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Predicting changes in glycemic control among adults with
prediabetes from activity patterns collected by wearable
devices
Mitesh S. Patel 1,2,3✉, Daniel Polsky4, Dylan S. Small3, Sae-Hwan Park2, Chalanda N. Evans2, Tory Harrington2, Rachel Djaraher2,
Sujatha Changolkar5, Christopher K. Snider 2 and Kevin G. Volpp2,3,6

The use of wearables is increasing and data from these devices could improve the prediction of changes in glycemic control. We
conducted a randomized trial with adults with prediabetes who were given either a waist-worn or wrist-worn wearable to track
activity patterns. We collected baseline information on demographics, medical history, and laboratory testing. We tested three
models that predicted changes in hemoglobin A1c that were continuous, improved glycemic control by 5% or worsened glycemic
control by 5%. Consistently in all three models, prediction improved when (a) machine learning was used vs. traditional regression,
with ensemble methods performing the best; (b) baseline information with wearable data was used vs. baseline information alone;
and (c) wrist-worn wearables were used vs. waist-worn wearables. These findings indicate that models can accurately identify
changes in glycemic control among prediabetic adults, and this could be used to better allocate resources and target interventions
to prevent progression to diabetes.
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Adults with diabetes have higher rates of cardiovascular disease,
kidney failure, and death1. Nearly 90 million adults in the United
States have prediabetes with an elevated blood glucose level that
puts them at higher risk of developing diabetes in the future2.
While behavioral interventions and medications have proven
effective for preventing progression to diabetes, they are
significantly underutilized2.
The effectiveness of diabetes prevention could be enhanced by

more efficient targeting of resources for preventive interventions
to adults that have the highest risk of developing diabetes in the
near term. However, current risk prediction models vary in
accuracy and most focus on predicting outcomes over longer-
term periods such as 5–10 years3–5. Moreover, these models
typically rely on information available at a single timepoint and do
not account for levels or changes in daily health behaviors which
are known to be associated with changes in glycemic control6.
Wearable devices are increasingly being adopted and could

provide real-time access to data on physical activity, sleep, and
heart rate patterns7,8. Risk prediction models that incorporate
these data could improve near-term identification of adults with
worsening glycemic control who are at the highest risk of
developing diabetes. Wearables are most commonly worn on the
wrist or waist, but differ in that waist-worn wearables are less
expensive and collect less activity information. Body location may
also change the accuracy of activity tracking and device
utilization8–12. The ideal position for using a wearable device to
inform risk prediction is unknown and needs further study.
In this study, our objective was to use a randomized trial to

evaluate the use of data from waist-worn wearables vs. wrist-worn
wearables to improve risk prediction models for changes in
glycemic control among adults with prediabetes during a 6-month

remote-monitoring period. We chose to conduct this comparison
because these are the two most common sites for wearing an
activity tracker and a randomized trial of real-world utilization of
these devices provides a more pragmatic evaluation than a more
controlled evaluation. We collected baseline information on
demographics, medical history, and laboratory testing from all
participants and then fit prediction models to evaluate the
following comparisons: (a) machine learning methods vs. tradi-
tional regression models; (b) baseline information with wearable
data vs. baseline information alone; (c) data from wrist-worn
wearables vs. waist-worn wearables.
The trial protocol was approved by the University of Pennsyl-

vania Institutional Review Board and the study was pre-registered
on clinicaltrials.gov (NCT03544320). Potential participants were
identified using the electronic health record at Penn Medicine and
invited by email. Participants were eligible if they were age 18
years or older, provided informed consent, had a smartphone or
tablet compatible with the wearables, and completed baseline
laboratory testing with a hemoglobin A1c of 5.7 to 6.4. Participants
completed surveys on their demographics, comorbidities, and
other behaviors that have been shown to be associated with
developing diabetes (smoking status, awareness of prediabetes,
first degree relative with diabetes, and medications to control
blood sugar). Participants were sent a digital weight scale to
obtain a baseline weight using Skype or FaceTime with the study
team to confirm their identity. Participants were given instructions
on how to obtain baseline laboratory testing at no cost to them.
All of this information collected at baseline was used in each of
the models (detailed descriptions of each variable are available in
the Methods section).
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Participants were randomized electronically by stratifying on
baseline HbA1c (5.7–6.0 or 6.1–6.4) and using block sizes of two to
use a waist-worn wearable (Fitbit Zip) or wrist-worn wearable
(Fitbit Charge 2 HR). The waist-worn wearable collected data on
physical activity while the wrist-worn wearable collected data on
physical activity, sleep, and heart rate. Participants authorized the
Way to Health research technology platform at the University of
Pennsylvania to collect data from Fitbit13. Participants were asked
to use the wearable devices throughout the 6-month study and to
sync their wearable with the Fitbit smartphone application daily.
Participants who did not sync their devices for four consecutive
days were sent an automated reminder to sync data with the
smartphone application. At 6 months, all participants were asked
to complete end-of-study laboratory testing and an end-of-study
weigh-in.
The main outcome measure was the change in hemoglobin

