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M O L E C U L A R  B I O L O G Y

An interpretable model of pre-mRNA splicing for animal 
and plant genes
Kayla McCue1,2 and Christopher B. Burge1,2*

Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceo-
some recognizes motifs at the 3′ and 5′ splice sites (SSs), excises introns, and ligates exons. SS recognition and 
pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, 
we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, 
SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accu-
racy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding 
motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across 
species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a 
greater reliance on SREs in mammalian splicing.

INTRODUCTION
The removal of intronic sequences from pre-mRNA transcripts, splic-
ing, is a key step in transcript maturation. Catalyzed by the spliceo-
some, splicing is widespread in eukaryotic organisms and essential for 
expression of many genes (1). The 5′ and 3′ splice site (SS) motifs and 
the branch point sequence (BPS) form the core sequence elements 
required for splicing. These motifs are recognized by components of 
the spliceosome in a process that pairs the 5′ and 3′SS to define the 
intron between them (2). However, these motifs do not, by them-
selves, contain sufficient information to fully explain the splicing pat-
terns observed in many organisms (3). Instead, splicing is additionally 
affected by diverse splicing regulatory elements (SREs), which are 
recognized by a wide array of protein splicing factors (SFs), many 
deeply conserved in evolution (4).

Large-scale cell-based screening has been used to identify se-
quences that affect exon inclusion, intron inclusion, or splice site us-
age (5–8), with most of these studies defining specific sets of SREs. 
Other studies have used computational approaches followed by mi-
nigene validation experiments to identify exonic SREs (9, 10), and a 
great deal of mutational analysis has identified SREs active in specific 
exons or introns (11–13). Likewise, dozens of SFs have been exten-
sively studied biochemically and genetically (14). In vitro binding 
preferences of RNA-binding proteins (RBPs), including many SFs, 
have been mapped (15, 16), and tools for modeling binding have been 
developed (17, 18). Recently, in vivo binding and splicing activity fol-
lowing RNA interference knockdown have been assessed for dozens 
of SFs (19). SS motifs have also been explored experimentally as well, 
including a recent large-scale screen that measured the activity of all 
possible 5′SS sequences in three different exonic contexts (20). Vari-
ous computational models focused on determining SS strength and 
classifying short sequences as 5′ or 3′SSs were among the earliest 
models related to splicing (21–23).

Over the past two decades, more comprehensive models of splic-
ing have been developed, predominantly focused on mammalian sys-
tems. An early approach showed that adding known exonic splicing 

enhancer (ESE) and especially exonic splicing silencer (ESS) elements 
to SS motifs improved the accuracy of SS prediction (5). Other mod-
els of splicing have focused more on the prediction of splice-altering 
mutations or the percent spliced in (PSI) for cassette (alternatively 
spliced) exons. These models use a variety of features to make their 
predictions, for instance, the hexamer additive linear (HAL) model 
predicts the change in PSI for a cassette exon following mutation 
based on the hexamer compositions of the wild type and variant se-
quences (8). There have also been efforts to define a comprehensive 
“splicing code” of relevant cis-acting elements, with more than 1000 
features, including exon lengths and binding motifs for known SFs 
(24–26). These features have then been used in Bayesian neural net-
work models to predict splicing disruption caused by genetic variants 
and relative PSI values for cassette alternative exons in different tis-
sues. Models have also been developed that more explicitly seek to 
determine the likelihood of a variant disrupting splicing (27, 28).

More recently, extremely high predictive performance for splicing 
has been achieved via the application of deep neural network meth-
ods such as SpliceAI (29), which predicts splice sites from large seg-
ments of flanking human genomic sequence (up to 10 kb). These 
methods produce “black box” models, which learn parameters that 
are essentially uninterpretable. In silico mutagenesis experiments can 
be used to interrogate which sequence regions are important for spe-
cific predictions (29). A mutational scan of hundreds of regions iden-
tified the expected reliance on core SS motifs but failed to detect 
enrichment for known SRE motifs, suggesting that the genomic fea-
tures learned by the model overlap only partially with those used in SS 
recognition by the spliceosome (30).

“White box” models, in contrast to black box models, are designed 
to be readily interpretable, allowing users to understand how the in-
puts and parameters are used to reach the conclusions of the model. 
Therefore, we developed a white box model where the structure and 
parameters are directly inspired by different aspects of the splicing 
process. The resulting interpretability allowed us to assess the relative 
importance of “structural” features such as exon and intron lengths 
and to derive scores for short sequences as SREs that capture many 
known regulatory motifs and identify other motifs that are predictive 
of function.

To this end, we assumed that recognition by the spliceosome pri-
marily involves three key aspects: motifs of variable strength at the 5′ 
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and 3′SS; SREs located near the SS; and SS pairing, including distance 
constraints and preferences. New models of SS strength incorporating 
triplet preferences in a maximum entropy framework were found to 
improve on previous non-neural models (22). Here, SREs were as-
sumed to act locally (e.g., within 80 or 100 nt of the SS) and additively 
to enhance or suppress usage of nearby SS. Combining these first two 
features yielded a simple model we call context-aware SS (CASS), 
which may have applications as a measure of SS strength in local con-
text. Additionally, we assumed that pairing of SSs by the spliceosome 
involves not only steric considerations that enforce a minimum intron 
length but also preferences for specific exon and intron lengths that 
reflect processes of exon and intron definition (31). These three fea-
tures were modeled together in our SMsplice model, whose structure 
is closely related to a hidden semi-Markov model (HSMM), enabling 
use of a classic HSMM algorithm to identify the most likely splicing 
pattern in a transcript. To maintain tractability, other features known 
to play a role in the splicing of some or all introns were omitted, in-
cluding the BPS motif, recursive splicing, RNA secondary structure of 
the pre-mRNA, and impacts of SREs at longer distances (32). Despite 
these omissions, our model yielded moderately to highly accurate 
predictions in a variety of animals and a model plant and yielded pu-
tative SRE motifs in each organism and insights into the relative im-
portance of different features across evolution.

RESULTS
CASS scores more than double the performance of MaxEnt 
scores alone
We sought to develop scores representing the potential of individual 
sequence positions to function as a 5′ or 3′SS, considering first the 
core SS motifs, and then the impact of nearby SREs (Fig. 1A). For SS 
motif scores, we developed an updated version of the MaxEntScan 
method (22), taking advantage of much larger training sets of high-
quality splice sites and improved computational resources to develop 
more complex and accurate models. Our new version is a “third-
order” model as it captures dependencies between triplets of positions 
rather than just the pairs of positions in the core motifs considered 
previously (Methods). We defined core motif regions as in the origi-
nal model, consisting of 9 nt at the 5′SS (−3 to +6), and 23 nt at the 
3′SS (−20 to +3, including the polypyrimidine tract). The models re-
turn a log-odds score of a given sequence of length 9 or 23 based on 
the ratio of the probability of the sequence as a 5′SS or 3′SS divided by 
the probability of the sequence under a background model. This new 
version of the method yielded improved discrimination over the orig-
inal, with a test set area under the receiver operator characteristic 
curve (AUC) of 0.9982 compared to the original’s 0.9971 for 5′SS and 
0.9965 versus the original’s 0.9960 for the 3′SS model (Fig. 1B), and 
larger improvements in other organisms (below). To use these models 
as SS predictors, we simply set a cutoff on the SS scores and predicted 
as a SS any position with score exceeding a threshold that maximized 
the F1 score, defined as the harmonic mean of precision and recall, on 
a training set of human genes (Methods). Application to a short hu-
man gene, ZNF575, is shown (Fig. 1C).

The activities of splice site motifs in human genes are known to be 
quite sensitive to the local sequence context, often being influenced 
by nearby SREs (1), which can act from exonic or intronic locations. 
Exonic SREs are typically designated ESEs when they promote the 
use of upstream 3′SSs/downstream 5′SSs and/or inclusion of the 
exon in which they reside and as ESSs when they have the opposite 

effect on splicing. Similarly, intronic SREs that promote the use of 
downstream 3′SSs or upstream 5′SSs are known as intronic splicing 
enhancers (ISEs), while those that have the opposite effect are in-
tronic splicing silencers (ISSs). To represent the behavior of SREs 
enhancing or silencing splicing in local regions, we defined an ex-
onic splicing regulatory element, or “ESR” score, for each possible 
hexanucleotide (hexamer), representing its impact on the splicing of 
upstream 3′SSs and downstream 5′SSs, as well as an intronic splicing 
regulatory element, or “ISR” score, representing its impact on down-
stream 3′SSs and upstream 5′SSs. In essence, we treat hexamers with 
positive or negative ESR scores as akin to ESEs and ESSs, respectively, 
and those with positive or negative ISR scores as ISEs or ISSs. These 
scores, determined by a learning procedure describe below, are add-
ed to the “core SS scores” (from the MaxEnt procedure described 
above) of adjacent SS motifs as shown (Fig. 1A). We refer to these 
SRE-modulated SS scores as CASS scores.

Mathematically, the CASS scores are defined by the formulas

Here, t refers to the position of the base in question within the wid-
er sequence and the superscripts 3 and 5 differentiate between the 3′ 
and 5′SS. So, s5

t
 refers to the 5′ CASS score at position t of a sequence 

and s3
t
 refers to the 3′ CASS score at that same position. The first terms 

in these equations, the m, are the core SS scores, with similar notation 
as the context-aware scores. For the summation terms, r indicates the 
range of sequence context considered, and the bounds of the summa-
tion are chosen to avoid overlapping the sequences used to determine 
the SS scores. We set r equal to 80, which proved optimal or near opti-
mal in a variety of tests in all organisms studied. The summands are the 
relevant SRE scores, the superscripts e and i differentiate between ex-
onic and intronic context, and the subscript function h(j) is a hash 
function, indicating the index used for σe or σi to get the value associ-
ated with the hexamer beginning at position j in the sequence.

