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Abstract: Bearing fault diagnosis methods play an important role in rotating machine health
monitoring. In recent years, various intelligent fault diagnosis methods have been proposed, which
are mainly based on the features extraction method combined with either shallow or deep learning
methods. During the last few years, Shannon entropy features have been widely used in machine
health monitoring, improving the accuracy of the bearing fault diagnosis process. Therefore, in this
paper, we consider the combination of multi-scale stationary wavelet packet analysis with the Fourier
amplitude spectrum to obtain a new discriminative Shannon entropy feature that we call stationary
wavelet packet Fourier entropy (SWPFE). Features extracted by our SWPFE method are then passed
onto a shallow kernel extreme learning machine (KELM) classifier to diagnose bearing failure types
with different severities. The proposed method was applied on two experimental vibration signal
databases of a rolling element bearing and compared to two recently proposed methods called
stationary wavelet packet permutation entropy (SWPPE) and stationary wavelet packet dispersion
entropy (SWPPE). Based on our results, we can say that the proposed method is able to achieve better
accuracy levels than both the SWPPE and SWPDE methods using fewer failure features. Further,
as our method does not require any hyperparameter calibration step, it is less dependent on user
experience/expertise.

Keywords: stationary wavelet packet transform; multi-scale entropy; Fourier amplitude spectrum
kernel extreme learning machine

1. Introduction

Health conditions of rolling-element bearings (REBs) play a vital role in the working performance
of the rotation machine. Therefore, REBs’ fault diagnosis is a very important task to guarantee the
availability and reliability of the rotation machines in industrial processes. In recent years, quite a
few intelligent fault diagnosis approaches have been proposed, which are mainly based on features
extraction methods combined with either shallow or deep learning methods. Moreover, during the
last few years, several bearing health indicators such as Shannon entropy, spectral kurtosis (SK), the
smoothness index [1], the Gini index [2,3], and the spectral Lp/Lq norm [4,5] have been used in
bearing failure diagnosis. Besides vibration signals, other signals such as current signals [6,7], acoustic
signals [8], and stray flux signals [9] have also been used for fault diagnosis. In this paper, we use
vibration signals as they are easier to measure and can provide useful dynamic information that reflects
bearings’ health condition.

In particular, the SK helps to determine the location of which frequency bands are more
informative according to their impulsivity (maximum kurtosis value). Various studies related to
SK have been presented over the last decade. Antoni [10] proposed an SK estimation method based
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on the short-time Fourier transform. Antoni and Randall [11] published a diagnosis method called
the kurtogram, which shows SK values as a function of both the center frequency and bandwidth of
the filtered signal. However, it has been shown that the kurtogram is computationally expensive, and
thus, the fast kurtogram was proposed by Antoni [12]. Since then, several diagnosis methods based on
improved spectral kurtosis have been reported by other researchers [13–17]. Wang [5] showed that
the reciprocal of the spectral smoothness index and spectral Gini index was less sensitive to outliers
than spectral kurtosis and spectral L2/L1 norm. Therefore, bearing health indicators based on both the
reciprocal of the spectral smoothness index and the spectral Gini index are more appropriate for the
fault features extraction process. Although all these indicators have been proven to be very effective in
early bearing fault detection, in this paper, we are focused on the time-frequency Shannon entropy as
it has been shown to be a more informative failure feature.

Since the raw vibration signals recorded from REBs are in the time domain, we need to transform it
into the time-frequency domain by using some appropriate transformation method. The time-frequency
domain features for REBs fault diagnosis can be extracted using different failure features extraction
methods. For instance, in [18], empirical mode decomposition (EMD) was combined with improved
frequency band entropy in bearing fault feature extraction. Han and Pan [19] used local mode
decomposition (LMD) combined with sample entropy and the energy ration to improve the fault
diagnosis in REBs. Gong et al. [20] used variational mode decomposition, and in Rodriguez et al. [21],
wavelet transform was combined with dispersion entropy and also with permutation entropy, which in
turn was passed onto a kernel extreme learning machine classifier. Unlike in [21], in Rodriguez et al. [22],
the feature extraction method was based on the stationary wavelet transform and a singular value
decomposition. Wavelet transform has also been used in combination with the conventional statistical
index and the logarithmic energy entropy [23]. After the effective features have been selected, all the
methods mentioned above pass the extracted features to a machine learning classifier. Traditionally,
shallow learning classifiers such as the artificial neural network [24] and support vector machine [25]
have been used, and more recently, deep learning classifiers such as deep output kernel learning [26]
and the convolutional neural network [27–29] have also been used.

