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Abstract

Background: Several human-restricted Gram-negative bacteria exploit carcinoembryonic antigen-related cell adhesion
molecules (CEACAMs) for host colonization. For example, Neisseria meningitidis engages these human receptors via outer
membrane proteins of the colony opacity-associated (Opa) protein family triggering internalization into non-phagocytic
cells.

Principal Findings: We report that a non-opaque strain of N. meningitidis selectively interacts with CEACAM1, but not other
CEACAM family members. Using functional assays of bacterial adhesion and internalisation, microscopic analysis, and a
panel of CEACAM1 deletion mutants we demonstrate that the engagement of CEACAM1 by non-opaque meningococci
occurs in a manner distinct from Opa protein-mediated association. In particular, the amino-terminal domain of CEACAM1 is
necessary, but not sufficient for Opa protein-independent binding, which requires multiple extracellular domains of the
human receptor in a cellular context. Knock-down of CEACAM1 interferes with binding to lung epithelial cells, whereas
chemical or pharmacological disruption of host protein glycosylation does not abrogate CEACAM1 recognition by non-
opaque meningococci. The previously characterized meningococcal invasins NadA or Opc do not operate in a CEACAM1-
dependent manner.

Conclusions: The results demonstrate a mechanistically distinct, Opa protein-independent interaction between N.
meningitidis and human CEACAM1. Our functional investigations suggest the presence of a second CEACAM1-binding
invasin on the meningococcal surface that associates with the protein backbone and not the carbohydrate structures of
CEACAM1. The redundancy in meningococcal CEACAM1-binding factors further highlights the important role of CEACAM
recognition in the biology of this human-adapted pathogen.
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Introduction

The genus Neisseria contains two human-specific pathogens,

Neisseria gonorrhoeae and Neisseria meningitidis, which occupy different

host niches and cause two distinct diseases. Whereas Neisseria

gonorrhoeae is the causative agent of gonorrhea and primarily infects

the urogenital tract causing localized inflammation, Neisseria

meningitidis is a frequent commensal of the upper respiratory tract,

which can cause life-threatening invasive infections, such as

septicaemia and meningitis [1,2]. To cause disease, meningococci

need to traverse the mucosal barrier and enter into the

bloodstream. There, the bacteria can multiply rapidly, as a

polysaccharide capsule and sialylation of lipooligosaccharide

renders them resistant against complement-mediated killing [3].

Furthermore, N. meningitidis has a propensity to tightly interact with

endothelial cells and to cross the blood-brain barrier, resulting in

fulminant meningococcal meningitis [4]. Clearly, colonization of

the mucosal epithelium is the first step for causing disease, followed

by invasion, intracellular persistence and transcytosis [5]. Known

meningococcal factors, which promote adhesion to epithelial cells

and presumably play a role in colonization are type IV pili, App

(adhesion and penetration protein) [6,7], MspA (meningococcal

serin protease A) [8], NhhA (Neisserial hia/hsf homologue) [9]

and HrpA [10]. Additionally, meningococci express a panel of

proteins that not only mediate adhesion, but also promote invasion

into host cells, such as colony opacity associated (Opa) proteins,

Opc and NadA [11]. NadA belongs to the oligomeric coiled-coil

(Oca) family of adhesins and seems to be expressed primarily in

hyper-virulent Neisseria meningitidis lineages, but not in Neisseria

gonorrhoeae [12]. The cellular receptor for NadA is still unknown –

however, there is evidence that the receptor is of protein nature

[13]. In contrast to NadA, Opc and Opa proteins belong to class 5

outer membrane proteins. Opc is a phase variable protein, and,

though the opc gene is found also in gonococci, the protein is only

expressed by meningococci [14]. Opc associates with several host

molecules including extracellular matrix proteins, integrins and

heparansulfate proteoglycans [15,16,17]. Unlike Opc, Opa

proteins are expressed in most meningococcal and gonococcal

isolates. Whereas the meningococcal genome encodes up to 4

distinct Opa proteins, gonococci harbour up to 11 copies of opa
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genes [18]. Expression of Opa proteins is subject to phase

variation due to a RecA-independent insertion or deletion of

pentanucleotide repeats within the leader peptide coding

sequence, which leads to translational reading frame shifts in the

constitutively transcribed opa genes [19]. In natural settings, phase

variation of individual Opa proteins results in a heterogenous

population of bacteria expressing none, one or multiple Opa

proteins. Upon culture on agar plates, colonies expressing distinct

Opa proteins can be differentiated by their phenotype. Besides a

few Opa protein variants that recognize cell surface expressed

heparansulphate proteoglycans (OpaHSPG) [20,21], most Opa

proteins of diverse strains of Neisseria meningitidis and Neisseria

gonorrhoeae recognize one or more members of the carcinoem-

bryonic antigen-related cell adhesion molecule (CEACAM) family

(OpaCEA) [22,23,24]. In particular, CEACAM1, CEACAM3,

CEA (the product of the CEACAM5 gene) as well as CEACAM6

have been reported to bind to neisserial OpaCEA proteins, and to

mediate internalization of the pathogens [25,26]. In this regard,

the molecular mechanism of CEACAM3-mediated uptake has

been studied in great detail and relies on tyrosine based sequence

motifs in the cytoplasmic domain of CEACAM3 [27,28].

Expression of CEACAM3 is restricted to human granulocytes

and enables these immune effector cells to phagocytose and

eliminate CEACAM-binding microbes [28,29,30]. In contrast to

the granulocyte-restricted CEACAM3, CEACAM1 has a broad

tissue distribution and is expressed on hematopoetic cells,

endothelial cells and epithelial cells [31,32]. CEACAM1 has

attracted particular interest as a homophilic and heterophilic cell-

cell adhesion molecule, that is involved in several important

cellular activities, such as immune modulation, insulin homeosta-

sis, neoangiogenesis, tissue homeostasis, and tumor progression

[33]. This receptor is expressed in several isoforms due to

alternative splicing of the CEACAM1 transcript. The major

isoforms are CEACAM1-4L and CEACAM1-4S that possess an

extracellular aminoterminal IgV-like domain (N), followed by three

IgC2-like domains (A1, B, A2) and a transmembrane domain.

CEACAM1-4L and CEACAM1-4S differ in their cytoplasmic

domain with CEACAM1-4S having only about ten amino acid

residues in the cytoplasm, whereas the long isoform (CEACAM1-

4L) has a 71 – 74 residue long cytoplasmic tail. Interestingly, both

the long and the short isoform of CEACAM1 internalize bacteria

with similar efficiency via a membrane microdomain-dependent

uptake mechanism [34]. Though CEACAM1 is a highly

glycosylated protein, CEACAM1 binding by neisserial OpaCEA

proteins is a direct protein-protein interaction that occurs at the

non-glycosylated CC’FG-face of the aminoterminal, IgV-like

domain. Therefore, the CEACAM1 aminoterminal, IgV-like

domain is necessary and sufficient for binding of OpaCEA

protein-expressing gonococci and meningococci [35]. On the

bacterial side it has been shown, that the two hypervariable

extracellular regions of OpaCEA proteins are responsible for

CEACAM recognition [36]. However, no clear consensus has

emerged, which amino acid sequence determines the adhesive

properties of neisserial OpaCEA proteins. Nevertheless, OpaCEA

proteins appear as the only neisserial invasins described so far,

which bind to CEACAM1.

In the present study we investigated the interaction of Neisseria

meningitidis strain MC58 with CEACAMs. Surprisingly, we

observed that a variant of Neisseria meningitidis MC58, which was

selected for the absence of Opa protein expression, was still able to

specifically interact with CEACAM1. Similar to the binding of

OpaCEA protein-expressing meningococci, the interaction with

non-opaque N. meningitidis was independent of post-translational

carbohydrate modification of the receptor. However, the amino-

terminal domain of CEACAM1 was necessary, but not sufficient

for this association. Heterologous expression of several known

meningococcal invasins did not result in CEACAM1-mediated

uptake. Therefore, our data suggest that Neisseria meningitidis MC58

possesses a novel, uncharacterized invasin, which mediates

CEACAM1-interaction.