ESR and ISR scores were learned as follows. Starting with the pre-
dictions made using our core SS motif models, we considered all posi-
tions that disagreed with the canonical annotation for the associated 
gene. We reasoned that these false positives (FPs) and false negatives 
(FNs) represented sequences where SREs were likely involved. An FP 
represents a strong SS motif, which might require silencing elements 
in the flanking sequence, whereas an FN represents a weaker SS motif 
that might require splicing enhancers nearby to promote its use. In 
particular, we took the flanking regions that would be incorporated 
into the CASS scores, separating the exonic and intronic sides, and 
updated the SRE scores, encouraging the hexamers frequently present 
near FPs to be silencing and those frequently near FNs to be enhanc-
ing (Fig. 1D and Methods). We then used these updated SRE scores to 
make new predictions on the training set and repeated this process 
until performance on the validation set peaked (Methods).

We refer to SRE scores calculated in this manner as CASS-learned 
SRE scores. Generally speaking, the ESR scores had greater magni-
tudes, both positive and negative, than the ISR scores (Fig. 1E). Fur-
thermore, we were able to quantify the benefit provided by the context 
in CASS scores. We applied the CASS framework to a test set of genes 
and, using the prediction cutoffs learned from the training set, calcu-
lated the F1 scores (Fig. 1F). The ensuing change in performance was 
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Fig. 1. CASS scores improve predictions. (A) CASS scores for an RNA sequence are determined by scoring every position as a potential 5′SS, 3′SS, ESR, and ISR. The 3′ 
CASS score is the sum of its original 3′SS score plus ISR scores of hexamers in the upstream ISR effect region and ESR scores of hexamers in the downstream ESR effect 
region. The 5′ CASS score is calculated similarly but with upstream ESR scores and downstream ISR scores. (B) Reduced 1 − AUC values for the updated MaxEnt methods 
compared with the originals show improvement in classification of SS versus non-SS sequences. (C) Illustration of MaxEnt scores, SRE scores, CASS scores, predictions, and 
annotations for the gene ZNF575. 5′ and 3′SS scores above zero are shown, with height indicating strength. For ESR and ISR scores, positive scores are above (pink), and 
negative scores are below (blue), with color intensity indicating strength. Solid/hollow bars represent correct/incorrect predictions, respectively. (D) Iterative learning of 
scores uses the frequency of hexamers in regions flanking FP and FN predictions. SRE scores of hexamers that appear frequently in exonic and intronic FP regions com-
pared to the respective FN regions are decreased, while scores of those with the opposite pattern of enrichment are increased. (E) Chaos plots for CASS-learned SRE scores. 
For each hexamer, the overall quadrant in the heatmap indicates the first base, indicated at the corners. The second letter determines the subquadrant and so on. The 
score for each hexamer is indicated by color. (F) Precision-recall curves on the test set for predictions made using no SRE scores and the CASS-learned SRE scores. The dots 
represent the location on the curve determined from the cutoff learned on the training data, and the associated F1 score on the test data is indicated.
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substantial, increasing from 23% with SS scores alone to 51% with 
CASS-learned SREs. Thus, more than half of the performance of the 
CASS model in human is attributable to the local SRE context of 
splice sites.

SMsplice captures structural and sequence features of 
splicing and improves over CASS
CASS scores represent SS strength in local context but do not ac-
count for the pairing of SSs across introns and/or exons that occurs 
in splicing. For instance, the CASS scores could predict a 3′SS up-
stream of the first plausible 5′SS in the gene (e.g., Fig. 1C), although 
such a site could not participate in conventional cis-splicing. Fur-
thermore, there are known minimum intron lengths in human and 
other organisms below which splicing is not observed (33), and both 
exon and intron lengths can affect recognition by the spliceosome, 
often via exon or intron definition (31). We therefore sought to make 
a more general model that could incorporate both SS pairing and 
exon/intron length preferences, as well as the preferred numbers of 
introns per transcript. To this end, we developed a directed graphic 
structure that could describe the splicing pattern of an arbitrary tran-
script in terms of exons, introns, and SSs beginning from the start of 
the transcript (Fig. 2A).

This structure reflects the observation that the number of introns 
per human gene fits approximately a geometric (exponential) distri-
bution in the training set, with parameter pEO = 0.093 (Fig. 2B). We 
additionally characterized the length distributions of introns and dif-
ferent types of exons in human genes, which may partly reflect pref-
erences involved in spliceosome assembly (Fig. 2C) (31). To model 
these length distributions, we smoothed the empirical length distri-
butions on the training set for each type, then substituted a geomet-
ric tail for each distribution to avoid issues with data sparsity at long 
lengths (Methods).

Our SMsplice model combines the above “structural” features (re-
lating to exon/intron order/size), which we call the SMsplice structure, 
with the CASS scores. This model assumes that the exons and introns 
in a transcript are chosen in proportion to: (i) the strengths of the in-
volved SSs in local context, represented by (exponentiated versions of) 
the CASS scores; (ii) the exon and intron length preferences represent-
ed in Fig. 2C; and (iii) the preferred number of introns represented by 
a geometric distribution (with parameter from Fig.  2B). Together, 
these three features define the score for any “parse” (splicing pattern) π 
for the sequence of interest (“seq”). If seq is of length T, then an arbi-
trary parse π has N > 0 introns of lengths dI

1
, … , dI

N
 , a first exon with 

length dE
F
 , N − 1 internal exons with lengths dE

1
, … , dE

N−1
 , and a last 

exon with length dE
L
 (with the lengths of all exons and introns sum-

ming to T). The SMsplice score for this parse, SM[seq, π], is then 
defined as

Here, the first line represents the strengths of the SSs (in context, 
i.e., using CASS-style scores), the middle line represents length pref-
erences for the involved exons and introns, and the last line represents 
the preference for the specific number of introns. The predicted splicing 

pattern for the sequence, π*, is the one that has the highest SMsplice 
score of all possible parses, which can be obtained by adapting the 
Viterbi algorithm for HSMMs (Methods) (34). While SMsplice is 
similar in structure to an HSMM, it is a discriminative rather than 
generative model, meaning that it discriminates different parses but 
cannot generate RNA sequences. Therefore, it is technically a semi-
Markov conditional random field rather than an HSMM (35, 36).

While we can use the previously determined CASS scores with 
SMsplice, we can also learn an additional set of SRE scores using 
SMsplice predictions. As before, we began by setting all SRE scores to 
zero but now used the FP and FN from SMsplice predictions to up-
date the scores rather than the CASS predictions (Fig. 2D). We refer to 
the resulting SRE scores as SMsplice-learned. Comparing these scores 
with the CASS-learned SRE scores, we observed fairly strong correla-
tion between the scores learned by both methods, more so for the ESR 
scores than the ISR scores (Fig. 2E).

We then explored the predictions made using either set of SRE 
scores within either the CASS framework or SMsplice on a test set of 
genes (Fig. 2F). This analysis showed that F1 performance improved 
with the addition of the SMsplice structure, regardless of the SRE 
scores considered, up to an increase of 21% over the CASS predic-
tions. Furthermore, SMsplice had the highest performance with the 
SMsplice-learned SRE scores at 69%, substantially higher than with 
the CASS-learned scores. This improvement may result partly from 
the ability of SMsplice to exclude potential SSs that are structurally 
incompatible with splicing; for example, a predicted 3′SS that occurs 
before the first putative 5′SS in a transcript, which is considered by the 
CASS model (Fig. 1C). In addition, comparing SMsplice and CASS 
predictions, SMsplice is more apt to predict SS pairs with typical 
exon/intron spacings and less apt to predict lone, high-scoring SS in 
introns. Therefore, the false predictions considered during SMsplice 
learning may be more enriched for regions considered by the splicing 
machinery whose exclusion is modulated by nearby SREs.

We further defined a “local score” (LS) for any intron or internal 
exon based on the associated terms in the SM[seq, π] expression. For 
an internal exon whose flanking 3′ and 5′SS occur at t1 and t2, respec-
tively, resulting in an exon of length dE = t2 + 1 − t1, the LS is

For an intron whose 5′ and 3′SS occur at t1 and t2, respectively, 
resulting in an intron of length dI, the LS is

Applying these scores to predicted exons and introns for the hu-
man test set, we observed that exons with larger local scores were 
more likely to be predicted correctly, with a fairly smooth and nearly 
monotonic relationship, and similarly for introns (fig. S1A).

