the
performance of our two test cases under varying degrees
of sampling, discarding a fraction of nodes in the
simulated network.

Our simulated data are taken from the DACR model,
with parameters 6§ = 0.4, « = 0.25, p= 0.7 and m = 3,
grown to a size of 5000 nodes and having 25 099 edges.

J. R. Soc. Interface (2012)

Attempting to infer the known model parameters
using the full dataset, we obtain the posterior densities
shown in figure 2. It appears that the posterior prob-
ability is centred around the correct values, and
considering the inference is attempting to infer par-
ameters of a stochastic model from a single sample,
uncertainty in the resulting posterior distribution is to
be expected.

The posterior model probabilities illustrated in
figure 3 show that while the model from which the
data were generated does not have the highest prob-
ability on average, it is still the second highest and
the distributions of the values are close to overlapping,
while the similar DACL model has the highest prob-
ability, suggesting that the single sample of network
structure from the model is not sufficient to correctly
discriminate the two. Taking samples from the gener-
ated data of 25, 50 and 75 per cent of the nodes, the
posterior densities for the DACR model from which
the data were generated shown in figure 4 reveal an
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Figure 3. Distribution of posterior model probabilities for each
of the models for our test data (generated from the DACR
model) over 10 simulated datasets having identical par-
ameters. While the posterior probabilities do not correctly
identify the model used to generate the data as the most
likely, there is a large variance in the results and this simply
indicates that the data available are not sufficient to differen-
tiate between the models.

interesting trend as the sampling fraction decreases. For
the 75 per cent sample, the posterior distribution
appears to be mostly centred around the same values
as for the full network and almost as specific, whereas
for the 50 and 25 per cent samples, the posterior distri-
butions become much broader (and potentially biased),
and particularly in the case of «, less specific and spread
across the parameter range.

These findings reflect the general problems encoun-
tered in addressing the so-called inverse problems, and
are not specific to the approach developed here. The
consistency of statistical estimators is only an asympto-
tic property and for small data samples (here, we have
only a single network) inferences are always subject to
the variabilities of the data-generating process and the
estimator. This explains also the need to consider
Bayesian model averaging approaches.

3.2. Protein interaction network data

We applied our method to publicly available PIN data-
sets of varying completeness and size to allow us to
examine the results and performance of the inference
on differing kinds of data. The data used are summar-
ized in table 1, and were downloaded from the
Database of Interacting Proteins [32] (DIP; http://
dip.doe-mbi.ucla.edu/dip/). The S. cerevisae dataset
is the most complete, with a large fraction of the
genes in the organism being included in the network,
and a large number of edges. The D. melanogaster data-
set is of a larger size, but represents a smaller fraction of
the genes known to exist in the organism, while the
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Helicobacter pylori and Escherichia coli datasets are
much smaller, and again represent small sampling
fractions of their respective PINs.

3.2.1. Model selection and model parameters

Applying our method to the protein interaction data
summarized in table 1 we obtained the posterior
model probabilities shown in figure 5. The results
show a strong preference for the DACL and DACR
models in almost all cases, except for in S. cerevisae
where the largest posterior model probability corre-
sponds to the DA model. Interestingly, in all cases the
LPA and SF models have near zero probabilities,
suggesting that these models do not fit the data as
well as previously claimed. The majority of differences
between the species appear to be between S. cerevisae
and the other three species, with D. melanogaster,
H. pyloriand E. coli all exhibiting similar profiles. Inter-
estingly, both D. melanogaster and H. pylori have a
small probability for the DAC model not seen in the
other species, while E. coli has a larger preference for
the DACL model, and less so for the DAC model.

Looking at the posterior density plots for the different
species for the models where there were enough particles
available to calculate the densities shown in figure 6, we
see that the difference between the datasets is more
clear. The most striking aspects are the similarity of
the posterior densities for the D. melanogaster and
H. pylori data across all of the models, and the signifi-
cantly different shape of the posterior in E. coli for
many of the parameters.

In many cases the posterior densities of the common
parameters appear to be centred around similar values
across all of the models, for example, with the parameter
6, common to all of the duplication models, the peaks
are close and of a similar shape in most cases for the
S. cerevisae, H. pylori and D. melanogaster data.