A1c. This was assessed in three ways. First, we evaluated
continuous changes in hemoglobin A1c (primary outcome
measure) using R squared. Second, we evaluated a worsening in
glycemic control by creating a binary indicator to represent
whether the hemoglobin A1c level increased by 0.3 points (about
a 5% relative increase) using Area Under the ROC Curve (AUC).
Third, we evaluated an improvement in glycemic control by
creating a binary indicator to represent whether the hemoglobin
A1c level decreased by 0.3 points (about a 5% relative reduction)
using AUC. We selected 0.3 points as our cutoff because this 5%
change has been used previously and prior research indicated that
a change of this magnitude in either direction was associated with
a significant change in the risk of progressing to diabetes14–16.
We fit six different modeling techniques. This included three

regression-based models (ordinary regression without regulariza-
tion, ridge regression, and lasso regression), two tree-based
models (random forest and gradient boosting trees), and one
ensemble model incorporating ridge regression, random forest,
and gradient boosting. We present the findings from ordinary
regression without regulation and ensemble machine learning. All
other models are available in the Supplement and generally had
similar prediction to traditional and machine learning techniques,
respectively.

RESULTS
Participant characteristics
The sample had a mean (SD) age of 56.7 years (12.7), body mass
index of 32.7 (7.3) kg/m2, and baseline hemoglobin A1c of 6.1
(0.2); 69.4% were female, 18.8% were black, 2.7% were actively
smoking, 50.5% had a first degree relative with diabetes, 91.4%
were aware they had prediabetes, and 18.8% reported taking a
medication for blood sugar control (Table 1). Characteristics were
similar between the two arms (P values all > 0.05). Compared to
participants that completed end-of-study laboratory testing,
participants lost to follow-up were mostly similar but had higher
baseline weight and lower baseline rate of hyperlipidemia
(Supplementary Table 1).

Hemoglobin A1c testing and activity measures
In the waist-worn wearable arm, 74 of 93 (77.7%) participants
obtained end-of-study laboratory testing (Fig. 1). Among these
participants, the mean (SD) hemoglobin A1c was 6.0 (0.2) at
baseline and 6.0 (0.3) at 6 months, 5 (6.8%) had increases in their
hemoglobin A1c level of ≥0.3, and 14 (18.9%) had a decrease of
≥0.3 (Table 2). In the wrist-worn wearable arm, 73 of 93 (78.5%)
participants obtained end-of-study laboratory testing (Fig. 1).
Among these participants, the mean (SD) hemoglobin A1c was 6.1
(0.2) at baseline and 6.1 (0.3) at 6 months, 11 (15.1%) had increases
in their hemoglobin A1c level of ≥0.3, and 12 (16.4%) had a
decrease of ≥0.3 (Table 2). For all physical activity measures, mean

and standard deviations of the data, along with rates of missing
data, are available in Supplementary Table 2. For step counts,
missing data rates were lower in the wrist-worn arm than the
waist-worn arm (11.9% vs. 24.2%).

Continuous prediction model
In the continuous model using the standard approach with only
baseline information and traditional linear regression, there was
no difference in prediction (R squared in waist-worn arm, 0.37,
95% CI= 0.357 to 0.380; R squared in wrist-worn arm, 0.36, 95%

Table 1. Characteristics of the participant sample.