Based on these studies, including extensions of the Shannon entropy seems to be an efficient
strategy to improve the accuracy of the bearing fault diagnosis. Thus, in this article, we consider
transforming the time-frequency Shannon entropy into a frequency domain Shannon entropy to obtain
better quality failure features. To this end, we propose to integrate stationary wavelet packet (SWP)
transform with Fourier amplitude spectrum, leading to what we call stationary wavelet packet Fourier
entropy (SWPFE).

After the entropy features extraction, a KELM classifier is used to perform automatic fault
diagnosis. The KELM classifier is created by replacing the ELM’s hidden activation function with a
Gaussian kernel function and so to improve the generalization performance of ELM and reduce time
consumption for determining the number of hidden layer nodes [30–32]. We chose to use KELM as it
has been shown to be very efficient in both classification accuracy and tuning time. In particular, as
demonstrated by Huang et al. [31], the KELM classifier outperforms other well-known classification
methods such as support vector machines and least-square support vector machines.

We apply our diagnosis method on two bearing vibration signals databases under variable
work conditions obtained in [33,34], namely fan-end and drive-end datasets. Using these datasets, a
comparison among the accuracy obtained by our SWPFE method and the results obtained in [21,22] is
performed. We need to point out that, unlike the vast majority of the studies that have been working
on these datasets, we decided to consider the drive-end dataset of 48 kHz rather than the drive-end
dataset of 12 kHz. We do this because the drive-end dataset of 48 kHz is much harder to tackle, as
stated in [26], and thus, it allows us to clearly show the difference in the accuracy levels obtained by
our proposed method when compared to other state-of-the-art bearing failure diagnosis algorithms.

This work is organized as follows: in Section 2, we briefly present three measures of time-frequency
Shannon entropies and the SWP transform. In Section 3, we describe the bearing multi-fault diagnosis
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algorithm implemented in this paper and the setup we consider for our experiments. In Section 4, we
analyze the results obtained by our algorithms. We draw some conclusions in Section 5.

2. Shannon Entropy Measures

In this section, we introduce three Shannon entropy measures, namely SWPFE, SWPPE, and
SWPDE, as in [21].

2.1. Stationary Wavelet Packet Fourier Entropy

Let w(n) be a signal corresponding to one of the D = 2J stationary wavelet sub-band signals (see
Equations (13a) and (13b)), then its stationary wavelet packet Fourier entropy (SWPFE) is calculated
through the following steps:

E = − 1
log2(K)

K

∑
k=1

p(k)log2(p(k)) K =
2a

2
, a = dlog2(N)e (1a)

p(k) =
s2(k)

∑K
k=1 s2(k)

(1b)

where s(k) represents the amplitude spectrum obtained as follows:

s(k) =
√
<[X (k)]2 +=[X (k)]2 (2a)

X (k) =
N

∑
n=0

√
w(n)exp(−j2πkn/N) k = 0, . . . , K− 1 (2b)

where X (k) denotes the kth Fourier coefficient in the frequency domain, N1 is the size of the
Fourier series, and < and = represent the real and the imaginary parts of the complex spectrum
X (k), respectively.

2.2. Stationary Wavelet Packet Permutation Entropy

The stationary wavelet packet permutation entropy (SWPPE) of a wavelet sub-band signal
{w(n) = wi(n), i = 2J , n = 1, . . . , N} obtained by using Equations (13a) and (13b) is calculated
through the following steps [35]:

Step 1: Create a set of m-dimensional vectors Wm
i as follows:

Wm
i = [w(i), w(i + 1), . . . , w(i + m− 1)], i = 1, 2, . . . , N −m + 1 (3)

where m is the embedding dimension of the vector Wm
i .

Step 2: Each vector Wm
i is sorted in ascending order with permutation pattern π as follows:

Wm
i = [w(i + j1 − 1) ≤ w(i + j2 − 1),≤ . . . ≤, w(i + jm − 1)] (4a)

π = [j1, j2, . . . , jm] (4b)

where each vector Wm
i in m-dimensional space can be mapped to one of the m! ordinal patterns

π.
Step 3: Calculate the probability of occurrence for each permutation pattern π as follows:

p(π) =
Number

{
i|i = 1, 2, . . . , N −m + 1; Wm

i has type π
}

N −m + 1
(5)

where N −m + 1 denotes the total amount of embedding vectors.
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Step 4: Calculate the normalized SWPPE of the ith wavelet sub-band signal w(n) using Equation (6):

SWPPE[w(n)] =
−1

log (m!)

m!