3.2.2. Model averaging of network statistics

To evaluate the performance of our model averaging
and sampling scheme, we attempted to infer the
degree distribution of the observed S. cerevisae PIN
data from our posterior particles for samples of 25 and
50 per cent of the nodes of the S. cerevisae PIN, as
well as the full data.

As can be seen in figure 7, both the degree distri-
bution inferred from the full S. cerevisae network and
the 50 per cent sample appear to fit the data well,
while the 25 per cent sample does not perform as well.

4. DISCUSSION

The performance of our method on the generated test
data (figure 2) illustrates the efficacy of our approach
in reconstructing the model parameters for a given evol-
utionary model. While it would be unrealistic to assume
our models correspond to the only mechanisms of net-
work evolution at work and completely capture their
behaviour, comparing such general mechanisms allows
us to distinguish between the probable evolutionary
processes at work. Although the model selection results
in figure 3 show that we do not give the highest
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Figure 4. Posterior densities under different degrees of sampling for the four parameters of the DACR model used to generate the
test network and samples. Sampled networks were generated by uniformly sampling a fraction of nodes and taking the induced
subnetwork, for sample sizes of 75%, 50% and 25%. For samples of less than 50% of the nodes the posterior densities clearly differ
from the actual model parameters (vertical lines). Samples: orange solid line, full; green dashed line, 75%; blue dashed line, 50%;

purple dashed line, 25%.

Table 1. Summary of the PIN data used in the study. Datasets of varying size and sampling fraction were chosen so as to allow
us to evaluate the performance of the method on a selection of different kinds of protein interaction data, representative of

those currently available.

species proteins interactions genome size sampling fraction
S. cerevisae 5035 22118 6532 0.77
D. melanogaster 7506 22871 14076 0.53
H. pylori 715 1423 1589 0.45
E. coli 1888 7008 5416 0.35

posterior probability to the correct model, the differ-
ence in mechanisms between the two generalized
duplication models (DACL and DACR) is subtle and
we correctly assign much lower probabilities to the
other models, so this simply suggests that it may not
be possible to tell them apart from a single network
structure sampled from the stochastic DACR model.
As shown in figure 4, the effects of our sampling on
the inferred parameters for our test dataset show that
while the accuracy is reduced, we can in most cases

J. R. Soc. Interface (2012)

reconstruct network parameters of the full network
accurately for samples of 75 per cent of the full network.
As the sampling size is reduced to 25 per cent the pos-
terior distribution for the parameter a becomes spread
across the parameter range, reflecting the inadequacy
of the sampled data to allow for inference of the true
parameter value. For the other parameters the results
appear to be biased, suggesting that the sampling
affects the ability of our inference procedure to infer
each of the parameters in different ways.
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Figure 5. Model probabilities for each of the six models in the
four species. There is a strong preference for the DACL or
DACR models in all cases but for the S. cerevisae dataset,
which is fit best by the DA model. Both of the SF models
have near zero posterior probabilities, suggesting that they
provide a poor fit to the data (orange, S. cerevisae; green,
D. melanogaster; blue, H. pylori; purple, E. coli).

The results of the model selection for the four PIN
datasets we considered (figure 5) show that both of
the SF models are poor at explaining the observed
data in all cases. In agreement with the previous analy-
sis of Ratmann et al. [4] and Middendorf et al. [13], the
models combining duplication mechanics with some
random addition of edges (DACL, DACR) seem to pro-
vide the best fit to the data, with only S. cerevisae
showing a slight preference for the simplest DA model.

The posterior probabilities we infer for the model
parameters of the different PIN datasets in figure 6
show an interesting pattern whereby the majority of
parameters show similar distributions across the
species, as well as across the different models. For
example, the divergence parameter 8, describing the
probability of duplicated edges being lost, appears to
share a common value of around 0.4 across all of the
models and the majority of the species, and the par-
ameter « shows a similar trend although the posterior
distributions are less specific for the DACL and
DACR models. This may be due to the fact that infer-
ence of a appears to become increasingly difficult as the
sampling fraction decreases, and three of our four PIN
datasets represent small sampling fractions of around
50 per cent and less. The parameter p describing the
probability of performing a duplication step or a
random edge addition step appears to be unspecific
except for in the case of E. coli where the posterior
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density seems to be centred around 0.5, while the
number of edges added in each random edge addition
step is around 3 for all the species.