Materials and Methods

Nessierial strains and growth conditions
OpaCEA protein-expressing, non-encapsulated Neisseria meningi-

tidis strain MC58 (DSiaD, DlgtA) (Nm OpaCEA) was obtained from

Matthias Frosch (Institut für Hygiene und Mikrobiologie,

Universität Würzburg, Germany). The Opa protein-negative

derivative of Neisseria meningitidis MC58 (Nm Opa-) was isolated

from Nm OpaCEA by visual screening for a non-opaque phenotype

using a binocular microscope. Opa52 protein-expressing, non-

piliated Neisseria gonorrhoeae strain MS11 (Ngo OpaCEA) and non-

opaque, non-piliated N. gonorrhoeae MS11 (Ngo Opa-) were kindly

provided by Thomas F. Meyer (Max-Planck-Institut für Infek-

tionsbiologie, Berlin, Germany). Both, Neisseria meningitidis and N.

gonorrhoeae were grown as described before [35] on GC agar plates

(Difco BRL, Paisley, UK) supplemented with vitamins at 37uC,

5% CO2. For infection, over-night grown bacteria were taken

from GC agar plates, suspended in PBS, and colony forming units

(cfu) were estimated by OD550 readings according to a standard

curve.

Epithelial and endothelial cell lines
Human embryonic kidney epithelial 293T cells (293 cells; ACC-

635, German collection of microorganisms and cell cultures,

DSMZ, Braunschweig, Germany) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) containing 10% calf serum.

African green monkey kidney cells (COS cells) and chinese

hamster ovary cells (CHO K1 cells), as well as stably transfected

COS-CEACAM1 and CHO K1-CEACAM1 cells, were obtained

from T.F. Meyer (MPI für Infektionsbiologie, Berlin, Germany)

and cultured in RPMI containing 10% fetal calf serum. A549

epithelial cells (human alveolar lung adenocarcinoma cells; ATCC

CCL87) were cultured in DMEM containing 10% fetal calf serum.

Human brain microvascular endothelial cells (HBMEC) [37] were

grown in endothelial cell medium (PAA, Pasching, Austria)

supplemented with L-glutamine. Cells were grown at 37uC in

5% CO2 and subcultured every 2–3 days.

Recombinant DNA constructs
Mammalian expression plasmids encoding cDNA of human

CEACAM3, CEA, CEACAM6, CEACAM7 or CEACAM8 have

been described previously [30]. HA-tagged versions of CEA-

CAM1, CEACAM1 lacking the IgC2-like domains A1, B, A2

(CEACAM1-N) and CEACAM1 lacking the complete cytoplasmic

domain (CEACAM1-DCT) were described previously [34,38].

CEACAM1-NA1B-variant and CEACAM1-NA1-variant were

generated from the HA-tagged version of CEACAM1 by SOEing

PCR [39]. For CEACAM1-NA1B-variant, cDNA for NA1B

domains was amplified by PCR with the primers CEACAM1-IF-

sense (59-GAAGTTATCAGTCGACACCATGGGGCACCTC-

TCAGCCCC-39) and C1-Chim-NA1B-TM-anti (59-TACGTT-

CAGCATGATGGGTGTGGTCCTGTTGCAGC-39). The tra-

nsmembrane together with the cytoplasmic domain of CEACAM1

was amplified with primers C1-Chim-NA1B-TM-sense (59-GCT-

GCAACAGGACCACACCCATCATGCTGAACGTA -39) and

HA-stop-CEACAM-IF-anti (59-ATGGTCTAGAAAGCTTTA-

TGCAGCGTAATCTGGAACGTCATATGG-39). For CEA-
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CAM1-NA1-variant, cDNA for NA1 domains was amplified

using primers CEACAM-IF-sense and C1-Chim-NA1-TM-anti

(59-TACGTTCAGCATGATGGGGTCACTGCGGTTCGCAC-

39). The transmembrane and the cytoplasmic domain of

CEACAM1 was amplified with the primers C1-Chim-NA1-

TM-sense (59-GTGCGAACCGCAGTGACCCCATCATGCT-

GAACGTA-39) and HA-stop-CEACAM-IF-anti. The two re-

sulting fragments from each construct were combined and

served as templates for SOEing PCR with primers CEACAM1-

IF-sense and HA-stop-CEACAM-IF-anti. The CEACAM8-N/1-

chimera was generated by SOEing PCR using CEACAM1 and

CEACAM8 as template, respectively. The aminoterminal

domain of CEACAM8 was amplified by PCR with the primers

CEA8-IF-sense (59-GAAGTTATCAGTCGACACCATGGG-

GCCCATCTCAGCC-39) and CEA8/1-Chimera-anti (59-GGG-

CTTGGGCAGCTCCGGATGTACGCTGAACTGG-39). The

extracellular IgC2, the transmembrane and the cytoplasmic

domains of CEACAM1 were amplified by PCR with the

primers CEA8/1-Chimera-sense (59-TTCAGCGTACATCCG-

GAGCTGCCCAAGCCCTCC -39) and HA-stop-CEACAM-IF.

The combined fragments served as templates for the SOEing

PCR as above. The cDNAs resulting from the SOEing PCRs

were cloned into pDNR-CMV using the In-Fusion PCR

Cloning Kit (Clonetech, Mountain View, CA).

The secreted CEACAM1 construct (sCEACAM1-N) encoding

the amino-terminal domain of CEACAM1 fused to GFP was

described by us [35]. The secreted CEACAM1 construct encoding

all extracellular domains of CEACAM1 (sCEACAM1) was

generated by PCR with primers CEACAM1-IF-sense and

CEA1-secret-prot-IF-anti 59-ATGGTCTAGAAAGCTTGGGT-

CGCTTTGGTTCTTACTGATTGG-39 using pcDNA CEA-

CAM1-HA as a template. The same template was used to

generate sCEACAM1-NA1B by amplification with primers

CEACAM1-IF-sense and CEA1-B-Dom-IF-anti 59-ATGGTC-

TAGAAAGCTTGGTGTGGTCCTGTTGCAGC-39. The am-

plified cDNAs of sCEACAM1 and sCEACAM1-NA1B were

cloned into pDNR-Dual using the In-Fusion PCR Cloning Kit

and transferred from pDNR-dual into pLPS39EGFP by Cre-

mediated recombination (Creator System, Clontech, Mountain

View, CA) allowing eukaryotic expression of secreted, GFP-tagged

proteins.

Expression of meningococcal proteins in E. coli
The OpaCEA- and the Opc-expressing Escherichia coli strains

were described previously [40,41] and kindly provided by T.F.

Meyer and Mark Achtman, respectively (Max-Planck Institut für

Infektionsbiologie, Berlin, Germany). In order to express NadA,

the nadA gene was amplified by PCR from chromosomal DNA of

Neisseria meningitidis MC58 using the primers NadA-MC58-sense

(59-CGGATCCCATGGGCAAACACTTTCCATCC-39, NcoI

site) and NadA-MC58-anti (59-CCCGCTCGAGTTACCAC-

TCGTAATTGACGCC-39, XhoI site). The PCR product was

digested with NcoI/XhoI and cloned in pET28a (Novagen).