Application of SMsplice to other animals and a plant
Splicing is thought to have been present in the last common ancestor 
(LCA) of eukaryotes (1), and the assumptions about splicing underly-
ing the CASS and SMsplice models are reasonable for a wide range of 
species. Furthermore, many protein families known to modulate splic-
ing via the binding of SREs are conserved between animals and plants, 
although some have been lost, especially in particular fungal lineages 
(4). Therefore, it was of interest to explore the application of our mod-
els to genes from diverse organisms. To capture a range of evolution-
ary distances and address important model organisms, we selected mouse, 
zebrafish, fruit fly (Drosophila melanogaster), silkworm moth (Bombyx mori), 
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Fig. 2. SMsplice structure, parameters and performance in human. (A) In the upper diagram, the labeled arrows represent the possible transitions with their associ-
ated probabilities, and the curly braces represent the association between states and their length distributions. Below, a possible parse of a sequence of CASS scores is 
shown, which would be determined from some RNA sequence of interest. (B) Geometric fit to the empirical counts of genes with a certain number of introns in the train-
ing set. (C) Empirical length distributions for the introns and first, internal (or middle), and last exons in the training set of genes along with the smoothed distributions 
used in the SMsplice model. (D) Iterative learning of scores is performed as before but using SMsplice predictions to define the FP and FN flanking regions. (E) SMsplice-
learned ESR scores correlate better with the CASS-learned ESR scores than their ISR counterparts. (F) Precision-recall curves on the test set for the CASS framework predic-
tions using different sets of SRE scores. The dots along the curves represent the cutoff learned on the training data to maximize the F1 score and are connected by an arrow 
to a diamond marking the precision and recall for predictions made using the SMsplice model with the same SRE scores.
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and the model plant Arabidopsis thaliana. We devised separate train-
ing, validation, and test sets for each organism analogous to those 
used for human (Methods).

As the SS motifs differ somewhat between these organisms, we 
trained a new organism-specific third-order MaxEnt model for each. 
These models were trained on all of the genes not in the organism’s 
test set using the third-order constraints as was done with the updated 
human MaxEnt models (Methods). We then compared the classifica-
tion performance of these organism-specific MaxEnt models to that 
of the original (human-trained) second-order MaxEnt model to as-
sess the change in SS classification performance. We found that these 
new models provided improved discrimination compared with the 
original MaxEnt models for all six organisms, especially in Arabidop-
sis (Fig. 3A).

Using these new splice site models, we next learned organism-
specific SREs using the CASS-learning and SMsplice learning ap-
proaches. We also determined structural parameters for the SMsplice 
model, including exon and intron length distributions, for each or-
ganism (Methods, Fig. 3B, and fig. S2) (3). Modeling exon and intron 
lengths were of particular interest as the length distributions for ex-
ons and introns are related to the prevalence of intron definition ver-
sus exon definition, with the latter being especially prevalent in mammals 
(1, 31).

When we applied these newly determined parameters to the task 
of predicting splicing on test sets from the respective organisms, we 
observed several trends (Fig. 3C). In every organism, the use of CASS-
 or SMsplice-learned SRE scores improved performance substantially 
over SS scores alone. The SMsplice structure further improved perfor-
mance, with best overall performance observed with SMsplice-learned 
SRE scores for every organism. While the highest F1 value for mouse 
(72%) was similar to the 69% seen in human, accuracy in the four 
other organisms was substantially higher (83 to 85%). Some variation 
was seen in the relative performance of the different score/framework 
combinations, with a larger gap between SMsplice- and CASS-learned 
SRE scores for mammals than other organisms, perhaps reflecting the 
longer distances involved in mammalian splicing. The local scores of 
exons and introns in these organisms showed the same positive asso-
ciation with accuracy as was observed for human (fig. S1), indicating 
that this score can be used to distinguish predictions of higher and 
lower confidence. Thus, our framework and learning approach gener-
alize well to other animal and plant species, enabling a variety of com-
parative investigations.

We also assessed performance at the level of individual genes, 
again using the F1 measure. For most organisms, the median F1 ac-
curacy for individual genes in the test set was close to or slightly 
above the overall F1 value (fig. S3). The exception was fly, whose me-
dian test gene had an F1 of 95%, reflecting that >49% of the test genes 
were predicted with perfect accuracy. The proportion of perfectly 
predicted genes in other organisms varied from 8% (human) to 33% 
(Arabidopsis) (Fig. 3D). A representative splicing prediction for each 
organism—with F1 value within 1% of the median value across 
genes—is visualized in fig.  S4. Examination of these visualizations 
reveal several common features of splicing, including the high den-
sity of decoy SS, the somewhat lower density of locations with high 
CASS scores, and a complex landscape of SRE scores. In Arabidopsis, 
but not other organisms, there was often a visually apparent shift in 
ISR and/or ESR scores at or very near exon/intron and intron/exon 
boundaries, often persisting throughout the succeeding exon or in-
tron (fig. S4).

Splicing in organisms with longer introns is more 
dependent on SREs
One of our fundamental goals was to understand the relative contri-
butions of different features to SS recognition. The CASS framework 
was designed to mirror the concept of SRE regulation of SS motifs, 
and these two components can be separated into the SRE scores and 
MaxEnt scores, respectively. Then, the SMsplice structure additionally 
includes the structural constraints of the spliceosome. So, by examin-
ing their effects within the model, we might gain some insight into 
how important these different types of splicing information are in 
these organisms. To do so, we considered the change in performance 
provided by the use of the SMsplice structure in the absence of SREs 
and then the further benefit that adding the SMsplice-learned SRE 
scores granted (Fig. 3E). From this analysis, we noted that there was 
substantial variety in the proportions across these organisms. In hu-
man and mouse, for instance, most of the performance comes from 
the SRE scores, while Arabidopsis, with the shortest mean intron 
length, had the most reliance on core SS motif scores. The largest 
structural contribution was seen in fly, which has a large proportion of 
introns within a very narrow length range of 40 to 80 nt (37).

Intron length varied substantially more than exon length across 
the organisms considered and determined to a large degree the num-
ber of decoy SS per transcript (5, 38). Noting this, we explored the 
relationship among intron length, performance, and the contribu-
tions of different features. In general, SMsplice performance declined 
as average intron length increased (Fig.  3F). However, the decline 
was much shallower when SREs were included in the model. Consis-
tent with this observation, we found that the relative contribution of 
the SS motifs to performance decreased with average intron length, 
while the relative contribution of SREs increased markedly (Fig. 3G). 
These trends suggest that, in lineages where introns lengthen, depen-
dence on the presence of SREs becomes stronger.

Learned SRE scores distinguish real and decoy SS
To further explore the idea of distinguishing real and decoy SSs via 
SRE regulation within the model, we began by determining a suitable 
set of decoy SSs. To create such a set, for each SS in the canonical 
training set that flanked an internal exon, we selected a non-SS base 
whose associated SS score was within half a bit of the score of the true 
SS (Methods). Thus, we were able to create a decoy set of similar size 
and score distribution to the set of real SS for each organism. We 
considered the distribution of SMsplice-learned SRE scores relative 
to the selected decoy 5′ and 3′SSs, as well as real 5′ and 3′SSs. In our 
models, 5′SS scores are affected by upstream ESRs and downstream 
ISRs, and 3′SS scores are affected by upstream ISRs and downstream 
ESRs. For each position in the flanking regions, we considered the 
average ESR or ISR score (Fig. 4A). Dividing the ESRs into ESEs (if 
score > 0) or ESSs (if score < 0) and similarly dividing ISRs into ISEs 
and ISSs, we separately tallied the averages of each of these catego-
ries of SREs.

In human, the average positional ESR and ISR scores flanking real 
SSs were relatively smooth, as were the average ESE, ESS, ISE, and ISS 
values, suggesting that SRE information is, on average, fairly evenly 
distributed (Fig. 4A). We did observe a modest increase in ESE scores 
at both exon boundaries, as has been observed previously (39). Simi-
lar slightly sloping ESE distributions were observed in mouse, zebraf-
ish, and Arabidopsis (fig. S5A). ESS scores were also fairly smooth, 
with slightly increased magnitude further from both 5′ and 3′SSs. The 
average SRE scores flanking decoy SSs were also fairly smooth, with 
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Fig. 3. Application of SMsplice to six organisms show varied contributions of different features. (A) Smaller 1 − AUC values for the updated, organism-specific Max-
Ent methods compared with the original human version show their improvement on classifying SS versus non-SS sequences. (B) Intron length distribution fits used 
within the SMsplice model for human, zebrafish, Arabidopsis, and fly. (C) Test set F1 performance for each organism with no SRE scores, CASS-learned SRE scores, and 
SMsplice-learned SRE scores within both the CASS framework and SMsplice model. (D) Proportions of the test set predicted perfectly and with F1 score at least 90% for 
each organism. (E) Pie chart breakdowns of the contributions to F1 performance of the organism-specific MaxEnt scores, the SMsplice structure, and the SMsplice-learned 
SRE scores. (F) F1 performance of the SMsplice model for each organism with no SRE scores, CASS-learned SRE scores, and SMsplice-learned SRE scores as a function of the 
average length of introns in the test set. (G) Contributions to F1 performance of the organism-specific MaxEntScan scores, the SMsplice structure, and the SMsplice-
learned SRE scores as a function of the average length of introns in the test set.



McCue and Burge﻿, Sci. Adv. 10, eadn1547 (2024)     8 May 2024

S c i e n c e  A d v a n c e s  |  R e s e arc   h  A r t i c l e

8 of 19

the exception of ESSs near decoy 3′SSs, which showed a visually dis-
tinctive pattern of peaks and valleys, with a less pronounced pattern 
observed near decoy 5′SSs. Suspecting that a common repetitive ele-
ment might be involved, we observed that 18% of decoy 3′SS and 14% 
of decoy 5′SS overlapped a short interspersed nuclear element (SINE) 
of the Alu class, often at particular locations in the Alu consensus (1). 

Examining the SRE distributions in the Alu versus non-Alu decoys, 
we found that the decoy SSs in Alus had a more exaggerated version 
of the overall pattern of peaks/valleys, indicating that Alu decoys are 
driving this pattern (fig. S5B). In some other organisms (e.g., mouse 
and moth), similar bumpiness in ESS distributions was observed 
(fig. S5A), likely for similar reasons.