The agreement between the posterior densities of
H. pylori and D. melanogaster is striking especially
due to the extreme difference in the size and
the number of interactions of the datasets, with the
H. pylori PIN being of a much smaller size. The
E. coli dataset has a similarly small number of nodes
as the H. pylori data, but far more edges relative to
the number of nodes than any other datasets. This
may go some way in explaining the differences apparent
between the posterior parameter distributions for
E. coli and the other species, or it may, on the other
hand, be due to the low sampling fraction of the data,
most probably a combination of the two.

Looking at the degree distributions, we infer for the
S. cerevisae PIN by applying model averaging to the
posterior particles inferred based on some sampled sub-
sets of the observed network in figure 7, it appears that
we can accurately reconstruct the degree distribution of
the observed network based only on a sample of 50 per
cent of the nodes. Then applying this to the four PIN
datasets we have considered, we would expect that the
S. cerevisae, D. melanogaster and H. pylori data
would allow us to accurately reconstruct the degree dis-
tributions of the full networks from the sampled PIN
data we have used. These results demonstrate the uti-
lity of our methodology not only in elucidating the
evolutionary processes at work, but also in inferring
properties of the as yet unknown full network structure
from the sampled data by including the sampling
process in our models.

5. CONCLUSION

We have demonstrated the ability of our method to cor-
rectly infer network growth model parameters from
observed network data and illustrated its application
to existing PIN data. We feel that our method provides
both novel techniques and results that reveal insights
into the evolutionary processes at work. As more com-
plete and accurate protein interaction data become
available in the future, we would expect these tech-
niques to allow us to make progressively more precise
predictions and comparisons between species.

Simple models like the ones considered here are
vastly idealized and oversimplified models of a much
more complicated and contingent evolutionary process.
On the one hand, we use such models to gain qualitative
insights into the evolution of networks; some of our
models are somewhat more realistic compared with,
for example, simple SF models, in the same sense in
which Kimura’s 2-parameter (K2P) model for nucleo-
tide substitutions is arguably more realistic than the
simpler Jukes—Cantor (JC) model. But neither the
JC or the K2P, nor our models of network evolution
consider functional, structural or indeed any biological
constraints on the evolutionary dynamics. This may
seem like a glaring omission, but is done out of neces-
sity. First, we have no way of capturing these factors
reliably and without extraneous and difficult to justify
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Figure 6. Posterior densities for the model parameters where there were a suitable number of particles in the posterior sample to
calculate the distribution. Only the DA, DAC, DACL and DACR models had sufficient numbers of particles. The datasets are:
red, S. cerevisae; orange, D. melanogaster; green, H. pylori; blue, E. coli.

assumptions; second, these functionally ‘ignorant’
models can be used as null models/hypotheses. Compar-
ing and contrasting real networks with those generated
by simplified simulation models can highlight systematic
differences; these can be caused by functional factors or
by events such as whole genome duplications which are
not captured by these evolutionary models.

A slightly more pragmatic use of such models
and model calibration is for predictive purposes and
comparison of large-scale network features between
species. Bayesian model averaging has been shown to
possess considerable predictive power even if the under-
lying models are known to be oversimplified or
inadequate. Pooling over predictions weighted by
the model fit to the data has the potential to yield
testable and non-trivial predictions of the properties
of complete networks (based on incomplete data).

An advantage of our approach is that spectral
approaches allow us to compare networks more

J. R. Soc. Interface (2012)

comprehensively than has previously been the case
[26,33,34]. They incorporate implicitly the information
contained in standard network summary statistics—
degree distribution, clustering coefficient, distances,
etc.—and also allow us a direct means of comparing
graphs (in an ABC framework) rather than resorting
to the more coarse-grained summary statistics
that had been considered in the past [35]. As exact
likelihood-based inferences are only possible for very
simple growth models [36], the use of ABC is not only
justified but also in fact unavoidable in model-based
analysis of network evolution [4].

The statistical tools introduced here allow us to com-
pare network data and models of their evolutionary
dynamics; in principle, we can also choose to focus on
either quantitative or qualitative aspects of network
data, depending on the quality of available data (or
the details captured by different models). Ultimately,
there is no reason to be disappointed if all that we
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achieve is to reveal the inadequacies of existing models
of network evolution. Being able to do so will in itself
yield new insights into the evolutionary history of
these networks.
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