In order to express Opa proteins, opa-genes (opa1 (ORF

NMB0442), opa2 (ORF NMB0926), opa3 (ORF NMB1465), opa4

(ORF NMB1636)) were amplified by PCR from chromosomal

DNA of Neisseria meningitidis MC58 and cloned in pET28a. In order

to suppress phase variation, the cloning strategy from Kupsch

et al. [40] was performed. Accordingly, opa1 and opa2 were

amplified using primers Opa-MC58-mitte-sense (59-ATCGC-

TTCTATTTAGCTCTTTATTGTTCAGTTCCCTACTCTT-

CAGCTCCGCAGCGCAGGCGGCAACTGA-39) and Opa1/2-

MC58-HindIII-anti (59-GGTCAAAGCTTTCAGAAGCGGTA-

GCG-39). The PCR product served as a template for a second

PCR using the primers OpaMC58(pET28)-NcoI-sense (59-G-

GCGCCCATGGAACCAGCCCCCAAAAAACCTTCTCTCC-

TGTTCTCATCGCTTCTATTTAGCTCTTTA-39) and Opa1/

2-MC58-HindIII-anti. Opa3 and opa4 were amplified using the

primers Opa-MC58-mitte-sense and Opa3/4-MC58-HindIII-anti

(59-GGTCAAAGCTTTCAGAAGTGGTAGCGCAT-39) follo-

wed by second amplification using the primers OpaMC58(pET)-

NcoI-sense and Opa3/4-MC58-HindIII-anti. The product of the

second PCRs from opa1, opa2, opa3 and opa4 were digested with

NcoI and HindIII and cloned in pET28a (Novagen). Differenti-

ation of opa1 and opa2, or opa3 and opa4 was achieved by

sequencing. The pET28a vectors encoding NadA or Opa proteins

were transformed in E. coli BL21 (DE3; Novagen), which was

induced for protein expression by IPTG. All E. coli strains were

cultured at 37uC in Luria-Bertani (LB) supplemented with

appropriate antibiotics.

Generation of a lentiviral vector encoding CEACAM1
shRNA

The plasmids pLKO.1 and plasmid pLKO.1 shControl [42]

were maintained in E. coli STBL4 (Invitrogen, Carlsbad, CA).

Using the algorithm AA(N19) (available online at http://jura.wi.

mit.edu/bioc/siRNAext/) we identified sequences that could

silence expression of human CEACAM1. According to this

prediction, primers shCEACAM1-sense 59-CCGGAATTGTAG-

GATATGCAATAGGCTCGAGCCTATTGCATATCCTACA-

ATTTTTTTG-39 and shCEACAM1-anti 59-AATTCAAAAA-

AATTGTAGGATATGCAATAGGCTCGAGCCTATTGCAT-

ATCCTACAATT-39 were synthesized, annealed and cloned into

the Agel and EcoRI site of pLKO.1 generating pLKO.1

shCEACAM1. The correct insertion of the shRNA cassette was

verified by sequencing. Production of infectious lentiviral particles

and transduction of cells was performed as described previously

[43]. Stably transduced cells were selected for 1 week in medium

containing 1 mg/ml puromycin.

Generation of CEACAM1-encoding lentiviral particles
To generate a CEACAM1-GFP encoding lentiviral vector,

human CEACAM1-4L was amplified from plasmid pcDNA3.1

CEACAM1-4L-HA [38] with the forward primer CEACAM1-

Nhe_sense 59-GAACTGCTAGCACCATGGGGCACCTCTC-

AG-39 and reverse primer CEACAM1-AgeI_reverse 59-GCTA-

GACCGGTATGTCATAGGGATACTGC -39. The resulting

fragment was cloned in the NheI and AgeI restriction sites of

lentiviral vector pLL3.7 [44] resulting in an in-frame fusion

between CEACAM1 and the GFP coding sequence. Production of

infectious lentiviral particles encoding CEACAM1-GFP or GFP

and transduction of cells was performed as described previously

[43].

Antibodies and reagents
Monoclonal anti-Opa and Opc antibodies (clone 4B12/C11

and clone B306, respectively) were obtained from Mark Achtman

(Max-Planck Institut für Infektionsbiologie, Berlin, Germany).

Monoclonal antibody against CEACAMs (anti-CEACAM; clone

IH4Fc; recognizing CEACAM1, CEACAM3, CEA, and CEA-

CAM6) was purchased from AL-Immunotools (Friesoythe,

Germany) and used for immunofluorescence staining and FACS

analysis. Monoclonal antibodies against CEACAMs (clone

D14HD11; recognizing CEACAM1, CEACAM3, CEA, and

CEACAM6) or CEACAM1-CEA (clone 4/3/17 recognizing

CEACAM1 and CEA) were purchased from Genovac (Freiburg,

Germany) and used for Western Blotting or FACS analysis,
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respectively. Monoclonal antibody against the HA-tag (anti-HA;

clone 12CA5) or against tubulin (clone E7) were purified from

hybridoma cell supernatants. Rabbit antiserum against N.

gonorrhoeae and N. meningitidis (IG-511) was custom-made by

Immunoglobe (Himmelstadt, Germany). Rabbit polyclonal anti-

GFP antibody was custom generated and purified (Animal

Research Facility, Universität Konstanz, Germany). Tunicamycin

was obtained from Sigma-Aldrich (Steinheim, Germany), Cy2-

labeled concanavalinA (ConA-Cy2) was purchased from Invitro-

gen (Karlsruhe, Germany).

Transfection of cells, cell lysis, and Western Blot
293 cells were transfected by calcium phosphate precipitation

using 4 mg of appropriate cDNA in each case. The transfection

efficiency ranged between 30 and 40% as reported [30] and

transfected 293 cells were employed in experiments 48 h after

transfection. Cell lysis and Western blotting were performed as

described [45]. Similar amounts of cell lysate were used for each

sample analysed by SDS-PAGE and Western Blotting.

Gentamicin protection assay
Gentamicin protection assays were conducted as described [28].

Cells were seeded at 46105 cells/well in 24 well plates coated with

fibronectin (4 mg/ml). A multiplicity of infection (MOI) of 40

bacteria per cell was routinely used, and after 2 hour of infection,

extracellular bacteria were killed by 45 min incubation in 50 mg/

ml gentamicin in DMEM. Then, cells were lysed with 1% saponin

in PBS for 15 min. The samples were diluted with PBS, and the

number of viable bacteria was determined by plating suitable

dilutions on GC agar. For inhibition studies, cells were treated

with appropriate reagents 5 min (NaIO4), 30 min (ConA-Cy2), or

24 h (tunicamycin) prior to infection. To verify the effect of the

treatment, cells were stained with ConA-Cy2 and analysed by flow

cytometry using a FACS Calibur (BD Bioscience, Heidleberg,

Germany).

Adherence assay
Cells were seeded and infected as described for gentamicin

protection assays. After the infection, the cells were gently washed

once, before the 293 cells were lysed by addition of 1% saponin in

PBS for 15 min. Cell-associated and intracellular bacteria were

suspended by vigorous pipetting, and colony forming units were

determined by plating of serial dilutions on GC agar. For

inhibition studies with NaIO4, cells were seeded in 24 well plates

coated with fibronectin (4 mg/ml) with 46105 cells/well. To

prevent cell detachment, cells were fixed with 4% PFA for 20 min

and washed, before treatment with NaIO4 for 5 min at 37uC in

the dark, followed by washing with PBS. After 2 h infection (MOI

40), 293 cells were lysed by addition of 1% saponin in PBS for

15 min. Bacteria attached to cells were suspended by vigorous

pipetting, and colony forming units were determined by plating of

serial dilutions on GC agar.