C

D

B

A

sc
or

e 
ac

ro
ss

 e
nt

ire
 fl

an
ki

ng
 re

g
io

n

Fig. 4. SMSplice-learned SRE scores have features associated with known SREs. (A) Relevant SMsplice-learned ESR and ISR scores, along with their positive and nega-
tive components, for each position in the flanking regions, averaged separately across all real and decoy 5′ and 3′SSs in the human training set. (B) For human, the average 
of the scores shown in 4A across the associated regions. For zebrafish, fly, and Arabidopsis, the equivalent values on their training sets. (C) Plots of the ECDFs for the human 
SMsplice-learned ESR and ISR values of all hexamers along with subsets of hexamers reported in the literature as particular types of splicing regulators in human. 
(D) Agreement between the top and bottom 5% hexamers based on their SMsplice-learned ESR and ISR scores. Overlaps that are significantly underrepresented are col-
ored in brown, while overlaps that are significantly overrepresented are colored in green.
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To summarize the impacts of different SRE score categories on SS 
prediction, we also considered the average of the relevant scores for 
the entire flanking regions (Fig. 4B and fig. S5C). For every organism, 
there was positive net score for real versus decoy 5′ and 3′SSs in both 
the exonic and intronic flanking regions, as expected. Furthermore, 
the average ESR score was of greater magnitude than the average ISR 
score for real 5′ and 3′SSs in every case, except the 5′SS of Arabidopsis. 
For the decoys, we observed a negative average ESR score on the ex-
onic side for both SS types in all organisms. ISR scores on the intronic 
side of decoy SSs were more variable in sign, with smaller magnitude 
than the corresponding ESR scores in all cases, except for the decoy 
5′SS in Arabidopsis.

The patterns we observed for the SRE scores in regions flanking 
decoy SSs suggested that these regions might be useful in SRE score 
learning. To explore this idea, we scored each hexamer according to 
its frequencies of appearance in the CASS-relevant regions flanking 
the real and decoy SSs in the training set and found that these “real 
versus decoy” scores correlated strongly with the SMsplice-learned 
SRE scores [R2 (coefficient of determination) values between 0.34 
and 0.79; fig. S6A and Methods]. Furthermore, when appropriately 
weighted, these real versus decoy scores provided useful seeds to 
SMsplice learning, providing a small but consistent improvement in 
validation performance of ~1% over no seeding (fig. S6B and Meth-
ods). Going forward, we used the scores learned from these seeds as 
our SMsplice-learned SRE scores. As observed for the CASS scores, 
the new ESR scores tended to have greater magnitudes than the ISR 
scores in human (Fig. 1E and fig. S6C). For the non-mammals, ESE 
scores tended to exceed ISE scores, but ISSs often had greater average 
magnitudes than ESSs.

To ask how the SRE scores learned by our SMsplice model relate to 
known sets of SREs, we gathered several groups of hexamers deter-
mined to function as ESSs, ESEs, ISSs, and ISEs using splicing reporter–
based screens or validations (5–7, 9, 10). We compared the empirical 
distributions of SRE scores associated with these different groups of 
hexamers to the relevant overall empirical distribution of SMsplice-
learned SRE scores (Fig. 4C). All of the ESR groups were significantly 
different from the overall ESR score distribution [P < 10−9, two-
sample Kolmogorov-Smirnov (KS) test], and the ISR groups were 
also significantly different from the overall ISR score distribution (P < 
0.01, two-sample KS test). Additionally, RESCUE-ESE hexamers pre-
dominantly had positive ESR scores (226 of 238, 95%), and Goren-
ESR hexamers were also strongly enriched for positive scores (both 
P < 10−9, one-sided binomial test). Furthermore, both sets of FAS-
ESS hexamers were strongly overrepresented for negative ESR scores 
(89 of 103 or 86% for the FAS-hex3 set) (P < 10−18 for both sets, one-
sided binomial test). These trends were also observed for intronic ele-
ments, with FAS-ISEs overrepresented for hexamers with positive 
ISR scores and FAS-ISSs overrepresented for negative ISR scores 
(P < 0.01, one-sided binomial test). These observations support that 
positive/negative SRE scores learned by our model are predictive of 
splicing enhancing/silencing activity, respectively.

It has been previously observed that human SREs have a pattern of 
agreement where ESEs and ISSs tend to overlap as do ISEs and ESSs, 
likely reflecting common mechanisms of the associated RNA-binding 
SFs (6, 7). To explore whether our SMsplice-learned SRE scores reca-
pitulated this pattern, we considered the hexamers with the most ex-
treme ESR and ISR scores: The top 5% scoring hexamers we considered 
our enhancers (ESEs and ISEs), and the bottom 5% scoring hexamers 
we considered our silencers (ESSs and ISSs). While the 5% threshold 

is arbitrary, it yields sets of 204 hexamers, similar in size to the SRE 
sets from the literature discussed above. Examining the hexamers in 
common between these four groups of 204 hexamers, we saw that 
there was indeed a great deal more overlap between the ESEs and 
ISSs, as well as the ISEs and ESSs than between the other types of 
overlap. Tests for over- and underrepresentation found that all of 
these overlaps were significant in the expected direction (P < 0.05, 
one-sided binomial test, Bonferroni corrected) aside from the com-
parisons involving zebrafish ISEs and ESSs (Fig. 4D). These observa-
tions provide further support that strongly scoring hexamers in our 
model have properties expected of the associated SRE class.

Clustering human hexamers recovers known splicing RBP 
motifs and additional splicing motifs
Known SREs predominantly function by recruitment of SFs that 
bind motifs of approximately 3 to 7 nt in length (15). To ask whether 
the SMsplice-learned SRE scores correspond to known SF motifs, we 
clustered hexamers from the sets of 5% most extreme positive and 
negative ESR and ISR scores considered above by sequence similarity 
and aligned them to create a position weight matrix (PWM) for each 
of the resulting clusters (figs. S7 to S10 and Methods). The ESS clus-
ters were notably poor in cytosine, consistent with a previous cell-
based screen for ESSs (5). For each of the clusters obtained from 
human SRE hexamers, we identified the best-matching motif from 
the set of RNAcompete in  vitro RBP-binding motifs (15) using a 
simple permutation approach to assess which matches had signifi-
cant similarity (Methods).

From this analysis, we identified at least one significantly similar 
RNAcompete match for the majority of human SRE clusters (Fig. 5, A 
and B, and fig. S11). The matching was particularly strong for the ESE 
and ESS clusters, where 15 of 20 had a significant RNAcompete match. 
For the ESE clusters, matches were made to motifs for known SFs in-
cluding RBM45 and SRSF3, as well as other RBPs with homologs in-
volved in splicing (PCBP4) or other roles in RNA metabolism (e.g., 
the PolyA Polymerase Star-PAP). For the ESS clusters, matches were 
made to several known SFs, including HNRNPA1L2, HNRNPA3, 
HNRNPDL, the HNRNPF/H family, the MSI family (whose motif 
resembles that of HNRNPA0), and QKI.

Thus, most of the ESR motifs obtained by this clustering matched 
known SFs motifs. ESS motifs primarily matched hnRNP motifs, most 
of which are known to repress splicing when bound to exonic loca-
tions, and two ESE clusters matched SR proteins, which are known to 
activate splicing from exonic locations (4). Many of the ISR clusters 
also matched known SF motifs, including ISS clusters that matched 
RBM42, SRSF3, and SRSF7 motifs, and an ISE cluster that matched the 
QKI motif (which also resembles BPS and SF1 motifs). For each cluster 
where at least one splicing regulator was a significant match, we further 
considered short hairpin RNA (shRNA) knockdown RNA-seq data 
from ENCODE, where available (19). Of the 13 clusters where such 
data were available, we asked whether the presence of that cluster in 
the relevant CASS region was significantly associated with changes in 
PSI values in the expected direction following knockdown (Methods). 
For 11 of the 13 clusters we found such an association for at least one 
RBP (table S1). In addition, where enhanced cross-linking and immu-
noprecipitation (eCLIP) data were available from ENCODE in the 
same cell line, we found that the presence of the cluster in the relevant 
CASS region was significantly associated with binding of the RBP in all 
but one case (table S1 and Methods). Together, these observations sug-
gest that our score learning and hexamer clustering approach identifies 
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Fig. 5. Human SRE cluster motifs often match known RBP binding sites. (A) Dendrogram for clustering hexamers with the 5% most positive ESR scores in human and 
the resulting aligned clusters and best RNAcompete matches below those clusters. Desaturation indicates that the best match did not satisfy our threshold. (B) Dendro-
gram for clustering hexamers with the 5% most negative ESR scores in human, as in (A). (C) For each of the clusters made from the sets of the most extreme scoring hexam-
ers, the support for that cluster being more associated with changes in splicing outcomes. The number of events available for each cluster is indicated, and whether the 
association is deemed significant.
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authentic SRE motifs without prior knowledge of RBP binding. Clus-
ters that fail to match RNAcompete motifs may represent known SFs 
that have not yet been characterized in vitro, motifs for unknown SFs, 
or artifacts of the algorithm or clustering process.