Waist-worn
wearable
(N= 93)

Wrist-worn
wearable
(N= 93)

Total
(n= 186)

Sociodemographics

Age, mean (SD), years 55.7 (13.1) 57.8 (12.1) 56.7 (12.7)

Female, N (%) 58 (62.4) 65 (69.9) 123 (66.1)

Race/ethnicity, N (%)

White non-Hispanic 63 (67.7) 66 (71.0) 129 (69.4)

Black non-Hispanic 18 (19.4) 17 (18.3) 35 (18.8)

Asian non-Hispanic 4 (4.3) 4 (4.3) 8 (4.3)

Hispanic 5 (5.4) 4 (4.3) 9 (4.8)

Other 3 (3.2) 2 (2.2) 5 (2.7)

Education, N (%)

High school graduate 22 (23.7) 26 (28.0) 48 (25.8)

Some college or
specialized training

38 (40.9) 36 (38.7) 73 (39.2)

College graduate 33 (35.5) 31 (33.3) 64 (34.4)

Martial Status, N (%)

Single 15 (16.1) 9 (9.7) 24 (12.9)

Married 67 (72.0) 65 (69.9) 132 (71.0)

Other 11 (11.8) 19 (20.4) 30 (16.1)

Annual household income, N (%)

< $50,000 14 (15.1) 20 (21.5) 34 (18.3)

50,000 to 100,000 33 (35.5) 37 (39.8) 70 (37.6)

> 100,000 46 (49.5) 36 (38.7) 81 (43.5)

Baseline measurements

Hemoglobin A1c,
mean (SD)

6 (0.2) 6.1 (0.2) 6.1 (0.2)

Body mass index,
mean (SD)

33.2 (7.0) 32.2 (7.7) 32.7 (7.3)

Weight, mean lbs. (SD) 208.3 (51.3) 199.8 (53.4) 204.1 (52.4)

LDL, mean (SD) 104.1 (31.6) 107.1 (33.7) 105.6 (32.6)

Smoking actively, N (%) 2 (2.2) 3 (3.2) 5 (2.7)

Hypertension, N (%) 39 (41.9) 43 (46.2) 82 (44.1)

Hyperlipidemia, N (%) 45 (48.4) 57 (61.3) 102 (54.8)

Charlson Comorbidity
Index, median (IQR)

1 (0–2) 1 (0–2) 1 (0–2)

Taking medication for
high blood sugar, N (%)

16 (17.2) 19 (20.4) 35 (18.8)

Taking medication for
high cholesterol, N (%)

39 (41.9) 49 (52.7) 88 (47.3)

Aware of prediabetic
status, N (%)

88 (94.6) 82 (88.2) 170 (91.4)

First degree relative
diagnosed with
diabetes, N (%)

47 (50.5) 47 (50.5) 94 (50.5)
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CI= 0.343 to 0.369; P for difference= 0.15). In the enhanced
approach in which wearable data was added to traditional linear
regression, the wrist-worn arm had significantly greater prediction
(R squared in waist-worn arm, 0.41, 95% CI= 0.395 to 0.420; R
squared in wrist-worn arm, 0.50, 95% CI= 0.491 to 0.515; P <
0.001). Prediction improved in this approach when ensemble
machine learning was used with greater prediction in the wrist-
worn arm (R squared in waist-worn arm, 0.66, 95% CI= 0.658 to
0.671; R squared in wrist-worn arm, 0.70, 95% CI= 0.694 to 0.714;
P < 0.001) (Fig. 2).

Binary prediction models
In the binary model that evaluated a worsening of glycemic
control, the standard approach with baseline information and
traditional logit regression found no difference in prediction
between arms (AUC in waist-worn arm, 0.55, 95% CI= 0.49–0.61;
AUC in wrist-worn arm, 0.61, 95% CI= 0.55–0.67; P= 0.15). In the
enhanced approach that added wearable data to the traditional
logit regression, the wrist-worn arm had significantly greater
prediction (AUC in waist-worn arm, 0.55, 95% CI= 0.48–0.61; AUC
in wrist-worn arm, 0.74, 95% CI= 0.68–0.79; P < 0.001). Prediction
improved in this approach when ensemble machine learning was
used with greater prediction in the wrist-worn arm (AUC in waist-
worn arm, 0.68, 95% CI= 0.61–0.74; AUC in wrist-worn arm, 0.85,
95% CI= 0.79–0.90; P < 0.001) (Fig. 3).
Results were similar in the binary model that evaluated

improvement of glycemic control with the greatest prediction in
the enhanced approach with wearable data that used ensemble

prediction (AUC in waist-worn arm, 0.72, 95% CI= 0.66–0.77; AUC,
0.84, 95% CI= 0.77–0.91; P= 0.01) (Fig. 4)
Results from all modeling approaches are available in Supple-

mentary Tables 3–17. Prediction in the enhanced models for the
wrist-worn arm was similar when excluding sleep and heart rate
data (Supplementary Tables 7, 12, 17) indicating that these
variables may not be responsible for improved prediction in this
arm. There were no reported adverse events in this trial.