∑
j=1

p
(
πj
)

log
(

p
(
πj
) )

(6)

Here, for all the experimental examples, the embedding dimension is selected as m = 6 [21,35].

2.3. Stationary Wavelet Packet Dispersion Entropy

Let w(n) be a signal corresponding to one of the D = 2J wavelet sub-band components, then its
stationary wavelet packet dispersion entropy (SWPDE) is calculated through the following steps [36]:

Step 1: The wavelet sub-band signal {w(n)} is normalized between zero and one using the normal
cumulative distribution function as follows:

y(n) =
1

σ
√

2π

∫ w(n)

−∞
exp

[
−(t− µ)2

2σ2

]
dt (7)

where µ and σ are the mean and standard deviation of the raw vibration signal of N data points.
Step 2: The normalized signal y(n) is mapped into c classes with integer indices from 1–c using the

equation as follows:

zc(n) = round (c · y(n) + 0.5) n = 1, 2, . . . , N (8)

where round(·) denotes the rounding operation.
Step 3: Create multiple m-dimensional vectors zc,m

i as follows:

zc,m
i = [zc(i), zc(i + 1), . . . , zc(i + m− 1)], i = 1, 2, . . . , N −m + 1 (9)

Step 4: Each embedding vector zc,m
i is mapped into a dispersion pattern πv0,v1,...,vm−1 , where zc(i) =

v0, zc(i + 1) = v1, . . . , zc(i + (m− 1) = vm−1. Thus, the number of possible dispersion patterns
is equal to cm.

Step 5: Calculate the probability of occurrence for each permutation pattern πv0,v1,...,vm−1 as follows:

p(πv0,v1,...,vm−1) =
Number

{
i|i = 1, 2, . . . , N −m + 1; zc,m

i has type πv0,v1,...,vm−1

}
N −m + 1

(10)

where N −m + 1 denotes the total of embedding vectors.
Step 6: Calculate the normalized SWPDE of the ith wavelet sub-band signal w(n) using Equation (11):

SWPDE[w(n)] =
−1

log (cm)

cm

∑
π=1

p(πv0,v1,...,vm−1)log
(

p(πv0,v1,...,vm−1)
)

(11)

Here, for all the experimental examples, the embedding dimension is set to m = 2 and the
number of classes selected as c = 5 [21,36–39].

2.4. Stationary Wavelet Packet Transform

The SWPT is similar to both the stationary wavelet transform [40–42] and the discrete wavelet
transform (DWT) [43,44]. At the first level of wavelet decomposition, an input signal {x(n) =

w0,0(n), n = 1, . . . , N} is convolved with a low-pass filter h1 defined by a sequence h1(n) of length r
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and a high-pass filter g1 defined by a sequence g1(n) of length r. Both the approximation coefficient
w1,1 and the detail coefficient w1,2 are obtained as follows:

w1,1(n) =
r−1

∑
k=0

h1(k)w0,0(n− k) (12a)

w1,2(n) =
r−1

∑
k=0

g1(k)w0,0(n− k) (12b)

Since no sub-sampling is performed, the obtained sub-bands signals w1,1(n) and w1,2(n) have the same
number of elements as the input signal w0,0(n). Filters hj and gj are computed by using an operator
called dyadic up-sampling. Using this operator, zero values are inserted between each pair of elements
in the filter that are adjacent. Thus, the SWPT is defined by the pair of filters (low- and high-pass
filters) that is chosen and the number of decomposition steps J. For this paper, a pair of Db2 wavelet
filters has been chosen [34,43]. In the literature, wave filters with order greater than two have also been
proposed [23]. Although wave filters with order greater than two have better discriminatory potential
both in the time and frequency domain [23], we found that increasing the order of the wave filters does
not lead to better diagnosis accuracy levels. Thus, we chose to use the simplest mother wavelet filter,
i.e., Db2.