We next assessed the splicing regulatory activity of our clusters 
to see if the hexamers that we identified as high scoring were more 
associated with changes in splicing outcomes. To do this, we used 
fine-mapped splicing quantitative trait locus (sQTL) data from the 
Genotype-Tissue Expression (GTEx) database to ask whether vari-
ants that disrupted hexamers in each cluster were more likely to be 
causal relative to control hexamers (Methods). This analysis support-
ed the regulatory activity of five ESE clusters, eight ESS clusters, two 
ISE clusters, and three ISS clusters (Fig. 5C). These supported clus-
ters included ESS cluster 10 and ESE cluster 2, which did not have 
significant matches in the RNAcompete set. This observation sug-
gests that these clusters represent bona fide SREs that function 
through other RBPs not analyzed by RNAcompete. The greater num-
ber of exonic clusters than intronic clusters that reached significance 
could reflect stronger activity of ESRs than ISRs or better modeling 
of ESR than ISR elements by our model. In addition, cross-referencing 
this fine-mapped data with other GTEx data allowed us to explore 
the relationship between variants and splicing events (Methods and 
table S2). Of the identified events, the SMsplice local scores were able 
to correctly predict the direction of change in 71% of cases.

Similar regulatory motifs identified across organisms allows 
for generalization of the SMsplice model
Key splicing proteins of the SR and hnRNP classes are conserved 
from animals to plants (4), suggesting that similar motifs may exert 
similar effects on splicing. However, intron-containing genes are of-
ten spliced differently when moved between mammals and fish (40) 
and potentially even more so across greater evolutionary distances. 
Examining the clusters for each SRE class in the non-human organ-
isms (figs.  S7 to S10), we observed many similar motifs within 
each class.

We repeated our motif comparison analysis for each examined 
organism, matching the clusters to RNAcompete RBP motifs associ-
ated with the relevant organism (figs. S12 to S16). These comparisons 
identified a number of RBP matches in each species, generally to very 
similar classes of proteins as observed in human, with several ESEs 
matching SR proteins, ESSs often matching hnRNPs or the MSI fam-
ily, and QKI family proteins appearing as ISE matches. These obser-
vations suggest that clusters identified by our algorithm in other 
species often correspond to motifs bound by SFs, many of which are 
conserved.

To explore the extent of similarity of ESS clusters across organisms, 
we clustered all the ESS PWMs across species using the same distance 
measure used to compare our PWMs with the RNAcompete PWMs 
(Fig. 6A). This comparison identified several motifs, including UAG- 
and UAA-containing motifs, that were present in all six organisms, 
suggesting that these could represent ancient ESSs present in the LCA 
of animals and plants. Other motifs, including poly-G motifs, were 
present in all metazoans but were not observed in Arabidopsis. Some 
of the more CG-rich ESSs appeared more lineage specific. For in-
stance, a CGCG motif only identified as an ESS in zebrafish resembled 
motifs identified as ISSs in other organisms (fig. S17).

We performed similar clustering analyses of ESEs, ISEs, and ISSs 
across the six organisms (fig. S17). For each class, we observed clear 
clusters, with some spanning all six organisms or the five metazoans. 

For example, we observed a cluster of ESE motifs related to “CYACG” 
(Y = C or U) in all six organisms, a cluster of ISE motifs containing 
“UAAC” in five of six organisms (all but moth), and an ISS motif clus-
ter containing CGG and/or GGA, also present in all organisms except 
moth. Other clusters were more lineage-restricted, including a poly-G 
ISE motif in vertebrates and moth, and a purine-rich ISS motif in 
the four non-mammals. These observations suggest the presence of 
both conserved and lineage-specific SRE motifs across the species 
considered.

As the motifs were derived from subsets of hexamers with the 
most extreme scores, we wondered whether the full sets of SMsplice-
learned SRE scores would also exhibit conservation across species. To 
compare ESR and ISR conservation, we calculated the correlation of 
ESR and ISR scores as a function of evolutionary divergence time 
(Fig. 6B) (41).

We observed a positive correlation of ESR and ISR scores across all 
pairs of organisms, further supporting the notion that some SREs 
have maintained similar activity across >1.5 billion years of evolution. 
While very close organisms had more similar ESR scores, the similar-
ity plateaued at a moderate correlation at evolutionary distances of 
~400 Ma ago and beyond. Notably, ESRs tended to be somewhat more 
conserved than ISRs, consistent with the high conservation of ESS 
and ESE motifs observed above (39), and the fact that the protein-
coding function of exons provides a strong constraint on their com-
positional drift that is not present in introns.

We were curious whether the SRE similarity we observed above 
was strong enough that one organism’s SMsplice-learned SRE scores 
could be used effectively to predict splicing in the genes of another 
organism when paired with core SS motif scores and structural pa-
rameters of the other organism. Applying SMsplice in this manner 
with all possible combinations of SREs/genes (Methods), we observed 
that SREs from the non-mammalian species performed well on other 
non-mammals but poorly on the mammals. This finding may relate to 
our observations that mammals derive far more information from 
SREs than other organisms (Fig. 3D) and have some lineage-restricted 
SRE motifs (Fig. 6A and fig. S17). Perhaps the intrinsic difficulty of 
identifying SSs using local information in longer mammalian tran-
scripts necessitates more species-optimized SRE scores than in other 
lineages. On the other hand, the mammalian-trained SREs performed 
reasonably well on all organisms, always outperforming the organism-
specific SMsplice model without SREs (Fig. 3C), suggesting a reduced 
prominence of lineage-specific SREs in non-mammals.

The variations between organisms in the other components of the 
SMsplice model play a substantial role in the ability to generalize across 
species. For instance, using the human SMsplice-learned SRE scores 
within an organism’s SMsplice model always outperformed the fully 
human-specific model (Fig. 6D). In every case, the organism-specific 
SMsplice model had the best performance, as expected. As a point of 
comparison, we also applied the neural net model CI-SpliceAI to the 
same test sets (42). This black box model was trained on human se-
quences, so the most direct comparison is to the SMsplice model with 
fully human parameters. Comparing performance, CI-SpliceAI had 
substantially higher performance on human and mouse genes than 
our human SMsplice model but did not generalize as well to non-
vertebrates. Furthermore, our organism-specific SMsplice models 
outperformed CI-SpliceAI on all non-vertebrate organisms. As CI-
SpliceAI is a black box model, we cannot consider extracting parame-
ters related to SREs, for example, as we could for the SMsplice model, 
so it was not feasible to mix and match CI-SpliceAI with SMsplice. One 
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Fig. 6. Comparing SRE motifs and splicing models across organisms. (A) All ESS clusters for all organisms clustered by motif similarity. Motifs are labeled using the first 
letter of the organism, using “S” for silkworm moth, followed by the number of the ESS cluster in fig. S8. (B) Correlation between ESR scores and ISR scores for each pair of 
organisms (as well as fugu, data otherwise not shown) as a function of their evolutionary divergence. (C) F1 performance on each organism using weighted SREs from each 
other organism. (D) F1 performance on each organism for CI-SpliceAI, the SMsplice model with all organism-specific parameters, the SMsplice model with SRE scores from 
human, but otherwise all organism-specific parameters, and the human SMsplice model.
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of the advantages in structuring a model in an explicit manner as we 
have done is that it allows for the exploration and interpretation of the 
different parameters of the model as shown in Fig. 6 (C and D).

DISCUSSION
A few simple assumptions about features important for splicing un-
derly SMsplice, principally that SS recognition depends on a core mo-
tif modulated by nearby SREs and that SSs are recognized in pairs 
with favored lengths for both exons and introns. The model depends 
on just three types of parameters: the triplet-based core SS motif mod-
els, structural parameters capturing preferences for particular exon 
and intron lengths and numbers, and scores of hexamers as exonic 
and intronic SREs. The core SS motif and structural parameters are 
directly estimated from frequencies in the training data, with no ad-
justments or “learning” involved, thus generating a scaffold for SS rec-
ognition in the absence of SFs. Scores of hexamers as exonic and 
intronic SREs were then learned on the basis of their ability to predict 
splicing patterns within this scaffold.

The organism-specific SMsplice models enabled us to explore 
many facets of splicing across species. For example, we found that or-
ganisms with longer introns have greater reliance on SRE scores and 
that Drosophila had the greatest reliance on the structural parameters, 
likely related to strong preferences for a narrow range of short intron 
lengths in flies (43). In addition, we generally observed that ESR 
scores had greater prominence than ISR scores, except in Arabidopsis 
where ESRs and ISRs appeared comparably important, consistent 
with early studies showing that U-rich sequences distributed through-
out plant introns are important in intron recognition (44).

In human, where SREs and the effects of mutations on splicing 
outcomes have been extensively studied, we observed significant 
agreement between our learned parameters and experimentally vali-
dated sets of SREs (Fig. 4C), and the top and bottom 5% of ESR and 
ISR hexamers yielded clusters that match well to binding motifs of 
many known SFs (Fig. 5 and figs. S11 to S16). In other organisms, 
agreement with the somewhat sparser sets of known RBP-binding 
motifs available was also observed, with additional clusters represent-
ing candidate novel SREs in each lineage suitable for experimental 
tests of function. Unlike qualitative catalogs of SREs identified previ-
ously, our approach learns a score for each hexamer, distinguishing 
stronger and weaker ESEs, ESSs, ISEs, and ISSs. This feature could be 
particularly useful for predicting the most essential SREs governing 
splicing of a given exon, intron, or splice site, with potential applica-
tions for interpretation of genetic variants or design of splice-switching 
antisense oligonucleotides (45).

In addition to the full SMsplice model, the new core SS motif mod-
els and CASS framework may have useful applications in assessing the 
strength of a SS in local context. These models can be applied even on 
short sequences of a few hundred bases (for CASS) or as short as a few 
dozen bases (for SS motifs), where neural models typically struggle. 
For example, CASS scores might find use in design or troubleshooting 
of splicing in minigenes or in synthetic biology applications. The 
SMsplice structure, which normally uses our new MaxEnt SS scores, 
could potentially also be applied to SS scores derived in other ways 
(23) because of its modular design.