DISCUSSION
In this randomized trial testing the use of data from different types
of wearables to improve the prediction of changes in glycemic
control, we found the best prediction when using ensemble
machine learning methods with data from wrist-worn wearables.
These findings were consistent whether we evaluated hemoglobin
A1c changes continuously or based on an increase or decrease of
≥ 0.3 (glycemic control worsened or improved by 5%).
Improvements in prediction among the wrist-worn wearables

arm were likely not due to the collection of sleep and heart rate
patterns as our analyses found prediction was similar when these
data were excluded. This indicates that superior prediction may
have been due to either lower missing data rates in the wrist-worn
arm or differences in accuracy between the two arms. On average,
participants in the wrist-worn arm had about 1000 steps more
than those in the waist-worn arm. This could have been because
they were more active or they wore their devices for longer
periods of the day and thereby had more accurate data collection.
It is also important to note that there was more of an imbalance in
the waist-worn arm in the proportion of participants with an

Fig. 1 Study flow diagram. Displayed is the flow of patients for each arm of the trial.
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increase vs. a decrease in a 5% change in hemoglobin A1c. Given
the smaller sample size of this trial, this imbalance could have
impacted prediction in this arm. Nonetheless, findings were
consistent across all modeling approaches and sensitivity
analyses.
Our study has limitations. First, it was conducted with a small

sample of patients at one health system and therefore these
approaches should be tested in other settings. Second, it was
conducted over a 6-month period and longer studies are needed
to determine if these shorter-term changes in hemoglobin A1c
lead to longer-term changes in developing diabetes. Third, we
only used hemoglobin A1c as the measure for glycemic control
and did use other measures such as fasting glucose levels. Fourth,
we did not capture information on diet which is an important
factor in the progression from prediabetes to diabetes. We also
did not utilize information on change in weight in the prediction
models because this information would not traditionally be
available from wearable devices alone. Future studies could
consider collecting diet and weight information in prediction
models.
Daily health behaviors contribute significantly toward longer-

term health outcomes6, but most prior models predicting

glycemic control among prediabetes have not accounted for
these factors3–5. Wearable devices and smartphones can accu-
rately track activity patterns and could help to address this
limitation7,8. In this randomized trial, we found that consistently in
all three models, prediction improved when (a) machine learning
was used vs. traditional regression, with ensemble methods
performing the best; (b) baseline information with wearable data
was used vs. baseline information alone; and (c) wrist-worn
wearables were used vs. waist-worn wearables.

METHODS
Study design
PREDICT-DM (Prediction using a Randomized Evaluation of Data collection
Integrated through Connected Technologies for Diabetes Mellitus) was a
randomized clinical trial conducted between July 9, 2018 and August 1,
2019 consisting of 6-month remote-monitoring period. The trial protocol
was approved by the University of Pennsylvania Institutional Review Board
and the study was pre-registered on clinicaltrials.gov (NCT03544320).
The study was conducted using Way to Health13, a research technology

platform at the University of Pennsylvania used previously for remote-
monitoring of activity patterns17–20. Participants used the study website to
create an account, provide informed consent online, and to complete
baseline and validated survey assessments. Participants authorized Way to
Health to collect activity data from the wearable devices for research
purposes. Each participant chose whether to receive regular study
communications by email, text message, or both. Participants were given
instructions on how to obtain baseline laboratory testing for hemoglobin
A1c and LDL-C (low-density lipoprotein cholesterol) at no cost to the
participant. All participants received $25 for completing baseline
laboratory testing, $50 for fully enrolling in the trial, and $100 for
completing the 6-month study, laboratory testing at 6 months, and end-of-
study surveys.

Participants
The electronic health record at Penn Medicine was used to identify adults
with a prior hemoglobin A1c of 5.7–6.4 who did not have a diagnosis of
diabetes or a past hemoglobin A1c ≥ 6.5. The study team conducted
outreach by email invitations to approximately 8000 patients and invited
them to learn more about the study online.
Participants were eligible if they were age 18 years or older, able to read

and provide informed consent to participate, owned a smartphone or
tablet compatible with the wearable device, and had baseline hemoglobin
A1c of 5.7–6.4 within the past 90 days. Participants were excluded if they
reported that they had any medical conditions or reasons that would
prohibit them from completing the 6-month study.

