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Abstract
Tumour radioresistance is a major problem for cancer radiation therapy. To identify 
the underlying mechanisms of this resistance, we used human non-small cell lung 
cancer (NSCLC) cell lines and focused on the Inhibitor of Apoptosis Protein (IAP) fam-
ily, which contributes to tumourigenesis and chemoresistance. We investigated the 
possible correlation between radioresistance in six NSCLC cell lines and IAP pro-
tein levels and tested the radiosensitizing effect of birinapant in vitro, a molecule 
that mimics the second mitochondria-derived activator of caspase. We found that 
birinapant-induced apoptosis and inhibited the proliferation of NSCLC cells after 
exposure to radiation. These effects were induced by birinapant downregulation of 
cIAP protein levels and changes of cIAP gene expression. Overall, birinapant can in-
hibit tumour growth of NSCLC cell lines to ironizing radiation and act as a promising 
strategy to overcome radioresistance in NSCLC.
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1  | INTRODUC TION

Lung carcinoma is one of the most dangerous malignant tumours,1 
and current treatments include surgery combined with radiotherapy 
and chemotherapy.2 The aim of the latter is to provide therapeu-
tic doses to the target tumour volume while minimizing damage to 
normal adjacent tissues. However, it is difficult when tumours show 
high resistance to both radiation and drugs, thus weakening the 
therapeutic effect.3 More than 100 years ago, nitroimidazoles and 
anthraquinones were reported to sensitize some tumour cells to ion-
izing radiation (IR),4,5 but the molecular mechanisms have yet to be 
identified.6-8

The Inhibitor of Apoptosis Protein (IAP) family are candidates 
for drug and IR resistance.9 For example, in lung cancer, X-linked 
IAP (XIAP) is upregulated and contributes to inhibiting apoptosis.10 
Indeed, XIAP is known to directly inhibit caspase proteins and is 
involved in the regulation of tumour proliferation and metastasis. 
However, mammals have eight IAPs,11 and the contribution of the 
other IAPs, for example, cellular IAP (cIAP), in tumour growth and 
resistance is unknown.12-16 cIAP1/2 has been shown to be overex-
pressed in lung cancer patients, and a higher expression is correlated 
with a worse prognosis, suggesting that cIAP1/2 is related to the 
occurrence and development of lung cancer and drug resistance.17

The baculoviral IAP repeat (BIR) domain, common to all IAPs, 
is required for caspase inhibition and protein complex formation. 
The RING domain (Really Interesting New Gene), located at the C-
terminus, functions as an E3 ligase. This domain also promotes di-
merization and oligomerization, thus regulating ubiquitination.18 In 
the TNF-α signalling pathway, cIAP1/2 oligomerizes and regulates 
its substrates such as RIP1 and NEMO, and activates NF-κB signal-
ling.19 Endogenous IAP antagonists, identified as Smacs (secondary 
mitochondrial-derived caspase activators), use a peptide sequence 
(Ala-Val-Pro-Ile) to inhibit IAP function by binding to their BIR 
domain, thus preventing IAP-mediated inhibition of caspase pro-
teins.20-23 In order to promote tumour cell apoptosis, several IAP 
inhibitors have been designed that mimic the binding site of second 
mitochondria-derived activator of caspase (Smac) and are currently 
undergoing investigation in early-phase clinical trials. Several Smac 
mimetics have been reported to be effective in the treatment of a 
range of malignancies, such as LCL161 (Novartis) and birinapant in 
the treatment of triple-negative breast cancer (TNBC).24,25 In addi-
tion, Smac mimetics combined with radiation therapy seem to be 
a promising tumour treatment. For example, the bivalent Smac mi-
metic, BV6, binds to the BIR domain of IAP and induces IAP down-
regulation, activates apoptosis, and enhances radiosensitization of 
non-small cell lung carcinoma in vitro.26-28 Human prostate cancer 
has been shown to be sensitized to radiation by the molecule SH-
130, one of the Smac-mimetic IAP inhibitors.29 Birinapant can also 
increase the radiosensitivity of human head and neck cancer cells 
(HNSCC), but there is a lack of reports on its effects on other cell 
types.30

In the present study, we examined the correlation between ra-
diosensitivity in non-small cell lung cancer (NSCLC) cell lines and 

expression levels of cIAP1/2. In addition, we proved the possibil-
ity of birinapant as an effective radiosensitizer for lung cancer and 
analysed the contribution and possible mechanism of action of bir-
inapant on NSCLC cell line radiosensitization. In order to clarify our 
conclusions, we used BV6, a common IAP antagonist as a positive 
control in a subset of experiments.