While we have learned model parameters for several organisms, 
a predictive tool to study splicing might be useful in many addi-
tional organisms. In some cases, using the pretrained model for the 
evolutionarily closest organism may suffice, e.g., using the zebrafish 

model to predict splicing in other fish species seems reasonable. 
However, given sufficient high-quality annotated gene data, organism-
specific parameters can be generated using the provided code. New 
structural parameters and MaxEnt models are straightforward to 
derive, while SRE score learning is more computationally inten-
sive. Our experiments have shown reasonable generalization of SRE 
scores within mammals and within the non-mammals studied, 
while structural features vary substantially across lineages. There-
fore, simply deriving new SS models and structural parameters 
with pretrained SRE scores may provide most of the benefits of a 
fully organism-specific splicing model with relatively modest effort.

Limitations of this work
The SMsplice framework was designed with typical animal and plant 
splicing systems in mind and is likely less suitable for modeling splic-
ing in fungi, where the BPS motif is of much greater importance (46). 
Furthermore, our training and testing procedures are dependent on 
the accuracy of the underlying genomic sequences and annotations, 
potentially limiting application to organisms where annotations are 
less accurate. In addition, we have considered canonical annotations, 
which represent predominantly constitutive exons, and have not ex-
plicitly explored alternative splicing in this study. Another limitation 
is the fact that, while we have attempted to construct and learn the 
SRE scores in such a way that they reflect splicing regulatory activity 
(e.g., emphasizing hexamers within ~80 nt of the SS), it is inherently 
challenging to isolate this activity from biases in sequence composi-
tion of exons and introns that reflect other facets of gene expression, 
such as protein coding, mRNA export or stability, and/or processes of 
DNA mutation and repair. While we have shown that hexamers with 
the most extreme SRE scores are strongly associated with SF binding 
and splicing activity, weaker-scoring SRE hexamers may be less en-
riched for splicing regulatory activity. To enhance tractability and in-
terpretability, we have also made the strong assumption that SREs act 
only over short distances and interact additively. This assumption ig-
nores potential long-range activities and synergistic or antagonistic 
relationships that undoubtedly occur in some cases. These limitations 
represent worthwhile challenges for the next generation of interpre-
table splicing models.

METHODS
Datasets
The datasets used for analyses of human splicing were based on the 
canoncial_dataset.txt used in training and testing of SpliceAI, in the 
hg19/GRCh37 genome version (29). We excluded from consideration 
any genes whose sequence contained “Ns” or nonstandard bases, 
whose total length was less than 100 bases, or whose shortest anno-
tated intron was less than 25 bases (unrealistically short, suggesting an 
annotation error). From the genes not in the test set, we defined a 
validation set by randomly selecting 1000 nonparalogous genes. We 
then randomly selected 4000 genes from the remaining genes not in 
the test set to act as the training set. An additional set of 1000 ran-
domly selected genes not in the test set was chosen as our SRE weight 
learning set. For practical (speed) reasons, we excluded genes longer 
than 200 kb from the validation and weight learning sets above. We 
used the same test set as SpliceAI, applying the filters as above, which 
removed ~1% of genes, resulting in a set of 1629 genes. Aside from the 
MaxEntScan training described below, these sets were used through-
out the paper.
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For each nonhuman organism, to focus on the most highly used 
and reliable splice sites, we created a canonical dataset containing a 
canonical splicing pattern for each protein-coding, intron-containing 
transcript that met the filtering criteria used for human genes. We also 
created an “all-SS” dataset containing the full complement of splice 
sites present within the respective canonical transcript, analogous to 
the gtex_dataset.txt from SpliceAI. Training, validation, and test sets 
were derived from the canonical dataset. The all-SS datasets were used 
for MaxEnt training and the real versus decoy splice site analyses.

For mouse, we used the knownCanonical table for the GRCm38/
mm10 assembly to create the mouse canonical dataset, excluding the 
handful of genes with more than one annotation, and used the known-
Gene table to create the all-SS mouse dataset. We downloaded paralog 
annotations from Ensembl’s BioMart. The training, SRE weight learning, 
and validation sets were also selected from the genes not used in the test 
set as described for human. Nonparalogous genes on chromosomes 1, 3, 
5, 7, and 9 were used to form the test set, resulting in a set of 1212 genes.

For zebrafish, splicing annotations for GRCz11 were down-
loaded from Ensembl’s BioMart along with paralog status and 
APPRIS annotations (47). To select the canonical transcript, we 
filtered for APPRIS principal transcripts for each gene and se-
lected the longest transcript for genes with multiple APPRIS prin-
cipal transcripts. Genes without a unique longest APPRIS principal 
transcript were discarded. The training, SRE weight learning, and 
validation sets were selected as in human from genes that were 
not used in the test set, which was made of nonparalogous genes 
on chromosomes 1, 3, 5, 7, and 9, resulting in a set of 825 genes.

For Drosophila, we downloaded splicing annotations, APPRIS 
annotations, and paralog status for dm6 from Ensembl’s BioMart. 
The canonical and full set of SS datasets were created in the same 
manner as zebrafish. The training, weight training, and validation 
sets were selected from the genes not used in the test set in the same 
manner as human, and the test set was made from all the nonparal-
ogous genes on chromosomes 2L and 3L, resulting in a set of 
1938 genes.

For silkworm moth, we downloaded splicing annotations and para-
log status for Bmori_2016v1.0 from EnsemblMetazoa’s BioMart and de-
fined the canonical transcripts using the Ensembl canonical set. For this 
genome, we filtered out genes that were annotated as mitochondrial 
rather than filtering for genes annotated as chromosomal and made the 
training, SRE weight learning, and validation sets from the genes not 
used in the test set as described for human. The test set was made 
from the nonparalogous genes with the same filters as human on the 
primary assemblies named BHWX01000012.1, BHWX01000013.1, 
BHWX01000018.1, BHWX01000021.1, BHWX01000022.1, 
BHWX01000027.1, BHWX01000038.1, BHWX01000074.1, and 
BHWX01000097.1, resulting in a set of 920 genes.

For Arabidopsis, we used EnsemblPlant’s BioMart to download 
the paralog status and splicing annotations for genome version 
TAIR10. As with silkworm moth, we used the Ensembl canonical 
set to define the canonical transcripts. The training, SRE weight 
learning, and validation sets were selected from the genes not used 
in the test set as described for human. The test set was made of 
nonparalogous genes on chromosomes 2 and 4, resulting in a set of 
1117 genes.

New MaxEntScan models
To create the training and testing data for our third-order model of 
human SSs, we downloaded the GCF_000001405.39 NCBI assembly 

for hg38/GRCh38. For each intron-containing, protein-coding gene 
at least 300 bases in length (to ensure sufficient null examples), we 
used all 5′SSs and 3′SSs for true examples and then randomly se-
lected 30 random non-SS positions for each SS to act as background 
examples. We removed any sequences that contained noncanonical 
bases, randomly selected one third of each set to act as test data for 
Fig. 1B, and then used the remaining two-thirds to train on.

To generate new SS models, we reimplemented the iterative scal-
ing procedure described in the original MaxEntScan paper (22), but 
used all empirical trinucleotide frequencies (from adjacent as well as 
non-adjacent triples of positions) as constraints, in addition to the 
mono- and dinucleotide constraints used previously. For the 5′SS, we 
used the same 9mer around the SS, but rather than considering the 
consensus dinucleotide and remaining positions separately, we used 
the entire 9-nucleotide oligomer sequence. Similarly for the 3′SS, we 
incorporated the consensus dinucleotide into the considered subse-
quences. So, in a similar notation as the original paper, where the 
subscripts refer to sequence position, the probability of generating a 
23-nt potential 3′SS sequence X is

Furthermore, for both the 5′SS sequence and the 3′SS subse-
quences, the constraints on the maximum entropy distributions 
include all third-order frequency constraints—i.e., the frequen-
cies of triples of nucleotides at all possible sets of three consecu-
tive or non-consecutive SS positions—in addition to the second- and 
first-order constraints. The original MaxEnt methods are used in 
this paper only in the comparison analyses shown in Figs. 1B and 3A.

For the other organisms, the same training procedure and 
constraints were used, with the training data coming from the 
all-SS datasets for all genes at least 300 base pair (bp) in length 
that are not present in the respective test sets described above. 
(No validation set is needed for SS training since the parameters 
are obtained through a deterministic iterative scaling proce-
dure.) These test sets were then used in the comparison analysis 
in Fig. 3A.

Iterative learning of scores
To iteratively learn SRE scores, we began by dividing training set 
genes (excluding those >200 kb in length) into four equally sized sub-
sets (plus or minus one gene). For the first subset, we made predic-
tions for the set, either using the CASS model or the SMsplice model. 
Comparing these predictions to the canonical annotations allowed us 
to define sets of FPs and FNs. We counted the occurrences of kmers in 
the intronic and exonic flanking regions for these sets in the same 
manner as the decoy SS flanking regions described above. This yield-
ed four sets of kmer counts: exonic regions flanking FNs (Ce fn), ex-
onic regions flanking FPs Ce fp), intronic regions flanking FNs Ci fn), 
and intronic regions flanking FPs Ci fp). We then added pseudocounts 
as follows:
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Pseudocounts were added to smooth the empirical frequencies 
and to ensure that when we normalize each class by the total count to 
obtain the frequency, any hexamer that did not appear in either the 
exonic regions flanking FNs or the exonic regions flanking FPs will 
be assigned the same frequency for both sets and likewise in the in-
tronic case. Thus, the log2 of the frequency ratio will be zero. This is a 
desirable property because when we use these resulting frequency 
ratios to update the SRE scores, we do not want the scores of kmers 
that did not appear near false predictions to be affected. Letting the 
frequencies for a particular kmer be represented by f e fn

kmer
 , f e fp

kmer
 , f i fn

kmer
 

and f i fp
kmer

 ; the update is done as follows

Here, γ is a learning rate. We used to γ = 0.01 throughout this 
study because this value performed best in early tests.