Randomization
After completing baseline laboratory testing, participants were randomized
electronically by stratifying on baseline HbA1c (5.7–6.0 or 6.1–6.4) and
using block sizes of two. All investigators, statisticians, and data analysts
were blinded to arm assignments until the study and analysis were
completed. Participants were randomized to either the waist-worn (Fitbit
Zip) or wrist-worn (Fitbit Charge HR 2) wearable arm. These devices were
mailed to participants with instructions on how to set them up and provide
access for the Way to Health research platform to obtain data on activity
patterns from Fitbit. The study team was available by phone to help
participants setup their devices.

Interventions and follow-up
All participants received a digital weight scale (Etekcity Inc). A baseline
weight was obtained by using Skype (Microsoft Inc.) or FaceTime (Apple
Inc.) to identify the participant and document their weight while stepping
on the scale.
Participants were asked to use the wearable devices throughout the

6-month study and to sync their wearable with the Fitbit smartphone
application daily. Participants who did not sync their devices for four
consecutive days were sent an automated reminder to sync data with the
smartphone application.
At 6 months, all participants were asked to complete end-of-study

laboratory testing at no cost to them including hemoglobin A1c and LDL-C

Table 2. Hemoglobin A1c and weight measures.

Outcome Measure Waist-Worn
Wearable

Wrist-Worn
Wearable

Hemoglobin
A1c (HbA1c)

Baseline

Patients, N (%) 93 (100.0) 93 (100.0)

HbA1c, mean (SD) 6.0 (0.2) 6.1 (0.2)

HbA1c < 5.7, N (%) 0 (0.0) 0 (0.0)

HbA1c 5.7 to
5.9, N (%)

35 (37.6) 29 (31.2)

HbA1c 6.0 to
6.4, N (%)

58 (62.4) 64 (68.8)

HbA1c > 6.4, N (%) 0 (0.0) 0 (0.0)

6 Months

Patients, n (%) 74 (79.6) 73 (78.5)

HbA1c, mean (SD) 6.0 (0.3) 6.1 (0.3)

HbA1c < 5.7, N (%) 6 (8.1) 2 (2.7)

HbA1c 5.7 to
5.9, N (%)

24 (32.4) 23 (31.5)

HbA1c 6.0 to
6.4, N (%)

41 (55.4) 42 (57.5)

HbA1c > 6.4, N (%) 3 (4.1) 6 (8.2)

Proportion with
HbA1c Increase of
≥0.3, N (%)

5 (6.8) 11 (15.1)

Proportion with
HbA1c Decrease of
≥0.3, N (%)

14 (18.9) 12 (16.4)

Weight, lbs. Baseline

Patients, n (%) 93 (100.0) 93 (100.0)

Lbs., mean (SD) 208.3 (51.3) 199.8 (53.4)

6 Months

Patients, N (%) 76 (81.7) 82 (88.2)

Lbs., mean (SD) 203.1 (46.5) 200.6 (56.1)

Proportion with
Weight
Increase, N (%)

42 (55.3) 44 (53.7)

Proportion with
Weight
Decrease, N (%)

33 (43.4) 35 (42.7)
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and an end-of-study weigh-in using Skype or FaceTime to capture a weight
from the digital scale.

Statistical analysis
The main outcome measure was the change in hemoglobin A1c. This was
assessed in three ways. First, we evaluated continuous changes in
hemoglobin A1c (primary outcome measure). Second, we evaluated a
worsening in glycemic control by creating a binary indicator to represent
whether the hemoglobin A1c level increased by 0.3 points (about a 5%
relative increase). Third, we evaluated an improvement in glycemic control

by creating a binary indicator to represent whether the hemoglobin A1c
level decreased by 0.3 points (about a 5% relative reduction).
We evaluated participants who had hemoglobin A1c levels collected at

baseline and after the 6-month remote-monitoring intervention. Of the
186 randomized, 39 were lost to follow-up and did not have an end-of-
study hemoglobin A1c. The final sample had 147 participants with
complete data (74 of 93 in waist-worn wearables arm and 73 of 93 in wrist-
worn wearables arm).
Based on previously published approaches3–5, we developed a standard

model that comprised data available at baseline as follows. Demographic

Fig. 2 Prediction of continuous change in hemoglobin A1c. Displayed by type of model (linear regression or ensemble machine learning),
use of data (with or without wearable data), and location of wearable (waist or wrist). Data presented are R squared and 95% confidence
intervals from the testing set.