2  | MATERIAL S AND METHODS

2.1 | Cell culture

Human NSCLC cell lines (H1299, H1650, H358, H460, A549 
and HCC827) were obtained from the Tianjin Key Laboratory of 
Radiation Medicine and Molecular Nuclear Medicine & Institute of 
Radiation Medicine. Cells were cultured in RPMI1640 (Hyclone) sup-
plemented with 10% bovine serum (Omega Scientific) at 37℃, 5% 
CO2 and 95% humidity.

2.2 | Birinapant and BV6 treatment and 
irradiation procedure

The bivalent Smac mimetic birinapant was purchased from 
Medchemexpress (MCE, Medchemexpress CO. Ltd) and BV6 was 
purchased from Selleck (Blue Wood Chemical Co., Ltd.). Cells were 
treated with 10 µmol/L birinapant or BV6 as indicated, or with the 
equivalent amount of solvent dimethyl sulphoxide (DMSO, Beijing 
Dingguo Changsheng biotechnology CO. Ltd) 1  hour before irra-
diation. Irradiation with single doses of 2-8  Gy was performed by 
a 137Cs γ-source (Atomic Energy of Canada Limited, Gamma cell 
40). The source-target distance was 30 cm, and the dose rate was 
0.99 Gy/min.

2.3 | MTT assay

Cells were seeded at a density of 4 × 103 cells per 200 µL in a 96-well 
microplate, and cultivated for 24 and 48 hours after treatment with 
10 µmol/L birinapant. Then, 10-µL MTT (3-(4,5-dimethyl-2-thiazoly
l)-2,5-diphenyl-2-H-tetrazolium bromide) was added per well (5mg/
mL). After 4 hours of incubation at 37℃ and 5% CO2, solubilization 
of the converted purple formazan was accomplished by the addition 
of 150 µL DMSO and vortexing for 10 minutes. The OD in each well 
was measured with a microplate reader (BioTek) at 570 nm.

2.4 | Colony Formation Assay

Cells were seeded at a density of 1 × 103 per 2 mL in a 6-well micro-
plate for 24 hours. After adhesion to the walls, they were incubated 
with 10 μmol/L birinapant or BV6 for 1 hour at 37℃ and 5% CO2. The 
plate was subsequently irradiated at room temperature by a 137Cs 
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γ-source, in the presence or in the absence of birinapant, and then 
were incubated in normal conditions for 7 days. Cells were fixed by 
methanol for 5 minutes and stained with 10% Giemsa (Sigma-Aldrich) 
solution for 30 minutes. The plate was then gently washed in water, 
and the number of colonies containing 50 or more cells were counted. 
The colony formation rate (%) is the number of colonies divided by 
the number of incubated cells. A cell survival fraction curve was 
fitted based on the single-hit-multi-target equation, and the curve 
parameter D0 was measured. The radiosensitization ratio (SER) was 
calculated as the ratio of D0 between the group exposed to the drug 
and irradiation, and the group just exposed to irradiation.

2.5 | Cell death analysis

Apoptotic cells were detected by staining with Annexin V/propidium 
iodide (BD Biosciences-US). The loss of plasma membrane is one of 
the earliest characteristics of apoptosis. At this time, the membrane 
phospholipid phosphatidylserine (PS) is transferred from the inner 
lobule of the plasma membrane to the outer lobule, thus exposing to 
the external environment of the cell. Annexin V is a Ca2+-dependent 
phospholipid-binding protein, which has a high affinity with PS and 
binds to cells exposed to PS. It can be used as a sensitive probe for 
the analysis of cells in the early stage of apoptosis by flow cytometry. 
FITC Annexin V staining precedes the loss of membrane integrity, 
which accompanies the latest stages of cell death resulting from ei-
ther apoptotic or necrotic processes. Viable cells with intact mem-
branes exclude PI, whereas the membranes of dead and damaged 
cells are permeable to PI. Cells were divided into four groups: con-
trol (no drug or irradiation), single-drug group (only drug treatment), 
single-radiation group (only radiation treatment), and combination 
group (both drug and radiation treatments). Each group of cells were 
seeded at a density of 2 × 105 per 1 mL in a 6-well microplate. After 
treatment (24 or 48 hours), cell death was detected by flow cytom-
etry after the addition of 5µL of Annexin V and propidium iodide.