Immunofluorescence staining
For microscopic analysis of 293 cells, 56104 cells were seeded

onto poly-L-lysine- and fibronectin-coated (10 and 4 mg/ml,

respectively, in PBS) glass-coverslips in 24-well plates. For

microscopic analysis of A549 or HBMEC cells, 16104 cells were

seeded onto 0.1% gelatine-coated coverslips in 24-well plates. Cells

were infected with non-opaque (Nm Opa-) or Opa-expressing (Nm

OpaCEA) meningococci for 2 h at an MOI of 40 (293) or an MOI

of 30 (HBMEC, A549). Samples were washed once and fixed with

4% paraformaldehyde. After three washes with PBS, samples were

incubated in blocking buffer (PBS, 10% fetal calf serum) for 5 min

and then stained for extracellular bacteria with a polyclonal anti-

Neisseria antibody (diluted 1:100 in blocking buffer). In the case of

CEACAM1-transfected 293 cells, CEACAM1 was detected by

addition of monoclonal anti-CEACAM antibody (clone IH4Fc

diluted 1:100 in blocking buffer). After 1 hour, samples were

washed twice, treated with blocking buffer (5 min) and incubated

for 45 min with Cy5-coupled goat anti rabbit (for bacterial

staining) and, if appropriate, with Cy3-coupled goat anti mouse

(for CEACAM1 staining) (dilution 1:100). Following two washes

samples were incubated for 20 min with 0.1% Triton-X100 to

permeabilize cellular membranes. After three washes and 5 min

blocking in blocking buffer, samples were incubated with a

polyclonal anti-Neisseria antibody (diluted 1:100 in blocking

buffer) for 1 hour, to detect intracellular and extracellular bacteria.

Samples were washed twice, treated with blocking buffer (5 min)

and incubated for 45 min with Cy2-coupled (293 cells) or Cy3-

coupled (A549, HBMEC) goat anti rabbit antibody. Following

three washes, samples were embedded in mounting medium

(Dako, Glostrup, Denmark).

All samples were analysed with a Leica TCS SP5 confocal laser

scanning microscope (Leica Microsystems, Wetzlar, Germany).

Fluorescence signals of triple-labelled specimens were serially

recorded with appropriate excitation and emission filters to avoid

bleed-trough. Images were digitally processed with Photoshop CS

(Adobe Systems, Mountain View, CA) and merged to yield

pseudo-coloured pictures.

Results

CEACAM1 mediates association and invasion of Opa
protein-negative meningococci

Neisseria meningitidis possesses a repertoire of virulence-associated

surface structures, which promote bacterial adherence to and

invasion into mammalian cells. To date, OpaCEA proteins are the

only neisserial proteins known to exploit members of the

CEACAM-family to attach to and gain entry into the cell.

The current study was initiated with the aim to compare

OpaCEA protein-mediated host cell interaction between gonococci

and meningococci. Therefore, we isolated an Opa protein-

negative variant of Neisseria meningitidis MC58 by visual colony

screening that should be used as a negative control in our studies.

Indeed, the absence of Opa protein expression in this strain could

be verified by Western blot using an anti-Opa protein antibody

(Fig. 1A). For the invasion assay, 293 cells were transiently

transfected with a CEACAM1-encoding construct or a control

vector (pcDNA) and CEACAM1 expression was demonstrated by

Western blotting (Fig. 1B). Two days after transfection, cells were

infected with Opa protein-expressing Neisseria meningitidis (Nm

OpaCEA) or N. gonorrhoeae (Ngo OpaCEA) as well as with non-

opaque strains (Nm Opa-, Ngo Opa-). Following the infection, the

amount of viable internalized bacteria was determined by

gentamicin protection assays. As expected, OpaCEA protein-

expressing gonococci and meningococci were taken up by

CEACAM1-expressing cells, whereas there was no invasion of

non-opaque gonococci (Fig. 1C). Surprisingly, infection of

CEACAM1-transfected cells with Opa protein-negative meningo-

cocci resulted in bacterial internalization into the cells. The

amount of internalized Opa protein-negative meningococci

(276104 cfu/ml) was lower than the amount of internalized

OpaCEA-positive meningococci (506104 cfu/ml), but was compa-

rable to the uptake of OpaCEA-positive gonococci (216104 cfu/ml)

by CEACAM1-expressing cells (Fig. 1C). Clearly, control

transfected cells, that did not express CEACAM1 on their surface,
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were not able to internalize any of the bacterial variants under

these conditions demonstrating that uptake of Opa protein-

negative meningococci occurs only in the presence of CEACAM1.

To further analyse this interesting effect, we performed adhesion

assays with Opa-negative meningococci and CEACAM1-trans-

fected cells. In line with their ability to invade in a CEACAM1-

dependent manner, the Opa protein-negative meningococci

adhered to CEACAM1-expressing cells (Fig. 1D).

These results were unexpected, as Opa proteins are the only

known neisserial ligands for CEACAMs. Clearly, the visually selected

non-opaque strain of N. meningitidis MC58 did not show reactivity in

Western Blots with a monoclonal a-Opa protein antibody that detects

a conserved epitope in neisserial Opa proteins (Fig. 1A). However, the

antigenic properties of Opa protein(s) could have changed in this

strain, potentially resulting in expression of Opa proteins not

recognized by the anti-Opa-antibody. To investigate, whether this

is the case, all opa genes (opa1, opa2, opa3, opa4) encoded in the genome

of this MC58-derived strain were cloned under the control of an

IPTG inducible prokaryotic expression vector and overexpressed in

E. coli. The bacterial lysates were analysed for Opa protein-expression

using the same monoclonal anti-Opa-antibody. Importantly, expres-

sion of all Opa-proteins derived from Neisseria meningitidis MC58

(Opa1, Opa2, Opa3, or Opa4) could be detected in IPTG-induced E.

coli strains (Fig. 1E) suggesting that the used monoclonal anti-Opa-

antibody can recognize all Opa-proteins encoded in N. meningitidis

MC58. Taken together, even though the isolated meningococcal

strain does not express Opa proteins, it exploits CEACAM1 for

adhesion to and invasion into the cell. Therefore, Opa-negative

meningococci harbour an additional adhesin mediating interaction

with CEACAM1.

CEACAM1 – but not other members of the CEACAM
family - mediates uptake of Opa protein-negative
meningococci

Previous results indicated that Opa proteins of pathogenic

Neisseria can recognize several members of the CEACAM family,

namely CEACAM1, CEACAM3, CEA and CEACAM6. There-

fore we wondered, whether the Opa protein-negative meningo-

coccal strain can also bind to additional members of the

CEACAM-family. Accordingly, 293 cells were transfected with

plasmids encoding CEACAM1, CEACAM3, CEA, CEACAM6,

CEACAM7, CEACAM8 or with the empty control vector

(pcDNA) and infected for two hours with either non-opaque

(Nm Opa-) or Opa protein-expressing N. meningitidis (Nm OpaCEA),

respectively. Gentamicin protection assays showed, that CEA-

CAM1, but not other members of the CEACAM-family, was able

to mediate internalization of Opa protein-negative meningococci

(Fig. 2A). In contrast, OpaCEA protein-positive meningococci were

internalized by CEACAM1- and CEACAM6-expressing cells

(Fig. 2B). Neither Opa-positive, nor Opa-negative meningococci

were internalized by 293 cells transfected with an empty control

vector (pcDNA) (Fig. 2A and B). These results suggest, that Opa-

negative meningococci specifically interact with CEACAM1, but

do not recognize other members of the CEACAM family.

Microscopic analysis of CEACAM1-mediated uptake of
Opa protein-negative meningococci

To further confirm that CEACAM1 mediates internalization of

Opa protein-negative meningococci, we performed confocal laser

scanning microscopy to unambiguously detect intracellular

bacteria. Accordingly, 293 cells were transfected with CEACAM1

or the empty control vector (pcDNA). Cells were infected for two

hours with Opa protein-negative (Nm Opa-) or Opa protein-

positive meningococci (Nm OpaCEA) and fixed. Samples were

stained to distinguish between intracellular bacteria (stained with

Cy5) and extracellular bacteria (stained with Cy2 and Cy5), and to

detect CEACAM1. Confocal laser scanning microscopy revealed

that both, Opa protein-positive and -negative meningococci

strongly adhered to CEACAM1-expressing cells (Fig. 3A). In

addition, CEACAM1-transfected cells mediated uptake of both,

Opa protein-positive and Opa protein-negative meningococcal

strains. As expected, control transfected cells (pcDNA) did not

show association with the bacteria. Taken together, these data

corroborate the findings of the adhesion assays and gentamicin

protection assays and demonstrate that CEACAM1 can mediate

uptake of Opa protein-negative meningococci.