The general process of the SWPT is continued recursively for j = 2, . . . , J as follows:

wj,2i−1(n) =
r−1

∑
k=0

hj(k)wj−1,i(n− k) (13a)

wj,2i(n) =
r−1

∑
k=0

gj(k)wj−1,i(n− k) (13b)

where the i value denotes the ith sub-band at the (j− 1)th level, and the number of sub-bands at the
(j− 1)th level is equal to i = 1, . . . , 2j−1.

3. Bearing Fault Diagnosis Algorithm

The algorithm for failure diagnosis presented in this study consists of two phases: the entropy
features extraction phase and the classification phase. While the discriminative features extraction
phase is carried out by integrating stationary wavelet packet transform and both dispersion and
permutation entropy, the multi-fault classification is performed by means of a KELM model based on
the Gaussian kernel function and the k-fold cross-validation method. We describe these phases in the
next sections.

3.1. Proposed Diagnosis Algorithm

The steps of the bearing fault diagnosis algorithms proposed in this paper are as follows:

Step 1: Divide the discrete time raw vibration signal into multiple non-overlapped signals of N data
points.

Step 2: Decompose the raw non-overlapping signals x(n), n = 1, . . . , N into D = 2J sub-band signals by
using SWPT given as Equations (13a) and (13b).

Step 3: Create a D-dimensional features vector based on multi-scale wavelet Shannon entropy as follows:

uk = [1/E1, 1/E2, . . . , 1/Ei, . . . , 1/ED] (14)

where Ei represents one of the SWPFE/SWPPE/SWPDE values of the ith wavelet sub-band
signal and k corresponds to the kth raw non-overlapping vibration signal.

Step 4: Normalize the features matrix Z as follows:
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zi =
ui − ui,min

ui,max − ui,min
i = 1, 2, . . . , D (15)

where zi corresponds to the ith column of the features matrix Z and ui,min and ui,max denote the
minimum value and maximum value of the zi vector, respectively.

Step 5: Create the KELM classifier based on both the features matrix Z and the k-fold cross-validation
method.

3.2. Kernel-ELM Classifier

In this section, we present a brief description of KELM and its main characteristics, based on our
previous work on ELM [45] and KELM [21,22]. For more details on this topic, see [30–32,46].

The KELM classifier output is obtained as follows:

ŷ(z) =
M

∑
i=1

ker(z̃i, z)β (16a)

β =

(
I
C
+ ker(z̃, z̃)

)†

Y (16b)

where z̃ ∈ RD×M represents the set of input features vectors to be trained with the M value equal to the
number of samples considered during the training phase, z ∈ RD denotes the input features vectors
to be tested, I is the M×M identity matrix, the β values are output weights of the KELM classifier,
and the C parameter corresponds to the regularization value. The (·)† expression corresponds to the
Moore–Penrose generalized inverse matrix [47]; Y corresponds to the desired output pattern matrix;
and the function ker(·) corresponds to the Gaussian kernel given as: :

ker(z̃i, z̃j) = exp
(
−
‖z̃i − z̃j‖2

2σ2

)
(17)

where the σ parameter corresponds to the kernel width, which is set to σ2 = D and the D value
corresponds to the dimensionality of the input features vectors passed onto the KELM classifier during
both the training and the testing phases (see Equation (14)).

Finally, the class label predicted for sample z is computed as follows:

Label
(

ŷ(z)
)
= max{ŷ1(z), . . . , ŷ10(z)} (18)

Using the five-fold cross-validation (CV) method [48,49], the regularization parameter, C, is chosen
from the range {101, . . . , 106}.

3.3. Experimental Setup

In this paper, we considered experimental raw vibration signals obtained from the bearing
data center of the Case Western Reserve University [33], which consisted of two bearings: the
drive-end (6205-2RS JEM SKF, deep groove ball bearing) and the fan-end (6203-2RS JEM SKF, deep
groove ball bearing) bearings. An experimental setup as the one shown in Figure 1 was used to
generate this dataset. This setup consisted of a 2-hp Reliance Electric motor, a dynamometer, and
a torque transducer/encoder. The bearing holds the motor shaft during the experiments. In order
to collect vibration signals, an accelerometer mounted on the motor housing, as the one shown
in Figure 1, was used. Single-point failures with different failure diameters of 7, 14, and 21 mils
(1 mils = 0.001 inches) were introduced to both the driving-end and the fan-end bearings using
the electro-discharge machining method, with the motor speed varied at 1730 r/min, 1750 r/min,
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1772 r/min, and 1797 r/min for loads of 3, 2, 1, and 0 hp, respectively, leaving a total of 40 vibration
signals. The length of these raw vibration signals was set to 120,000 data points (obtained in 10 s). Each
of these 40 signals was divided into 50 segments. The size of each segment was set to 2400 data points
(≈6-times the rotation shaft period). Table 1 shows these values.