2.6 | cIAP1 and cIAP2 protein and mRNA 
expression levels

Cells were collected at each time point, and cell lysates were prepared 
as described. Western blots were performed with the following anti-
bodies: antibody to caspase-3 (1:2500, ab32351, Abcam, US), cIAP1 
(1:1000, ab154525, Abcam, US), cIAP2 (1:1000, ab32059, Abcam, 
US), β-actin (1:5000, CW0096M, CWBIO, China), Goat Anti-Mouse 
IgG, HRP Conjugated (1:5000, CW0102S, CWBIO, China), Goat Anti-
Rabbit IgG, HRP Conjugated (1:5000, CW0103S, CWBIO, China).

Cell RNA was extracted by Trizol® (ambion, life, America) as de-
scribed. mRNA expression levels were detected using the EvaGreen 
kit (abm, America) with 40 cycles. The program was set according to 
the manufacturer's standard protocol. Results were analysed with the 
2−ΔΔCt method. The GAPDH was used as the house-keeping gene in all 

PCR experiments. Primers: cIAP1 (Forward) 5′-TTGTCAACTTCAGATA
CCACTGGAG-3′; (Reverse) 5′-CAAGGCAGATTTAACCACAGGTG-3′; 
cIAP2 (Forward) 5′-TCCTGGATAGTCTACTAACTGCC-3′; 
(Reverse)5′-GCTTCTTGCAGAGAGTTTCTGAA-3′.

2.7 | Statistics data analysis

Statistical significance was tested with two-sided unpaired Student's 
t tests and two-way ANOVA, performed using Graphpad version 5.0 
(GraphPad Software). Results were considered statistically signifi-
cant for P-values lower than 0.05.

3  | RESULTS

3.1 | Radiosensitivity and cIAP1/2 protein levels

An MTT colorimetric assay was used to study the impact of IR on 
cell proliferation After 48  hours of IR treatment, viability was re-
duced in all the cell lines tested (H1299, H1650, H358, H460, A549, 
and HCC827) in a dose-dependent manner (Figure 1A). The effect 
was more pronounced in H460 and H358, whereas H1299 and A549 
cells showed higher radiation resistance than other cell lines.

The radiosensitivity of six NSCLC cell lines was investigated using 
a colony-forming assay (Figure 1B). After 7 days, the cloning ability 
decreased significantly, especially in the case of H460 and H358, 
whereas H1299 and A549 exhibited less sensitivity. Results for 
HCC827 were similar to those obtained in H1299 and A549 (except 
at the 8 Gy dose). Overall, H1299 and A549 cell lines were found to 
be the most resistant to IR treatment among these cell lines.

Apoptosis is one of the main ways of cell death caused by radia-
tion.31 Three of the representative cell lines (H460, H1299, and H1650) 
were chosen to study the effect of irradiation on apoptosis (The prelim-
inary results showed that H1299, H1650 and H460 had different radia-
tion resistance (H1299 > H1650 > H460)). The effects were monitored 
24 and 48  hours after irradiation (Figure  1C-D, H1650 cells, H1299 
cells and H460 cells were represented from left to right in each figure.). 
H460 cells were more sensitive to radiation than H1299 and H1650, 
consistent with the preliminary experiments. Subsequently, cIAP1 and 
cIAP2 protein levels were analysed by Western blot (Figure 1E-F). The 
results showed that the expression of cIAP1 (some cells did not express 
the cIAP2 protein) seemed to be positively correlated with radiation re-
sistance, that is, the more resistant to radiation the cells are, the higher 
expression level of cIAP1 proteins they have.

3.2 | Changes of cIAP1/2 protein induced 
by radiation

Expression levels of cIAP1 were higher in IR-resistant H1299 cells. 
Differences in cIAP2 protein levels were more evident than those 
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observed for cIAP1. Expression of cIAP1 and cIAP2 was higher in cells 
resistant to IR, for example, H1299, than in those with low radiore-
sistance, for example, H460. We chose these two cell lines, H1299 
and H460, to study the effect of different doses of radiation on the 
expression of cIAP1 and cIAP2 at different time points (Figure 2A-B). 
Figure 2 shows that although radiation-induced changes in cIAP1/2 
protein levels in H1299 cells were not significant, levels of cIAP1 
protein in H460 cells were significantly increased, suggesting that 
cIAP1/2 expression is upregulated after radiation treatment. These 
results further confirm that cIAP proteins may play a positive role in 
cell radiation resistance.