Different epithelial cell lines mediate CEACAM1-
dependent internalization of Opa protein-negative
meningococci

A CEACAM1-mediated uptake of Opa protein-negative N.

meningitidis MC58 has not been observed previously, when

CEACAM1-transfected CHO cells were used [46]. To exclude

that internalization of non-opaque meningococci via CEACAM1

is an effect specific for transfected 293 cells, additional cell lines,

such as CHO K1 cells and COS7 cells were used for CEACAM1-

dependent internalization studies. Similar to 293 cells, these cells

do not express any CEACAM family members endogenously. To

analyze CEACAM1-mediated uptake, COS cells or CHO cells

stably expressing human CEACAM1 or transfected with a control

vector (Fig. 3B) were infected with Opa protein-negative

meningococci at an MOI of 40. After two hours of infection, the

amount of intracellular viable bacteria was determined by

gentamicin protection assays. Both, CEACAM1-expressing

CHO cells and CEACAM1-expressing COS cells displayed

internalization of Opa protein-negative meningococci, while for

control transfected cells, barely any intracellular meningococci

were observed (Fig. 3C). Therefore, CEACAM1-mediated uptake

of Opa protein-negative meningococci is not restricted to 293 cells

and can be mediated by several CEACAM1-expressing cell lines.

Non-opaque meningococci bind in a CEACAM1-
dependent manner to cells derived from meningococcal
target tissues

Meningococci colonize the mucosal surface of the nasopharynx

and can interact with endothelial cells of the blood-brain barrier

during meningococcal disease [4]. To test, if Opa protein-negative

meningococci are able to interact with CEACAM1 present on

target tissues, we employed the adenocarcinoma cell line A549

derived from lung alveolar epithelium. These cells endogenously

express CEACAM1, CEA and CEACAM6 [47] (Fig. 4A). To

modulate CEACAM1 levels in these cells, we transduced A549 cells

with a lentiviral vector encoding short hairpin RNA (shRNA)

directed against human CEACAM1 (shCEACAM1). Indeed,

CEACAM1 expression was suppressed by more than 50% in the

shCEACAM1 cells compared to untransduced cells or compared to

A549 cells transduced with a non-targeted, irrelevant shRNA

(shControl) (Fig. 4A; left panel). Despite the remaining presence of

CEA and large amounts of CEACAM6 (Fig. 4A; right panel),

knockdown of CEACAM1 in shCEACAM1-transduced A549 cells

led to a significantly reduced cell association by non-opaque

meningococci (Fig. 4B and C).

To further analyse the role of CEACAM1 recognition for target

cell interaction, we employed human microvascular endothelial

cells (HBMECs). Unstimulated primary endothelial cells do not

express CEACAMs, but a strong upregulation of CEACAM1 is
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observed upon stimulation with pro-inflammatory cytokines such

as TNFa, which is induced during meningococcal infection [48].

Accordingly, we transduced HBMECs with a lentiviral vector

encoding CEACAM1-GFP or a control virus encoding GFP.

Endothelial cells were infected with opaque or non-opaque

meningococci and the cell association and internalization was

evaluated by immunofluorescence microscopy (Fig. 4D). Both cell-

association and internalization of meningococci were strongly

increased upon CEACAM1 expression and this was true for

OpaCEA protein-expressing and non-opaque bacterial variants

(Fig. 4D and E). Internalization of meningococci occurred to a

significant degree only in cells expressing CEACAM1, again

Figure 1. Opa protein-negative meningococci associate with and invade into CEACAM1-expressing cells. (A) Lysates of Opa protein-
positive and Opa protein-negative N. meningitidis MC 58 (Nm) and N. gonorrhoeae MS11 (Ngo) were analysed for Opa protein expression using a
monoclonal anti Opa protein-antibody. (B) 293 cells were transfected with an empty control vector (pcDNA) or a CEACAM1-encoding vector. Whole
cell lysates (WCLs) of the transfected cells were analysed by Western blotting with a CEACAM-specific monoclonal antibody. (C) 293 cells as in (B)
were infected for 2 h with Opa protein-negative (Nm Opa-) or Opa protein-positive meningococci (Nm OpaCEA) or the corresponding gonococcal
strains (Ngo Opa- or Ngo OpaCEA, respectively). The number of internalised bacteria was determined by gentamicin protection assays. Results
represent mean 6 standard deviation of three independent experiments done in triplicate. Shown is the percentage of recovered bacteria compared
to CEACAM1-expressing cells (left axis) as well as the absolute number of internalized colony forming units (right axis). (D) 293 cells as in (B) were
infected for 2 h with Opa protein-negative meningococci (Nm Opa-). The number of cell-associated bacteria was determined by an adherence assay.
Results represent mean 6 standard deviation of one representative experiment done in triplicate. Shown is the percentage of cell-associated bacteria
compared to CEACAM1-expressing cells (left axis) as well as the absolute number of cell-associated colony forming units (right axis). (E) The four opa-
genes encoded in the genome of the Opa protein-negative meningococcal strain were cloned in E. coli. Expression of recombinant Opa1, Opa2,
Opa3, or Opa4 was induced or not by IPTG and bacterial lysates were analysed for Opa protein-expression as in (A).
doi:10.1371/journal.pone.0014609.g001
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demonstrating that similar to OpaCEA protein-expressing patho-

gens, non-opaque N. meningitidis can interact with target cells in a

CEACAM1-dependent manner (Fig. 4D–F).

CEACAM1-mediated uptake of Opa protein-negative
meningococci is independent of carbohydrate moieties

CEACAM1 is a highly glycosylated receptor. Whereas patho-

gens such as OpaCEA protein-expressing Neisseriae, Moraxella

catarrhalis, or Haemophilus influenzae recognize protein determinants

of CEACAM1 [49,50,51,52], several enterobacteria associate with

carbohydrate moieties of the receptor [53,54]. As Opa protein-

negative meningococci must employ a novel adhesin for

CEACAM1 binding, we were interested whether glycosylation of

CEACAM1 is essential for this interaction. To influence the level

of receptor glycosylation, CEACAM1 transfected cells or control

transfected cells were pre-treated with tunicamycin, an inhibitor of

N-glycosylation, or NaIO4, which mediates oxidation of carbohy-

drate cis-diol-groups to aldehyds. Untreated cells served as a

negative control. The decrease in surface glycosylation after pre-

treatment was investigated by flow cytometry using the Cy2-

labeled plant lectin concanavalin A (ConA-Cy2), which recognizes

a-mannopyranosyl- and a-glucopyranosyl-residues. Indeed, pre-

treatment of cells with tunicamycin (2 mg per 46105 cells) as well

as treatment of cells with the oxidant NaIO4 (50 mM) strongly

reduced the presence of ConA-binding carbohydrate moieties

(Fig. 5A and C). Furthermore, NaIO4 treatment increased the

mobility of CEACAM1 upon SDS-gel electrophoresis demon-

strating the successful oxidation of terminal carbohydrate residues

(Fig. 5C). However, treatment of CEACAM1-expressing cells with

tunicamicin or NaIO4 did not influence binding and internaliza-

tion of Opa protein-negative meningococci (Fig. 5B and D). As

observed before, there was no internalization in control transfected

cells (Fig. 5B and D). To further analyse the involvement of

carbohydrate moieties in CEACAM1 mediated uptake, we

blocked surface-located a-mannopyranosyl- and a-glucopyrano-

syl-residues by preincubation of CEACAM1-transfected cells with

ConA-Cy2 at a concentration of 15 mg/1.56106 cells. This

concentration was sufficient to saturate all ConA-interacting

carbohydrate-structures located on the surface of the cells

(Fig. 5E). Again, blocking of surface-located a-mannopyranosyl-

and a-glucopyranosyl-residues did not influence CEACAM1-

mediated uptake of Opa protein-negative meningococci (Fig. 5F).