Length distributions
We used two general methods of smoothing empirical length distribu-
tions to create the length distributions for SMsplice. The first method 
was Gaussian kernel smoothing, accomplished using the neighbors.
KernelDensity class of scikitlearn. The second method was adaptive 
width KDE smoothing, for which we used the GaussianKDE class in 
the awkde package available at https://github.com/mennthor/awkde 
with an α value of 1 and otherwise default parameters. For both of these 
methods, we modified the tail of the smoothed distribution to allow 
introns and exons of arbitrarily long lengths. This was done by taking 
the density of the distribution past a cutoff point and replacing the tail 
with an appropriately scaled geometric distribution. So if the value of 
the distribution at the cutoff point is p, the value of the distribution for 
the next integer length is p · s, and then for the next integer length, it is 
p · s2, and so on, where s is chosen so that the total density still sums to 
one. For the intronic distributions, we additionally imposed a mini-
mum length, forcing the probabilities of all the lengths below a certain 
value to be zero, after which we renormalized the distribution. As all the 
genes considered in our analyses contained introns, we did not learn 
length distributions for single-exon genes. The choices of smoothing 
parameters below were made in each case to improve the fit to the em-
pirical distributions on the training sets, as judged by eye.

For human, the intronic length distribution was smoothed via Gauss-
ian kernel smoothing with a bandwidth 15, a steric constraint of 60, and 
transitioning to a geometric tail at a length of 1000 nt. All the exonic 
length distributions were smoothed using adaptive width KDE smooth-
ing and transitioning to a geometric tail at the 80th percentile of the em-
pirical lengths.

For mouse, exon and intron length distributions were smoothed as 
in human. For zebrafish, the intronic length distribution was smoothed 
via Gaussian kernel smoothing with a bandwidth 5, a steric cutoff of 
50, and a geometric tail at 5000. All the exonic length distributions 
were smoothed using adaptive width KDE smoothing and a geometric 
transition at the 80th percentile of the empirical lengths.

For fly, all the length distribution were smoothed via Gaussian 
kernel smoothing. The intronic length distribution used a bandwidth 
5, a geometric tail transition of 2000, and a steric cutoff of 40. The 
first exon length distribution used a bandwidth 30 and a geometric 
tail transition of 300. The internal exon length distribution used a 
bandwidth 30 and a geometric tail transition of 500. The last exon 

length distribution used a bandwidth 100 and a geometric tail transi-
tion of 750.

For moth, the intronic length distribution was smoothed via 
Gaussian kernel smoothing with a bandwidth 15, a geometric tail 
transition of 3000, and a steric cutoff of 60. The first and internal 
exonic length distributions were smoothed using adaptive width 
KDE smoothing and a geometric transition determined at the 80th 
percentile of the empirical lengths. The last exon length distribu-
tion was smoothed using adaptive width KDE smoothing and a 
geometric transition determined at the 85th percentile of the em-
pirical lengths.

For Arabidopsis, the intronic length distribution was smoothed 
via Gaussian kernel smoothing with a bandwidth 5, a geometric tail 
transition of 200, and a steric cutoff of 60. All the exonic length dis-
tributions were smoothed using adaptive width KDE smoothing and 
a geometric transition determined at the 80th percentile of the em-
pirical lengths.

SMsplice and relation to HSMM models
The SMsplice model is most easily described in relation to an HSMM 
associated with the hidden structure shown in Fig. 2A. This structure 
involves seven hidden states: ES, EF, EM, EL, I, 5′, and 3′, with S and ε 
representing the traditional start and end states, from which all valid 
parses must begin and end, respectively. The transition probabilities 
between states are all set to 0 or 1, as indicated by the arrows, except 
the transitions from 3′ to EL and EM, which are set to pEO and pEI = 
1 − pEO, respectively, where pEO is the parameter fit in Fig. 2B. Here, 
we have set the S to EF transition probability, pME, to 1 and p1E to 0, 
effectively assuming that genes have at least one intron, but these 
transitions can be set differently if one wishes to include intronless 
genes as a possibility. The length distributions for each of the hidden 
states were learned as described above; the 5′ and 3′SS states were 
assigned a length of 1 with probability 1 for convenience, although of 
course the associated core SS motifs extend upstream and down-
stream of these positions.

To be fully specified, a standard HSMM would require a set of 
possible emissions and probability distributions over these emissions 
for each hidden state, and one could then find the highest probability 
parse for any sequence of emissions using the HSMM version of the 
Viterbi algorithm (34). However, our main goal here was to provide 
a framework to apply the structural constraints of the spliceosome, 
particularly length distributions and SS pairing, for use in discrimi-
nating more and less plausible splicing patterns, rather than building 
a generative model. Therefore, where an HSMM would consider the 
probability of some parse π for a given sequence, ℙ[seq, π], for 
SMsplice, we define SM[seq, π] an expression analogous to the base-
2 logarithm of ℙ[seq, π], normalized to a background model of se-
quence composition. For example, our SS-only model uses the 
MaxEnt log-odds ratios (representing the log of the probability of 
generating a sequence segment under the SS model to that of gener-
ating it under a background model) in place of the terms an HSMM 
would use for emissions from the SS hidden states. Also, it assigns a 
log-odds value of 0 in place of the emissions for other states (repre-
senting introns and different types of exons), effectively treating 
these states as not different from background (i.e., odds ratio of 1). 
The CASS model makes similar substitutions, replacing SS emission 
terms by CASS scores, which derive from log-odds ratios but do not 
necessarily correspond to the log-odds ratios of any specific pair of 
sequence-generative models; again, the emissions terms for other 
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states are replaced by log-odd values of 0, effectively ignoring the 
composition of exons and introns outside of the local regions that 
contribute to CASS scores.

Because the SMsplice model is defined in log-odds rather than 
generative terms, it is technically a semi-Markov conditional random 
field (CRF) (35, 36). It satisfies the Markov condition that the odds of 
hidden state i + 1 given seq and any subset of hidden state values de-
pend only on seq and the previous state i (via the transition probabil-
ity from the state i to state i + 1). The CASS framework defines the SS 
score at some position j as a function of sequences up to ~100 bp up-
stream and downstream of j (via the core SS motif and ESR and ISR 
scores). Such a definition is compatible with a CRF framework, where 
conditional probabilities (or log-odds) of hidden states are defined 
conditionally on the entire input sequence.

Consider a parse π of a sequence of length T, which has N > 0 in-
trons of lengths dI

1
 , …, dI

N
 , and therefore N − 1 internal exons, which 

have lengths dE
1
 , …, dE

N−1
 . Let the first exon have length dE

F
 and the last 

exon have length dE
L
 . Then, otherwise using the notation discussed 

above and shown in Fig. 2, the base-2 logarithm of the complete data 
likelihood of the fully specified HSMM would be

The SMsplice function is reproduced here, with minor modifica-
tions to emphasize correspondence with the HSMM

Thus, SM[seq, π] uses the same sums of log probabilities as in an 
HSMM, except that the emissions term is replaced by CASS scores, 
which involve log-odds of SS-associated sequences relative to back-
ground or decoy sequences. Therefore, SMsplice is a discriminative 
model whose maximum can be found by applying the Viterbi algo-
rithm for the associated HSMM. The parse π* that maximizes SM[seq, 
π] is taken to be the SMsplice prediction for the input sequence.

Decoy SS set and real versus decoy scores
To identify decoy SSs, we scored every position in transcripts of the 
training set using the third-order MaxEntScan methods for the organ-
ism in question. For 5′SS and 3′SS, we collected the scores of all the 
positions annotated in the canonical splicing pattern, which flanked an 
internal exon. For each of these real SS scores, ordered from strongest 
to weakest, we selected a random gene in the training set. If that gene 
had a position that was not annotated as a splice site (from gtex_data-
set.txt for human and from the all-SS datasets for other organisms), 
was not already selected as a decoy, and had an associated MaxEnt 
score within 0.5 bits of the real SS in question, then we designated that 
position as a decoy. If the gene lacked a site with appropriate score, 

then another gene was selected at random without replacement. If 
none of the genes in the training set had such a position, then the SS 
was left unmatched. All SSs were matched by decoys for human, 
mouse, zebrafish, and moth, while fly had just 13 unmatched 3′SSs 
(less than 1%) and 1351 unmatched 5′SSs (11%), and Arabidopsis had 
2131 unmatched 3′SSs (11%) and 1610 unmatched 5′SSs (8%).

To score kmers using the matched decoy SS set, we counted the 
occurrence of each kmer in the flanking regions, the regions of length 
r that abut but do not overlap the MaxEntScan regions. Flanking re-
gions were also required to remain within the boundaries of the gene; 
if after this shortening the region was reduced to less than k bases, 
then the region was discarded. The kmer counts for real SSs were 
similarly calculated, further shortening the flanking region to avoid 
overlap with any other SS motifs in the vicinity, if necessary (consid-
ering the segment scored by MaxEntScan to represent the SS motif). 
So, for instance, in the case of an exon of length < r, the flanking re-
gion upstream of the 5′SS and downstream of the 3′SS would be the 
same exonic sequence. Overall, this procedure yielded kmer counts 
upstream and downstream of real and decoy 5′SSs and 3′SSs. 
kmers upstream of real and decoy 5′SSs were considered exonic, 
while downstream kmers were considered intronic, with the opposite 
convention used for real and decoy 3′SSs. A pseudocount of two was 
added to each of these counts for smoothness, and then each catego-
ry was normalized to obtain the frequency of each kmer in 
each region.