3.3 | Birinapant combined with radiation increased 
apoptosis of NSCLC cell lines

Since IAP proteins play an important role in the radioresistance of 
NSCLC cell lines,28-30 the IAP inhibitor birinapant was used. After 
H1299 cells were treated with different concentrations of birinapant 
in the total culture medium for 24 and 48 hours, the cell survival rate 
decreased steadily to 80% at 10 µmol/L (Figure 3A-B).

First, we identified the effective birinapant concentration to 
induce apoptosis in H1299 after 24 hours treatment (Figure 3C-D). 
Of the three concentrations tested, 100 nmol/L, 1 and 10 µmol/L, 

F I G U R E  1   A, Cell viability was detected by MTT colorimetric method of IR on six NSCLC cell lines, 48 h after irradiation with γ-rays 
at doses of 2, 4, 6 and 8 Gy; B, The clone formation ability of six non-small cell lung cancer cell lines after ionizing radiation was observed 
by clone formation experiment; C, Apoptosis of lung cancer cell lines H1299, H460 and H1650, detected by flow cytometry, 24 h after IR 
exposure, respectively. H1650 cells, H1299 cells and H460 cells were represented from left to right; D, Apoptosis of lung cancer cell lines 
H1299, H460 and H1650, detected by flow cytometry, 48 h after IR exposure, respectively, H1650 cells, H1299 cells and H460 cells were 
represented from left to right; E, Western blot of cIAP1 protein expression levels in various cell lines. F, Western blot of cIAP2 protein 
expression levels in various cell lines. Error bars are means ± SD, n = 3 independent replicates and P < .05, P < .01, or P < .001 were 
considered statistically significant
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F I G U R E  2   Western blot assays to determine the dose-dependent effect of radiation on the expression levels of cIAP1/2 proteins in (A) 
H1299 cells and (B) H460 cells. All data shown are representative and have been repeated at least three times independently
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only 10  µmol/L birinapant treatment enhanced apoptosis. Thus, 
we used this concentration in subsequent experiments. The ra-
diosensitization of birinapant was detected in H1299 and H460 
cell lines. BV6, a similar kind of IAP inhibitor that has been proven 
to have a radiosensitizing effect, served as a positive control.28 
A significant increase in apoptosis was observed in the combina-
tion group (drug and radiation exposure) compared to the single-
radiation group and the single-drug group at 24 and 48 hours in 
H1299/H460 cells (Figure 3E-F). In H1650 cells, the combination 
group showed increased apoptosis 48  hours after irradiation 
(Figure S1).

3.4 | Radiosensitization effect of birinapant

The clone formation experiment was carried out to further verify 
the radiosensitization effect of birinapant. The results indicated that 
the sensitization of BV6 was better than birinapant at 2 Gy, while the 
two drugs had similar sensitization at 4 Gy (Figure 4). Consistent with 
previous reports, the two drugs have a slightly better sensitizing ef-
fect on H1299 cells than on H460, which may be attributed to H460 

cells being more sensitive to radiation. In short, the significant sen-
sitizing effect of birinapant on NSCLC cell line was proved through 
the calculation and comparison of SER (Refer to the Materials and 
methods for the rationale of SER).

3.5 | Birinapant plays a radiosensitizing effect in a 
way that downregulates the level of CIAP1/2 protein

The effect of birinapant on cIAP1 and cIAP2 protein levels after 
exposure to IR was tested with a Western blot assay (Figure 5A-B). 
In H1299 and H460 cells, cIAP1 and cIAP2 showed rapid degrada-
tion after about 60 minutes in cells treated with birinapant or BV6, 
whereas IR treatment alone did not have a significant effect. The 
degradation of cIAP1 by birinapant seems to be more significant than 
that of cIAP2. We also detected cleaved-caspase3 at 24 and 48 hours 
(Figure  5C-D), which was activated after 24  hours of exposure to 
birinapant or BV6 and after degradation of cIAP1 and cIAP2. As ex-
pected, birinapant activated more caspase3 by inhibiting the cIAP1/2 
protein, thereby promoting more radiation-induced apoptosis of tu-
mour cells.