Together, these data suggest, that CEACAM1-mediated uptake of

Opa protein-negative meningococci does not involve carbohydrate

structures of the receptor.

CEACAM1-mediated uptake of Opa protein-negative
meningococci requires several extracellular domains of
the receptor

Human CEACAM1 is a receptor recognized by diverse

adhesins of several bacterial pathogens [33]. For Opa protein-

mediated interactions, the amino-terminal domain of CEACAM1

is necessary and sufficient for binding. Therefore, we were

interested, which of the extracellular domains of the receptor

were needed for association with the putative CEACAM1-binding

adhesin of Opa-negative meningococci. Accordingly, we generat-

ed a panel of CEACAM1-constructs with a varying number of

extracellular domains (Fig. 6A). The constructs encompassed the

IgV-like amino-terminal domain (N) of CEACAM1, followed by

none (CEACAM1-N), one (CEACAM1-NA1), or two (CEA-

CAM1-NA1B) IgC2-like extracellular domains of the receptor,

fused to the transmembrane and cytoplasmic domain. In addition,

a chimeric protein composed of the amino-terminal domain of

CEACAM8 – which does not interact with any CEACAM-

binding adhesin or with Opa protein-negative meningococci –

followed by the IgC2-like, transmembrane and cytoplasmic domain

of CEACAM1 (CEACAM8-N/1). All constructs contained a

carboxy-terminal HA-tag for detection. Similar to wildtype

CEACAM1 and CEACAM1 lacking the cytoplasmic domain

(CEACAM1-DCT) these constructs were expressed in 293 cells

with the expected size (Fig. 6B). Gentamicin protection assays

revealed that neither Opa protein-positive, nor Opa protein-

negative meningococci were internalized by the CEACAM8-N/1-

chimeric protein, demonstrating the importance of the amino-

terminal domain of CEACAM1 for bacterial internalization in

both cases (Fig. 6C and D). However, the CEACAM1 mutants

with deletions in the extracellular IgC2 domains showed a distinct

pattern of interaction with either Opa protein-positive or Opa

protein-negative N. meningitidis. Whereas opaque meningococci

were internalized to the same extent by all CEACAM1 constructs

Figure 2. CEACAM1 – but not other members of the CEACAM family - mediates uptake of Opa protein-negative meningococci. 293
cells were transfected with constructs encoding CEACAM1, CEACAM3, CEA, CEACAM6, CEACAM7, CEACAM8 or an empty control plasmid (pcDNA).
Two days after transfection cells were infected for 2 h with (A) Opa protein-negative meningococci (Nm Opa-) or (B) Opa protein-positive
meningococci (Nm OpaCEA) and the number of internalised bacteria was determined by gentamicin protection assays. Results represent mean 6
standard deviation of three independent experiments done in triplicate. Shown is the percentage of recovered bacteria compared to CEACAM1-
expressing cells.
doi:10.1371/journal.pone.0014609.g002
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harbouring the amino-terminal domain of CEACAM1 (CEA-

CAM1, CEACAM1-NA1B-variant, CEACAM1-NA1-variant,

CEACAM1-N-variant, CEACAM1-DCT), internalization of

Opa protein-negative meningococci was strongly affected by a

reduction in the number of IgC2-like extracellular domains of

CEACAM1 (Fig. 6C and D). These data demonstrate that optimal

CEACAM1-mediated invasion of Opa protein-negative meningo-

cocci seems to depend on multiple extracellular domains of this

receptor. The amino-terminal domain of CEACAM1 is necessary

(no invasion via CEACAM8-N/1-chimera), but not sufficient (no

invasion via CEACAM1-N-variant) for efficient uptake of Opa

protein-negative meningococci.

Soluble CEACAM1 extracellular domains do not bind to
non-oapque meningococci

CEACAM1 forms parallel cis-dimers in the membrane that are

supported by the extracellular IgC2-like domains [55]. To test, if such

a particular tertiary and quaternary structure of CEACAM1 might

be required to allow binding of Opa protein-negative meningococci,

soluble forms of CEACAM1 (sCEACAM1) that encompass either

one or multiple extracellular domains were generated (Fig. 6E). These

proteins were expressed in 293 cells and the cell-free supernatants

were used in pull-down analyses with either non-opaque or OpaCEA

protein-expressing meningococci or the corresponding gonococcal

variants. As expected, both OpaCEA protein expressing neisserial

strains associated with all soluble CEACAM1 variants (Fig. 6E).

However, neither non-opaque gonococci nor non-opaque meningo-

cocci were able to precipitate any of the CEACAM1 proteins in this

assay format (Fig. 6E). These results are in agreement with previous

analyses using non-opaque meningococci or gonococci together with

soluble CEACAM1 receptor domains [35]. Furthermore, these

results indicate that the overall tertiary and/or quaternary structure

of CEACAM1 on the cell surface is critical to provide a binding

interface for non-opaque meningococci.