Representing the resulting frequency values for a particular kmer 
as f e real

kmer
 , f e decoy

kmer
 , f i real

kmer
 , and f i decoy

kmer
 , we seeded exonic and intronic 

scores by assigning σe and σi as

Here, the “SRE weight constant” c > 0 was chosen using a binary 
search to maximize the F1 performance on the SRE weight learning 
set when using these SRE scores. This binary search was initialized 
by considering the values c = 0 and c = 1, and our binary search was 
limited to 16 values. The resulting scores are used in all the relevant 
analyses following Fig. 4B and fig. S5.

Clustering hexamers
For the clustering analyses shown in Fig.  5, we defined the “dis-
tance” (dissimilarity) between two kmers by checking the agree-
ment of the sequences for each possible amount of overlap. For an 
overlap of one base, the base distance score was k − 1; for an over-
lap of two bases, the distance was k − 2 and so on. Then, for every 
base that did not agree in the overlapping potion, we incremented 
the distance by 1. Last, we defined the distance as the minimum 
base distance score obtained from evaluating all 2k − 1 possible 
overlaps between the two kmers. These distances were used to con-
struct a distance matrix for all the kmers in the relevant set, and the 
kmers were clustered on the basis of this matrix using average link-
age hierarchical clustering to define 10 clusters of at least four 
kmers. As in the RESCUE-ESE paper, the kmers in each cluster con-
taining at least four kmers were aligned using ClustalW with default 
parameters (10). A PWM for each cluster was calculated from the 
frequency of each base at each position in the resulting alignment; 
these frequencies may sum to <1 at positions where one or more 
sequences were not aligned.
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PWM comparisons
We first pruned any position where fewer than one-third of the se-
quences aligned. We then replaced these positions with a uniform 
distribution (frequency of ¼ for all four bases) and also added pad-
ded each PWM with uniform positions so that all PWMs extended 
for the full extent of the alignment. To compare two PWMs, we 
considered all possible ungapped alignments of the two PWMs, de-
fining the PWM distance for each specific alignment as the sum of 
the Jensen-Shannon divergence values between corresponding po-
sitions; the distance between the two PWMs was then defined as 
the minimum PWM distance across all alignments of the PWMs. 
When clustering the PWMs within each category for all organisms, 
we used this distance for average linkage hierarchical clustering.

RNAcompete comparisons
Using the PWM distance measure described above, we compared 
each of the PWMs determined for our clusters with each of the RNA-
compete PWMs from the relevant organism and considered the 
smallest value as the best match. When that best matching motif was 
associated with multiple proteins, all of those proteins are reported. 
To determine a significant distance, we considered all of the PWMs 
for all of the clusters and changed their bases using the permutation A 
➔ G ➔ T ➔ C ➔ A, e.g., a PWM with consensus sequence ATCCG 
would be converted to one with consensus GCAAT. Then, we scored 
these permuted PWMs against all the RNAcompete motifs for the rel-
evant organism, plotted the distribution of minimum distances, and 
took the first percentile of this distribution as our distance cutoff, cor-
responding to P < 0.01.

Analysis of SRE cluster activity using RBP knockdowns
For each of the RNAcompete PWMs that was a significant match to 
any of the human clusters, we considered those with annotated splic-
ing regulatory according to the ENCORE paper (19). For each of 
these splicing regulators, we downloaded the associated exon skip-
ping RMATS results from ENCORE where available and removed any 
dataset where the number of splicing changes with a false discovery 
rate < 0.1 was less than 50. These datasets had the following identifi-
ers: ENCFF394AJI, ENCFF461PND, ENCFF258VNP, ENCFF290I-
YV, ENCFF964QGK, ENCFF542IZE, ENCFF177CCV, ENCFF692CYY, 
ENCFF103PLX, ENCFF433SCM, ENCFF094KRM, ENCFF707RAF, 
ENCFF651GFP, and ENCFF459QWA (encodeproject.org).

We imposed a minimum read coverage threshold on these exons 
by excluding exons where the mean sum of skipping and inclusion 
junction reads, averaged across conditions and replicates, was less 
than 20. Then, we associated exons with RBPs based on the presence 
of a hexamer from the associated cluster in the relevant CASS region, 
with exons lacking these hexamers considered nonassociated. For 
RBPs with multiple cluster matches, such as the two ESS clusters that 
matched HNRNPA1, we analyzed the clusters separately based on the 
same knockdown data. To ask whether exons associated with an RBP 
were more affected by the knockdown of that RBP than those that 
were not, we used a one-sided KS test to compare the distributions of 
inclusion level changes (delta PSI values) between knockdown and 
control conditions. For enhancer clusters, we asked for increased exclusion 
following knockdown, while for silencer clusters, we looked for in-
creased inclusion following knockdown. Applying Benjamini-Hochberg 
multiple test correction with α = 0.1 on the resulting comparisons, 13 
of 26 were significant, with at least one significant result for 11 of 13 
clusters analyzed (table S1).

We additionally downloaded any eCLIP dataset available from 
ENCODE for these RBPs that was performed in the same cell line as the 
corresponding shRNA knockdown experiment, which had the follow-
ing identifiers: ENCFF549HTU, ENCFF604WJZ, ENCFF178XWA, 
ENCFF704OCI, ENCFF805LKH, and ENCFF969OHE (encodeproject.
org). For these eCLIP datasets, we classified each exon as being associ-
ated with an eCLIP peak if the 5′ end of any peak was within 75 bases of 
a relevant CASS region. This allowed us to consider overlaps between 
eCLIP-associated exons and RBP-associated exons using the cluster 
member kmers as above. To explore whether these associations were in 
agreement as expected, we performed one-sided hypergeometric tests 
and corrected them with Benjamini-Hochberg multiple test correction 
with α = 0.1, yielding significant results in all but one case (table S1).

Analysis of SRE cluster activity using sQTLs
Fine mapping of sQTLs and eQTLS in GTEx was performed by 
Barbeira and coworkers using the DAP-G (deterministic approxi-
mation of posteriors) fine-mapping method (48). We accessed this 
dataset using their zenodo link. Note that fine-mapping was only 
done on European Ancestry samples of GTEx. We filtered for in-
tron clusters with two or three introns per cluster to filter for splic-
ing events that can be meaningfully described as either alternative 
splice site exons or skipped exons. We created pan-tissue clusters by 
merging the locations of each intron in a cluster, dropping tissue-
specific cluster IDs. We then sorted by posterior inclusion probabil-
ity (PIP) values in descending order and dropped duplicates based 
on pan-tissue cluster IDs and variant pairs, keeping the first value. 
This insured that we obtained the top variant-phenotype pair for all 
splicing events.

From this set, we further filtered for only SNP variants and 
splicing events that represented skipped exons and choices between 
exactly two alternative 5′SSs or 3′SSs. For each of these events, we 
considered only the variants that fell in the regions that would be 
relevant to the SRE contribution to CASS scores of any of the SSs, 
and used the regions it fell in to determine whether the variant was 
intronic, exonic, or both. For each cluster, we determined the set of 
relevant variants by selecting those that fell in a relevant CASS re-
gion of an annotated SS and for which the (reference or alternative) 
variant fell within a hexamer of the cluster and changed the score of 
the resulting hexamer to the opposite sign. For instance, for an ESE 
cluster, we looked for variants that fell in exonic CASS regions 
where the variant overlapped a component hexamer of that cluster, 
and the variant changed the hexamer to one with an ESR score < 0.

We determined a control set of variants by considering variants 
that fell in CASS regions but did not fall in any of the most extreme 
5% hexamers, i.e., none of the hexamers that overlapped the variant 
in either condition were in the top or bottom 5% of ESRs or ISRs. We 
then compared the distributions of PIP values associated with this 
control set of variants to those associated with each of the clusters. If 
the clusters are indeed associated with splicing regulation, then we 
would expect their PIP values to be generally larger than those for the 
control set. To measure this, we used a one-sided KS test to assess 
whether the distributions were significantly shifted in the appropriate 
direction, indicating increased likelihood of causality. We used 
Benjamini-Hochberg multiple test correction with α = 0.1 to deter-
mine final significance shown in Fig. 5C.

We further considered the subset of these events to which we 
could assign the direction of the change in the tissue associated 
with the highest PIP by cross-referencing with the data contained 
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in GTEx_Analysis_v8_sQTL_EUR.tar, downloaded from the GTEx 
portal (www.gtexportal.org/home/downloads/adult-gtex/qtl). For 
each such variant, we considered the changes in local scores be-
tween the two sequences to determine a difference or “delta” value. 
For the exon skipping events, we subtracted the local exon score for 
the new sequence from the score for the reference sequence to de-
termine delta. For the alternative splice sites, we calculated the local 
intron scores for both the longer and shorter introns for both the 
variant and reference sequences. We then defined delta for these 
events by subtracting the change in the score of the intron-proximal 
alternative SS (i.e., associated with splicing of a shorter intron) pat-
tern from the change in score for the intron-distal site, meaning that 
a positive delta suggests a change toward splicing of the longer in-
tron isoform.

Supplementary Materials
This PDF file includes:
Figs. S1 to S17
Legends for tables S1 and S2

Other Supplementary Material for this manuscript includes the following:
Tables S1 and S2
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