F I G U R E  3   A, MTT colorimetric assay to test the toxicity of increasing concentrations of birinapant on H1299 cells after 24 h; B, MTT 
colorimetric assay to test the toxicity of increasing concentrations of birinapant on H1299 cells after 48 h; C, The effective concentration 
to induce apoptosis in H1299 cells was determined by flow cytometry after testing the indicated concentrations of birinapant after 24 h 
exposure; D, The statistical data of apoptosis of H1299 cells induced by different concentrations of birinapant by flow cytometry. E, 
apoptosis after different treatments of H1299 detected by flow cytometry; F, apoptosis after different treatments of H460 detected by 
flow cytometry. Data are presented as the means ± SD, n = 3 independent replicates, and P < .05, P < .01, or P < .001 were considered 
statistically significant

F I G U R E  4   A, Representative images 
from the clone formation experiment 
of H1299 cells. B, The radiosensitizing 
effect of birinapant on H1299 cells was 
confirmed by clone-forming cell-survival 
test, by simulating the survival curve 
and calculating H1299 control group 
D0 = 2.04, experimental group D0 = 1.93 
and 1.73, SER = 1.06 and 1.18. The 
asterisks above and below denote the 
Birinapant group and the BV6 group, 
respectively. C, Representative images 
from the clonogenic assay of H460 cells. 
D, The radiosensitizing effect of birinapant 
on H460 cells was confirmed by clone-
forming cell-survival test, by simulating 
the survival curve and calculating H460 
control group D0 = 1.54, experimental 
group D0 = 1.49 and 1.33, SER = 1.03 
and 1.16. The asterisks above and below 
denote the Birinapant group and the BV6 
group, respectively. All data shown are 
representative and have been repeated at 
least three times independently
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3.6 | Birinapant upregulates cIAP1/2 
gene expression

cIAP1/2 mRNA levels were analysed by RT-PCR (Figure 6). To our 
surprise, in H1299 cells, mRNA levels of cIAP1, and especially cIAP2, 
were elevated after treatment with birinapant (Figure  6A-B). In 
contrast, cIAP1 mRNA levels within H460 cells showed a signifi-
cant increase in the combination group compared with the single-
radiation group (Figure 6C). The mRNA expression levels of cIAP1/2 
antagonistic related genes are shown in Figure S2. Gene expression 
levels of antagonistic genes, especially the Smac gene, decreased 
significantly after irradiation, which is consistent with the previously 
observed increase of cIAP1/2 gene levels. In summary, our results 
suggested that birinapant can downregulate cIAP1/2 protein levels, 
while upregulating their mRNA levels.

4  | DISCUSSION

Radiotherapy is one of the main treatments for malignant tumours 
including lung cancer.32 However, the radiation tolerance of tumour 
cells has hindered the improvement of the efficacy of radiotherapy.33 
For many years, humans have been trying to use radiosensitizers to 
reduce the radiation resistance of tumours and improve the efficacy 
of radiotherapy. The exploration of the mechanism of radiation tol-
erance of tumour cells plays a positive role in the development of 
radiosensitizers.

As previously mentioned, cIAP1/2, like XIAP, are members of the 
IAP protein family with an anti-apoptotic effect.17 Since radiother-
apy inhibits tumour growth by inducing apoptosis,31 we question 
whether IAP proteins also play a partial role in radiation-resistant 
cells. The radiosensitivity of six NSCLC cell lines was first explored 

F I G U R E  5   Protein expression for cells irradiated and exposed to birinapant, measuring (A) Protein expression of cIAP1/cIAP2 in H1299 
cells; B, Protein expression of cIAP1 and caspase-3 in H460 cells; C, Protein expression of cleaved-caspase-3 in H1299 cells; D, Protein 
expression of cleaved-caspase-3 in H460 cells. All data shown are representative and have been repeated at least three times independently
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and then the expression of cIAP1/2 protein in these six cell lines 
was examined. Consistent with the hypothesis, there was a positive 
correlation between cIAP1/2 protein expression and radiation re-
sistance. What is even more interesting is that radiation seems to 
induce the expression of cIAP protein to some extent. This indicates 
that cIAP1/2 plays a significant role in radiation resistance.