Figure 3. Different epithelial cell lines mediate CEACAM1-dependent internalization of Opa protein-negative meningococci.
(A) Microscopic analysis of CEACAM1-mediated uptake in 293 cells. 293 cells were transfected with HA-tagged CEACAM1 or control vector (pcDNA).
Transfected cells were infected for 2 h with Opa protein-negative (Nm Opa-) or Opa protein-expressing meningococci (Nm OpaCEA). Extracellular
bacteria (blue) were stained using polyclonal anti-Neisseria antibody in combination with a Cy5-conjugated secondary antibody. After cell
permeabilization, bacteria were stained again using polyclonal anti-Neisseria antibody in combination with a Cy2-conjugated secondary antibody
(green) and CEACAM1 was stained using a monoclonal antibody against the HA-tag (red). Extracellular bacteria are marked by simultaneous Cy2 and
Cy5 (arrowhead, blue and green), whereas intracellular bacteria are only stained by Cy2 (small arrow, green). Bars represent 10 mm. (B) Untransfected
cells or CEACAM1-transfected 293 cells, CHO K1 cells and CHO cells were lysed and whole cell lysates (WCLs) were analysed by Western blotting using
a monoclonal anti-CEACAM antibody. (C) CEACAM1-mediated uptake by different epithelial cells. Cells as in (B) were infected for 2 h with Opa
protein-negative meningococci. The number of internalized bacteria was determined by gentamicin protection assays. Bars represent mean 6
standard deviation of three independent experiments done in triplicate. Values are expressed as the percentage of internalized bacteria compared to
CEACAM1.
doi:10.1371/journal.pone.0014609.g003
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Figure 4. Non-opaque meningococci bind in a CEACAM1-dependent manner to cells derived from meningococcal target tissues.
A) A549 cells were transduced with the indicated lentiviral vectors encoding an irrelevant shRNA (shControl) or a CEACAM1-targeted shRNA
(shCEACAM1) or were left without virus. Transduced cells were analysed by flow cytometry with a CEACAM1/CEA-specific monoclonal antibody
(clone 4/3/17). The negative control was stained with the Cy2-coupled secondary antibody only (gray curve). Whole cell lysates (WCL) of the cells
were probed by Western blotting with monoclonal CEACAM-antibody (clone D14HD11; upper panel) or with monoclonal anti-tubulin antibody
(lower panel). Bands derived from CEA, CEACAM1, or CEACAM6 are indicated on the right side. B) shControl- or shCEACAM1-transduced A549 cells
were infected with non-opaque meningococci at an MOI of 30 for 3 h. Cell-associated bacteria were stained with a polyclonal antiserum (green) and
cells were visualized by differential interference contrast (transmission). Bars represent 10 mm. C) Cell-associated bacteria were detected as in B) and
counted. The line represents the median number of cell-associated bacteria and boxes represent the 25%/75% percentile from 30 cells in each
sample. Groups were compared by Wilcoxon’s signed rank test, * p,0.05. D) Human brain microvascular endothelial cells (HBMECs) were transduced
with a GFP- or a CEACAM1-GFP encoding lentivirus. Transduced cell populations were infected with OpaCEA-expressing (Nme OpaCEA) or non-opaque
(Nme Opa-) N. meningitidis at an MOI of 30 for 3 h. Samples were differentially stained with polyclonal antiserum against N. meningitidis to
differentiate extracellular (arrowhead) and intracellular (small arrow) bacteria. Transduced cells are detected by their GFP signal. Bars represent 10 mm.
E) Samples from D) were enumerated for intracellular meningococci as in C). F) Whole cell lysates (WCL) of virus transduced cells from D) were
probed with an anti-GFP antibody to demonstrate expression of CEACAM1-GFP.
doi:10.1371/journal.pone.0014609.g004
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Figure 5. CEACAM1-mediated uptake of non-opaque meningococci is independent of receptor glycosylation. (A–F) 293 cells were
transfected with an empty control vector (pcDNA) or HA-tagged CEACAM1. (A, B) Cells were treated with tunicamicin (+Tun; 2 mg/ml) 24 h prior to
infection or were left untreated (-Tun). A) Cells were stained with concanavalin-Cy2 (ConA-Cy2) to label surface glycoproteins or were left unstained
and then analysed by flow cytometry. B) Cells were infected with Opa-negative meningococci and the number of internalized bacteria was
determined by gentamicin protection assays. Results represent mean 6 standard deviation of three independent experiments done in triplicate and
show the percentage of recovered bacteria in comparison to CEACAM1-expressing cells in the absence of Tunicamicin. (C, D) Transfected 293 cells
were fixed and incubated with NaIO4 (50 mM) for 5 min at 37uC in the dark or were left untreated. As a further control, unfixed cells, which were not
treated with NaIO4, were used. C) Cells were analysed for surface glycoproteins as in A) and whole cell lysates (WCL) of pcDNA or CEACAM1-HA
transfected cells with or without NaIO4 treatment were probed with anti-HA-tag antibodies. The size change upon NaIO4 treatment is indicated by
arrowheads. D) Cells were infected with Opa protein-negative meningococci and the number of internalized bacteria was determined as in B). (E, F)
Transfected 293 cells were incubated with the indicated concentrations of concanavalin-Cy2 (ConA-Cy2) to saturate a-mannopyranosyl- and a-
glucopyranosyl residues. E) Cells were analysed by flow cytometry. F) Cells were treated (+ConA) or not (-ConA) with 15 mg ConA-Cy2, infected with
Opa protein-negative meningococci and employed in gentamicin protection assays as in B).
doi:10.1371/journal.pone.0014609.g005
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Figure 6. CEACAM1-mediated uptake of Opa-negative meningococci requires multiple extracellular immunoglobulin domains.
(A) Schematic drawing of CEACAM1, CEACAM1-mutants and the CEACAM8/CEACAM1 chimera. CEACAM1-mutants (CEA1-NA1B, CEA1-NA1, CEA1-N)
are composed of an amino-terminal IgV-like domain (N) and a variable number of IgC2-like domains (A1, B, or A2). The CEA1-DCT mutant lacks the
cytoplasmic domain and in the CEACAM8/CEACAM1 chimera (CEA8N/1) the IgV-like, amino-terminal domain of CEACAM1 is exchanged with the
corresponding domain of CEACAM8. All constructs harbour a carboxy-terminal HA-tag. (B) Expression of CEACAM1, CEACAM1-mutants and CEA8N/1
in whole cell lysates (WCLs) of transfected 293 cells is analysed by Western blotting with a monoclonal anti-HA-tag antibody. (C, D) 293 cells
transfected with the indicated constructs were infected for 2 h with C) Opa protein-negative meningococci (Nm Opa-) or D) with Opa protein-
positive meningococci (Nm OpaCEA). Internalised bacteria were determined by gentamicin protection assays. Results represent mean 6 standard
deviation of three independent experiments done in triplicate and show the percentage of internalized bacteria compared to CEACAM1. (E) The
indicated soluble GFP-tagged CEACAM1 variants were produced in 293 cells and the cell culture supernatants were used in pull-down assays with
Opa protein-negative (Opa-) or Opa protein-positive (OpaCEA) meningococci (Nm) or gonococci (Ngo). Precipitates were probed with polyclonal anti-
GFP antibody to detect bacteria-associated CEACAM1 (left panel). The presence of equal amounts of the sCEACAM1 variants in the supernatants
(Supe) was verified by blotting with GFP-antibodies (middle panel). The Opa phenotype of the used bacteria was analysed by Western blotting with
monoclonal anti- Opa protein antibody (right panel).
doi:10.1371/journal.pone.0014609.g006

CEACAM1-Binding Meningococci

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e14609



Known meningococcal invasins do not contribute to
CEACAM1-mediated internalization of non-opaque
meningococci

Several adhesive proteins of meningococci have been identified

[11]. Whereas type IV pili, App, MspA, HrpA and NhhA promote

adherence to host cells, Opa proteins, Opc and NadA have been

shown to additionally trigger entry into mammalian cells and to

function as invasins. In a candidate approach to elucidate the

CEACAM1-directed invasin of non-opaque meningococci, we

analysed the contribution of NadA and Opc in this internalization

process.

Therefore, CEACAM1 transfected cells or control transfected

cells were infected for two hours with E. coli expressing either

NadA or Opc or the parental E. coli strain at an MOI of 40.

Bacterial uptake was then evaluated by gentamicin protection

assays (Fig. 7A). Cells infected with OpaCEA protein-expressing

gonococci served as a positive control (Fig. 7B). The expression of

the invasins in the E. coli strains was confirmed by Western blot

(Opc) or by SDS-PAGE (NadA) (Fig. 7C). As expected, infection of

CEACAM1-transfected cells with OpaCEA protein-expressing

bacteria resulted in efficient internalization (Fig. 7B). Infection of

293 cells with E. coli NadA or the E. coli control strain did not

result in bacterial internalization and this was unchanged upon

CEACAM1 expression (Fig. 7A), suggesting that the NadA

receptor is not present in 293 cells and that CEACAM1 is not

recognized by this bacterial invasin. In contrast, Opc-expressing E.

coli invaded control cells as well as CEACAM1-expressing cells at

similar levels (Fig. 7A). Clearly, the lack of increased invasion of

Opc E. coli into CEACAM1-expressing cells indicates that this

invasin is not involved in CEACAM1-mediated uptake. Therefore,

these data suggest that N. meningitidis MC58 expresses a novel,

undescribed invasin, which utilizes CEACAM1 as a cellular

receptor to gain entry into mammalian cells.

Discussion

Bacterial adhesion to epithelial cells is of prime importance in

mucosal colonization. However, binding of bacterial adhesins to

host receptor molecules may also lead to tissue invasion, a likely

pre-requisite for dissemination. In the case of N. meningitidis, an

array of outer membrane molecules, such as Opc, NadA and Opa

proteins can promote bacterial invasion into host cells [11]. Opa

proteins bind to members of the CEACAM family and have been

the only known neisserial ligands for these cellular receptors [32].

In the current study we performed invasion studies with an Opa

protein-negative derivative of the meningococcal strain N.

meningitidis MC58. Surprisingly, we found that this strain was able

to bind to and invade human cells in a CEACAM-dependent

manner. Opa protein-negative N. meningitidis specifically interacted

with CEACAM1, but not with other members of the CEACAM

family. Hence, we postulate that this Opa protein-negative

meningococcal strain must possess a second, CEACAM1-binding

invasin, distinct from Opa proteins.