Digital data were produced at 12,000 and 48,000 samples per second during 10 s for the fan-end
and the drive-end, respectively. In both cases, data were produced for normal bearing (NB) condition
samples and failure condition samples: outer race fault (ORF), inner race fault (IRF), and ball fault
(BF). Further details on the experimental setup can be found in [33].

Figure 1. Experimental setup [33].

Table 1. Structure of bearing datasets. NB, normal bearing; ORF, outer race fault; IRF, inner race fault;
BF, ball fault.

Fault Speed Load Fault Samples Class Class
Types (r/min) (hp) Diameter (mils) Numbers Label 1 Label 2

NB 1797-1730 0-3 0 200 1 1

ORF 1797-1730 0-3
7 200 2 2
14 200 3 3
21 200 4 4

IRF 1797-1730 0-3

7 200 5 5
14 200 6 6
21 200 7 7

BF 1797-1730 0-3

7 200 8 8
14 200 9 9
21 200 10 10

1 Fan-end bearing at 12 kHz; 2 drive-end bearing at 48 kHz.

4. Experiments and Results

We performed experiments on the two datasets presented above. With these experiments, we
aimed to evaluate the performance of the diagnostic methods proposed in this paper. To this end,
first, we applied the J-levels SWP transform to decompose the non-overlap raw signal into D = 2J

sub-band signals. Then, for each wavelet sub-band signal, we computed the Fourier entropy value, the
permutation entropy value, or the dispersion entropy value, as appropriate, using Equations (1), (6),
and (11), respectively. Finally, the KELM classifier was used to diagnose the bearing fault types with
different severities. Equation (16) was applied to compute the output weights of the KELM classifier,
and a five-fold cross-validation method was used to adjust both the number of input features D and
the regularization parameter C. To this end, the bearing vibration signal database was split into five
folds, where four out of the five folds were used during the training phase and the remaining fold was
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used during the testing phase. To evaluate the performance of the KELM model during the testing
stage, we considered the well-known average accuracy and F-score measures, which are computed as
explained in [21,22,50,51].

4.1. Case 1: Fan-End Bearing

In this section, we present the results obtained for the fan-end bearing when using the three
approaches considered in this paper: SWPFE, SWPPE, and SWPDE. For each of these, we show both
the average accuracy and the F-score measures (see Figures 2–4, respectively).

For the fan-end bearing dataset we used in this paper, the collected data consisted of nine faulty
bearing conditions with three failure diameters (7, 14, and 21 mils) and normal bearing condition, giving
a 10-class recognition problem. For each class, there were 200 samples and a total of 2000 samples.

Figure 2 shows the results obtained by the SWPFE-KELM method. As we can see in Figure 2a,
when D = 8 input features were considered, the method was not able to reach 100% average accuracy,
as its best obtained value was 99.20% when C = 108. For these values (D = 8 and C = 108), we
then computed the F-score for all 10 different working conditions. As we can see in Figure 2b, the
SWPFE-KELM method only reached the 100% of the F-score for the NB condition.The F-score values
for the remaining working conditions ranged from 98.6%–99.5%. If we increase the number of input
features to D = 16, the 100% of average accuracy was reached for C = {104, 105, 106} values. We
should note that, for this experiment, as the number of input features increased, the C value needed
to reach high accuracy levels decreased. Just as we did for D = 8, we computed the F-score value
using D = 16 and C = {104} values. In this case, the method reached a 100% F-score value for all 10
working conditions.
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Figure 2. Stationary wavelet packet Fourier entropy (SWPFE)-kernel extreme learning machine (KELM)
diagnosis result with five-fold CV during the testing phase for the fan-end bearing: (a) average accuracy
and (b) F-score.