Fig. 3 Prediction of hemoglobin A1c worsening. Represents prediction for an increase in hemoglobin A1c of ≥ 0.3. Displayed by type of
model (logistic regression or ensemble machine learning), use of data (with or without wearable data), and type of wearable (waist or wrist).
Data presented are Area Under the Curve (AUC) and 95% confidence intervals from the testing set.
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information was collected using surveys included age, gender, race/
ethnicity, education, marital status, and annual household income. Surveys
also asked participants if they actively smoked, had high blood pressure,
had high cholesterol, had a first degree relative with diabetes, if they
previously were aware they had prediabetes, and if they were actively
taking a medication to control their blood sugar. We used the electronic
health record to obtain the Charlson Comorbidity Index score which has
been shown to predict 10-year mortality and can be used for risk
adjustment21. Baseline hemoglobin A1c and weight were collected as
previously described.
An enhanced model used the same data as in the standard model but

also included information from the wearable devices as follows. Physical
activity data included mean daily steps and mean minutes of moderate-to-
vigorous physical activity (MVPA) for each of the 6 months of the study.
Heart rate data included mean monthly levels of daily resting heart rate
and daily minutes in which the heart rate was in the fatburn, cardio, or
peak zone. Sleep data including mean monthly level of daily time asleep,
number of times the participants awoke overnight, and sleep efficiency
(calculated as the total time asleep divided by the total time in bed after
initially falling asleep). To address missing wearable data, we used a two-
fold approach. First, we included dichotomous indicator variables for each
feature at participant-day level, which were aggregated by participant
before feeding into machine learning training stage. Second, we
conducted 10 imputations using the multiple imputations by chain
equations (MICE) with a mixed effect model to impute missing data for
better training effectiveness in tree-based algorithms preventing homo-
genous process in leaf-node developments for contextually heterogenous
feature22. Predictors for imputation included demographics, comorbidities,
baseline measures, and study month.
All the variables centered and standardized (i.e., 0 mean and 1 standard

deviation) and then principal component analysis was used to reduce
dimension size and engineer features for algorithm training23,24. After
evaluation, we selected 16 principal components which captured 83% of
covariance in the wrist-worn wearables arm and 91% of covariance in the
waist-worn wearables arm.
The sample was split for each study arm into training and testing folds

that were mutually exclusive at the participant level in a 3:2 ratio. To
address shortcomings of low power due to small sample sizes in training
sets, we applied kernel bootstrapping to each arm separately until 600
resamples (300 each arm) in the training set and 400 resample (200 each
arm) in the test set were obtained. This approach has been used in a
simulation study25 as well as empirical literature over various fields26,27.

We fit six different modeling techniques to the training set. This included
three regression-based models (ordinary regression without regularization,
ridge regression, and lasso regression), two tree-based models (random
forest and gradient boosting trees), and one ensemble model incorporat-
ing ridge regression, random forest and gradient boosting. For the
gradient boosting and random forest models, we used an exhaustive grid
search (i.e., all grid points tested) and 5-fold cross validation on the training
cohort to determine hyperparameters. For each of the different modeling
combinations—each model (standard and enhanced), each trial arm, and
each outcome (continuous HbA1c change and binary indicators of A1c
increased or decreased)—hyperparameters separately tuned. The area
under the Receiver Operating Characteristic curve and the R-squared score
were used in valuations of hyperparameter tuning for regression and
classification algorithms. Models were not recalibrated when applied to the
testing set.
To assess model performance, they were applied to the holdout testing

set. For the continuous model, we used the R squared score and estimated
95% confidence intervals using the corrected and accelerated boot-
strapping method with 1,000 iterations, as first suggested by Efron28 and
later validated by Carpenter and Bithell in the medical context29. Student’s
t test was used to assess for differences between comparison groups using
the 1,000 bootstraps. For the binary outcome models, we used the area
under the receiver operating characteristic curve (AUC). We used a
nonparametric comparison test for differences between comparison
groups30. In an exploratory analysis, we conducted prediction for the
wrist-worn arm but without including sleep and heart rate data which are
not collected by the waist-worn arm. This helps to understand whether it
was these data elements or other factors that explain differences in
prediction based on location site.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Data are not available because they contain sensitive patient information from
electronic health records. De-identified data and statistical code are available upon
request to the corresponding author.

Fig. 4 Prediction of hemoglobin A1c improvement. Represents prediction for a decrease in hemoglobin A1c of ≥ 0.3. Displayed by type of
model (logistic regression or ensemble machine learning), use of data (with or without wearable data), and type of wearable (waist or wrist).
Data presented are Area Under the Curve (AUC) and 95% confidence intervals from the testing set.
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