Previously, we have investigated receptor recognition by Opa

protein-expressing and Opa protein-negative N. meningitidis using the

soluble amino-terminal IgV-like domains of various human CEA-

CAMs including CEACAM1 [35]. In these former studies, we did

not observe an interaction of Opa protein-negative meningococci

with CEACAM1. However, the fact that receptor engagement by the

second CEACAM1-binding meningococcal adhesin requires multi-

ple extracellular domains of CEACAM1 explains our previous

negative results. In addition, other scientists examined the interaction

of an Opa protein-negative strain of N. meningitidis MC58 with

CEACAM1 by performing receptor overlay assays with a recombi-

nant soluble molecule. Also in this case, they could not detect any

association of Opa-negative meningococci with CEACAM1 in this

assay format, though the used construct encompassed the IgC2-like

extracellular domains of CEACAM1 [46]. Since in our analysis

CEACAM1-binding by Opa protein-negative meningococci occurs

in a cellular context, but not with recombinant, soluble CEACAM1

proteins, one might speculate that the overall presentation of

CEACAM1 on the cell surface is different from the conformation

of the soluble molecules. Indeed, recent structural investigations have

detected the assembly of parallel cis-dimers of CEACAM1 that

involve not only the amino-terminal IgV-like domain, but that are

supported by the extracellular IgC2-like domains [55]. Therefore, a

significant fraction of membrane-bound wildtype CEACAM1 is

present in the form of cis-dimers that due to allosteric interactions

might expose a binding interface different from soluble recombinant

CEACAM1.

A second, mutually non-exclusive explanation for the previous

failure to detect Opa-independent interactions with CEACAM1

could be that the second CEACAM1 binding adhesin is subject to

phase variation and might be incidentally in an ‘‘on’’-state in the

Opa protein-negative strain used in our study. In Neisseriae, phase

variation can occur through several mechanisms including

alterations in the number of short sequence repeats in the coding

region of genes or through variation in poly-nucleotide stretches in

promoter regions [56,57]. The hypothesis, that the second

CEACAM1-binding adhesin is subject to phase variation, is

further strengthened by the finding that the genome of Neisseria

meningitidis MC58 encodes, with more than one hundred

candidates, one of the largest known repertoires of phase variable

genes [58]. Clearly, several neisserial virulence factors, such as pili,

capsule, lipooligosaccharide, Opc and Opa proteins, are expressed

in a phase variable manner, which possibly enhances the capacity

of the organism to successfully colonize its narrow ecological niche

and to evade the host immune response.

To date, several CEACAM1 targeting ligands from diverse

pathogens have been described, such as protein P5 (Haemophilus

influenzae), UspA1 (Moraxella catarrhalis), AfaE/DraE adhesins

(Escherichia coli), and OpaCEA proteins (pathogenic Neisseria)

[22,23,52,59,60,61]. Though these adhesins target overlapping

binding sites on the non-glycosylated face of the aminoterminal IgV-

like domain, they are structurally highly diverse [50,51,52].

Whereas protein P5 and OpaCEA proteins form transmembrane

b-barrel structures with four surface exposed extracellular loops

[62,63,64], the trimeric autotransporter protein UspA1 has a

lollipop structure consisting of a head group, an extended coiled-coil

stalk region, and a membrane anchor domain [65]. Because of this

conserved structural organisation, which is similar to meningococcal

NadA, UspA1 belongs to the Oca family [66]. The prototype of this

adhesin family, YadA from enteropathogenic Yersiniae, binds to

extracellular matrix proteins via determinants in its head domain

[67]. Though UspA1 can also bind to extracellular matrix proteins

via its head domain, the CEACAM-binding site of UspA1 is located

at a distant site in the trimeric coiled-coil stalk region [52,68]. By

sequence comparison of CEACAM1-associating and non-associat-

ing variants of UspA1, the binding site has been narrowed down to a

short linear region of ,70 amino acids [69]. Interestingly, a 10

amino acid stretch of this sequence is also present in the stalk of N.

meningitidis NadA. However, we did not observe CEACAM1

binding by recombinant E. coli expressing the oligomeric, functional

form of this protein suggesting that NadA is not the second

CEACAM1-binding adhesin of N. meningitidis.

Similar to Opa protein-mediated interactions, we could

demonstrate that binding of non-opaque meningococci to

CEACAM1 is independent of carbohydrate moieties of the
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receptor. Furthermore, the aminoterminal domain of CEACAM1

is necessary for association with both OpaCEA protein-expressing

and Opa protein-negative meningococci. However, in contrast to

OpaCEA protein-expressing Neisseriae or UspA1 of Moraxella

catarrhalis, the aminoterminal domain alone is not sufficient for

internalization of non-opaque meningococci, as efficient uptake

requires several extracellular domains of CEACAM1. This is

reminiscent of the situation with typeable and non-typeable H.

influenzae, where in most cases the aminoterminal IgV-like domain

of CEACAM1 is necessary, but not sufficient for binding, which

requires additional IgC2-domains [51]. Though the exact CEA-

CAM1-binding determinants of P5 have not been elucidated, the

protein-protein-interaction between the Haemophilus adhesin and

its host receptor is sensitive to mild denaturation [51] suggesting

again that a specific tertiary or quaternary structure of the

complete extracellular domain of CEACAM1 is critical.

The expression of multiple, independent ligands for CEACAM1

suggests that targeting of this receptor may be a key element in

colonization and pathogenesis of N. meningitidis. Interestingly,

engagement of CEACAM1 by meningococci can enhance the

matrix adhesion of infected host cells, a process that could

counteract the exfoliation of superficial cells in a squamous or

stratified epithelial tissue [38]. Indeed, it has been shown recently

that engagement of CEA on the mucosal surface of the murine

urogenital tract interferes with the exfoliation of superficial

epithelial cells, thereby promoting bacterial colonization of this

tissue [43]. This process depends on the upregulation of an

additional host protein, CD105, which promotes integrin

activation and increased adhesion of the infected epithelial cells

to the extracellular matrix [43]. As CD105 upregulation is also

induced in human epithelial cells upon stimulation of CEACAM1

by CEACAM binding Neisseria [38], the presence of several

CEACAM1-binding adhesins might be highly advantagous during

the initial host colonization. Furthermore, an alternative, Opa

protein-independent system for CEACAM1-binding could allow

the bacteria to exploit the immunosuppressive functions of

Figure 7. Known meningococcal invasins do not contribute to CEACAM1-mediated internalization of non-opaque meningococci.
(A) 293 cells were transfected with pcDNA CEACAM1-4L-HA or with the empty control vector (pcDNA). Two days after transfection, cells were
infected for 2 h with E. coli strains recombinantly expressing NadA, Opc, or the parent strain. The number of internalised bacteria was determined by
gentamicin protection assays. Results represent mean 6 standard deviation of three independent experiments done in triplicate and show the
percentage of recovered bacteria compared to CEACAM1. (B) Cells as in (A) were infected with OpaCEA-expressing gonococci (Ngo OpaCEA) and the
number of internalised bacteria was determined as in (A). (C) Expression of recombinant NadA and Opc in E. coli. Expression of Opc was analysed in
bacterial lysates by Western Blot using monoclonal anti-Opc antibody. Expression of recombinant NadA in E. coli was analysed by SDS-PAGE after
induction with IPTG. The multimeric, functional form of NadA is indicated (arrow). As a negative control, non-induced E. coli or E. coli not transformed
with recombinant proteins were used.
doi:10.1371/journal.pone.0014609.g007
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CEACAM1 by arresting T-cell proliferation in vitro, even when

Opa protein expression is modulated due to phase variation [70].

In the current study we have provided evidence that Neisseria

meningitidis MC58 possesses a second, CEACAM1-binding invasin.

As this factor mediates cell-adhesion and host cell invasion in the

absence of Opa proteins and by a mechanism distinct from these

well-known meningococcal outer membrane proteins, our study

provides impetus to further characterize and identify this novel

invasin.
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