Figure 3 shows the results obtained by the SWPPE-KELM method using the embedding dimension
m = 6 [21]. Unlike the SWPFE-KELM method, when D = 16 input features were considered, 100%
average accuracy was never reached by the SWPPE-KELM, and its best value (99.85%) was obtained
for C = 105. Further, for D = 16 and C = 105, the F-score reached a 100% value for all but two working
conditions. It is interesting to note that the two working conditions for which the F-score was below
the 100% corresponded to ball failures with 7 and 14 mils. This confirms that ball failures are harder to
diagnose as reported previously in the literature [21,22]. Again, as we increase the number of input
features to D = 32, the SWPPE-KELM method was able to reach the 100% average accuracy value for
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C = {108, 109, 1010}. Note that, unlike in Figure 2, increasing the number of input features did not lead
to smaller values of C needed to reach high accuracy levels. Indeed, as the C value actually became
larger w.r.t. the value needed for D = 16, we can conclude that there was no direct relation between D
and its C optimal value. We then computed the F-score value using D = 32 and C = 108. As is shown
in Figure 3b, the F-score value reached 100% for all 10 working conditions.
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Figure 3. SWPPE-KELM diagnosis result with five-fold CV during the testing phase for the fan-end
bearing: (a) average accuracy and (b) F-score.
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Figure 4. SWPDE-KELM diagnosis result with five-fold CV during the testing phase for the fan-end
bearing: (a) average accuracy and (b) F-score.

Figure 4 shows the results obtained by the SWPDE-KELM method considering c, the number of
states of the dispersion entropy, equal to five [21]. As we can see in Figure 4a, when D = 16 input
features were considered, the best accuracy value obtained by the SWPDE-KELM method was below
100% (99.92%), and it was achieved when C = 105. We then computed the F-score value using D = 16
and C = 105. Figure 4b shows that the F-Score reached the 100% for eight out of the 10 working
conditions. Again, the working conditions for which the F-score was below 100% corresponded to
ball failures (7 mils and 14 mils). We then increased the number of input features to D = 32, and the
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SWDE-KELM method was able to reach 100% average accuracy when C = {103}. The F-score value
was then computed for D = 32 and C = 103. As we can see in Figure 4b, the SWPDE-KELM method
reached a 100% F-score value for all 10 failure classes.

4.2. Case 2: Drive-End Bearing

In this section, we present the results obtained for the drive-end bearing when using the three
approaches considered in this paper: SWPFE, SWPPE, and SWPDE. For each of these, we show both
the average accuracy and the F-score measures (see Figures 2–4, respectively). As mentioned in
Section 1, we need to point out that the 48-kHz drive-end dataset used in our experiments was by far
harder to diagnose than both the 12-kHz drive-end and the fan-end bearing datasets commonly used
in the literature [26].

Figure 5 illustrates the results obtained for our SWPFE method during the testing stage. As we
can see in Figure 5a, when D = 32 input features were considered, the method was not able to reach
100% average accuracy as its best obtained value was 99.95% when C = 105. For these values (D = 32
and C = 105), we then computed the F-score for all 10 different working conditions. As we can see in
Figure 2b, the SWPFE-KELM method reached a 100% F-score for all but two conditions (inner ring
fault of 14 mils and ball fault of 14 mils). When we increased the number of input features to D = 64,
the 100% of average accuracy was reached for C = {105, 106, 107, 108, 109, 1010} values. Just as we did
for D = 32, we computed the F-score value using the D = 64 and C = {105} values. In this case, the
method reached the 100% F-score value for all 10 working conditions.

We then tried the SWPPE-KELM method on the drive-end bearing signals using the embedding
dimension m = 6 [21]. Figure 6 shows the performance evaluation of the SWPPE-KELM method
during the testing phase for the average accuracy values and the F-score values. Unlike previous
experiments, here we considered three different values for the parameter D, the number of input
features. As we can see in Figure 6a, the SWPPE-KELM method only reached an average accuracy
of 100% when D = 128 input features and C = {103, 104}. When D = 32, the best obtained average
accuracy value was 99.90%, and it was obtained with C = {105, 106}, while for the D = 64 input
features, the best average accuracy value (99.95%) was reached when C = {103, 104, 105, 106}. The
F-score values obtained using our SWPPE-KELM method with D = 32, D = 64, and D = 128 input
features and C = 105, C = 103, and C = 103, respectively, are shown in Figure 6b. As can be seen, the
SWPPE-KELM method achieved a 100% F-score value for all working conditions only for D = 128
input features. On the contrary, when fewer input features were considered, the method built with
D = 32 achieved an F-score value of 100% in only seven out of 10 working conditions, failing in the
diagnosis of the outer ring failure (7 mils) and the inner ring failure (7 and 14 mils). Similarly, when
D = 64 input features were considered, the F-score value of 100% was reached in all but two working
conditions: the SWPPE-KELM method failed to classify both 7 and 14 mils outer ring failures.