Second mitochondria-derived activator of caspase is a natural 
antagonist of IAPs that exists in mitochondria. When cells are stimu-
lated by apoptosis, mitochondria release Smac protein into the cyto-
plasm to bind to IAPs, making it lose the inhibition of caspase activity 
and subsequently promote cell apoptosis.11,20,34 Three previous pa-
pers published in Cell35-37 have reported that Smac mimetics can in-
duce auto-ubiquitination and cIAP1/2 degradation through different 
mechanisms, leading to tumour necrosis-factor-alpha-mediated can-
cer cell death.38 These studies have prompted the introduction of 
Smac mimetics in anti-cancer therapies. There have been many pre-
vious reports that IAP inhibitors, such as BV6, can be used as radia-
tion sensitizers.28-30,39-41 As a bivalent Smac mimetic, we attempted 
to verify whether birinapant also has similar effect and explored the 
preliminary mechanisms. The attempt was in line with the current 
trend of most pro-apoptotic drugs combined with other therapies to 
increase the efficacy.

Sensitization ratio (SER) refers to the ratio of dose with the same 
biological effect in the presence or absence of drugs, which is an 
important standard to measure the effectiveness of sensitizers.42 
We chose two NSCLC cell lines, H1299 and H460, which have very 
different radiosensitivities for follow-up experiments. In the cell-
cloning experiment, the survival curves of the two kinds of cells 
under different treatment conditions were fitted, and the sensiti-
zation effectiveness of the two drugs was determined by calculat-
ing the sensitization ratio. The results showed that birinapant was 
similar to the positive control, BV6, and showed a significant sen-
sitizing effect for both kinds of cells. Further research showed that 
birinapant is involved in the degradation of IAP protein. Although 
the H460 cell line does not express cIAP2 protein, the behaviour 
of cIAP1 and cIAP2 is similar. Moreover, with the addition of birina-
pant, the downstream caspase-3, an apoptotic executive protein, 
was more activated. These results suggest that birinapant could be 
effective against NSCLC by those therapies. This is also consistent 
with previous reports where IAP antagonists induced apoptosis by 
targeting cIAP1/2.6,43,44 More specifically, birinapant relieves the 
radiation resistance of tumour cells by inhibiting cIAP1/2, relieving 
cIAPs-mediated caspase inhibition, and then combined with radia-
tion leads to more tumour cell apoptosis. Unexpectedly, we found 

F I G U R E  6   cIAP1/2 mRNA levels via RT-PCR analysis at the indicated post-irradiation times. A, mRNA levels of cIAP1 protein in 
H1299 cells; B, mRNA levels of cIAP2 protein in H1299 cells; C, mRNA level of cIAP1 protein in H460 cells. Error bars are means ± SD, 
n = 3 independent replicates and P < .05, P < .01, or P < .001 were considered statistically significant
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that the mRNA level of cIAP1/2, however, increased compared 
with the control group. Although the effect of the drug on elevated 
cIAP1/2 mRNA levels has not been reported before, we theorize 
that this is a manifestation of cellular stress. Cellular stress means 
that when prokaryotic or eukaryotic cells are subjected to a vari-
ety of obvious environmental changes or stimuli, they can produce 
a series of adaptive changes, which eventually lead to changes in 
gene expression.45-47 When birinapant enters the cells, the cells 
show negative stress, that is, the expression of the cIAP1/2 gene 
increases, but due to the strong inhibition of cIAP1/2 protein by 
birinanpant, the translation of cIAP1/2 gene is blocked. As a result, 
the level of cIAP1/2 protein was suppressed and the level of mRNA 
was upregulated at the same time. Of course, further research on 
the ways of cIAP1/2 mRNA translation will reveal this interesting 
phenomenon more accurately.

5  | CONCLUSION AND PROSPEC TS

The present paper analysed the correlation between radiosensitivity 
of NSCLC and cIAP1/2 protein levels in six different NSCLC cell lines 
and found that cells are insensitive to radiation show high expres-
sion of cIAP1/2 protein. This supports the view that high expression 
of cIAP1/2 protein is a key factor that explains radiation resistance 
in NSCLC, providing the basis of a strategy to overcome radiation 
resistance in NSCLC cell lines. More importantly, our works con-
firmed that birinapant increased the radiosensitivity of NSCLC and 
promoted apoptosis by inhibiting the expression of cIAP/2 protein 
which provided more possibilities for the selection of sensitizers for 
clinical radiotherapy of NSCLC in the future.
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