Finally, Figure 7 shows the results obtained by the SWPDE-KELM method considering c, the
number of states of the dispersion entropy, equal to five [21]. In this case, we report the results obtained
for D = {32, 64, 128, 256}. As we can see in Figure 7a, the best average accuracy value obtained by
the SWPDE-KELM method was 99.80%, and it was reached for D = 256 using C = {104}. Similarly,
for D = 32 and D = 64, the SWPDE-KELM method cannot even achieve the best value achieved for
D = 256 and D = 128 as it only obtained 99.50% and 99.60% as best values, using C = {105} and
C = 104, respectively. We then computed the F-score value using D = 32 and C = 104, D = 64 and
C = 104, D = 128 and C = 103, and D = 256 and C = 103. Figure 7b shows the obtained F-score
values. As we can see, the method was not able to achieve a 100% F-score value for the ORF with
damage sizes of 14 mils and 21 mils and for the IRF with a damage size of 14 mils. Further, when using
D = 32, the method only reached the 100% value for only two out of 10 working conditions, while for
D = 64, the method reached the 100% value for only three working conditions. The method performed
slightly better when D = 128 input features were considered, reaching a 100% F-score value in five out
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of 10 working conditions, while for D = 256, the method reached a 100% value for seven out of 10
working conditions.

Based on the results discussed above, we can say that our proposed SWPFE method has the
following advantages over the SWPDE and the SWPPE methods: (i) The SWPFE method was able to
achieve the 100% value for both the F-score and the average accuracy measures using only half of the
failure features that the SWPDE and the SWPPE needed to reach such values. In fact, for the harder
dataset (48-kHz drive-end), the SWPDE was not able to reach the 100% F-score value even though
it was tested with 256 failure features (four-times the number of features needed by our proposed
method). (ii) The fact that our method required fewer failure features than the SWPDE and the SWPPE
methods also means that our method was faster in both the training and the testing phases. (iii)
Unlike the SWPPE and the SWPDE, which require the dimension embedding hyperparameter, m, to
be calibrated [21,36–39], the proposed SWPFE did not need any additional hyperparameters to find
the entropy measure. Further, this advantage became more evident when we looked at the SWPDE
method, which required the number of state hyperparameters, c, to be calibrated. This advantage
made our method less dependent on user experience/expertise.
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bearing: (a) average accuracy and (b) F-score.

5. Conclusions

This article presented a new discriminative failure feature to improve the bearing multi-fault
diagnosis in rotational machines. This failure feature integrated the SWP transform and Fourier
amplitude spectrum. To this end, we considered transforming raw vibration signals from the time
domain to the time-frequency domain by means of the SWP transform and, then, transforming the
wavelet sub-band signals from the time frequency domain to the frequency domain by means of the
discrete Fourier transform. Once the signal was in the frequency domain, we computed the failure
feature, which we called stationary wavelet packet Fourier entropy.

As the main advantages of our proposed approach, we found that it needed fewer features
to achieve high accuracy diagnosis w.r.t. the state-of-the-art methods previously proposed in the
literature. Furthermore, our method did not require any hyperparameter calibration step, which made
it less dependent on user experience/expertise.

The results clearly showed that our method outperformed both the SWPPE and the SWPDE
methods in both the average accuracy and the F-score measures. This difference became more evident
for the 48-kHz drive-end dataset, which is harder to solve than the commonly-used datasets in
the literature.

Although only experimental data have been considered in this study, it is important to note that,
as has been shown in the literature previously, diagnosis algorithms tuned using experimental data
can be successfully used in more realistic environments for fan-end bearings [23].

As future work, we aim to apply the proposed SWPFE method to both bearing run-to-failure
and gear-box vibration signals. Moreover, we think that comparing spectral entropy measures and
well-known indicators such as spectral kurtosis, the spectral Lp/Lq norm, the spectral Gini index,
or spectral smoothing might help to determine the relevance and complexity of all these measures
when solving bearing multi-fault diagnosis in rotational machines. Finally, we also aim to create new
bearing failure features based on synchrosqueezing time-frequency analysis to rotating machine failure
diagnosis under variable working conditions.
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