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ABSTRACT: The diastereo- and enantioselective allylation of
ketones remains a synthetic challenge, with transition metal catalysis
offering the most applied methods. Here, a boron-catalyzed
allylation of ketones with allenes is presented. Excellent yield,
regioselectivity, and diastereoselectivity were found across function-
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alized substrates. The reaction was further developed to accommodate an enantioenriched boron catalyst and thus gave asymmetric
ketone allylation in good yield, diastereoselectivity, and enantioselectivity. Mechanistic studies supported a hydroboration—

allylation—transborylation pathway.
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he allylation of ketones provides a general route to
tertiary homoallylic alcohols containing contiguous
stereocenters which are widely found in biologically active
compounds (Figure la)." Despite numerous methods,
including asymmetric and catalytic variants, for the allylation

of aldehydes,z_7 the allylation of ketones is far less
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Figure 1. (a) Biologically active homoallylic alcohols and derivatives.
(b) Previous examples of catalytic allylation of ketones. (c) This work
showing new strategies for the stereoselective allylation of ketones.
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developed.®” Even the simplest, stoichiometric, achiral
allylations of ketones with allylmetal reagents suffer from
poor functional group tolerance.'® Allylic borane reagents
highlight the increased challenges of ketone allylation
compared to the allylation of aldehydes; although an allylic
borane will readily react with an aldehyde at —78 °C,
stoichiometric allylation of a ketone requires higher temper-
atures."'~" Ketones often require a chelating group to achieve
good diastereoselectivity for stoichiometric allylboration.'*™"¢
The stoichiometric diastereo- and enantioselective synthesis of
homoallylic alcohols has also been achieved using enantioen-
riched a-substituted allylic boranes'’ and allylic boronic
esters.'”

The prior preparation of an allylic couphng partner was
required for many catalytic allylation reactions.”"”~° Typically
these prefunctionalized substrates are prepared by transition
metal catalysis or using Grignard reagents.’' The only
exception being copper-catalyzed examples which use allenes
and hydrosilanes as the terminal reductant to give stereo-
selective ketone allylation (Figure 1b).”*7*° There are no
examples of this reaction using a main-group catalyst or
applications to allylboration.

Typically, allylic boranes or allylic silanes will be used as
substrates with the catalyst activating these reagents using
Lewis acid/base interactions to enhance nucleophilicity. Allylic
boranes can be accessed by allene hydroboration,**~* but this
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Table 1. Substrate Scope of Boron-Catalyzed Allylation of Ketones”

o

[H-B-9-BBN], (5 mol%)

Ho O

HBpin (1.2 equiv.) §
O)l\o ¥ &x o)\/\
Hexane, reflux, 16 h TN
(1.0 equiv.) (1.0 equiv.) (%)
HO Me HO Me HO, Me HO Me HO Me HO Me HO, Me
Ph)\s/\ Ph)\/\ Ph)\/\ Ph)\/\ Ph)\/\ Ph)><\ Ph
é H Ph H H H
4 ~~ CoHyg N"ph Et0” Yo
3a 91%, >95:5 d.r. 3b 65%, 85:15 d.r. 3¢ 3%, 79:21 d.r. 3d 49% 74:26 d.r. 3e 90% 65:35 d.r. 3f 76% 3g 49%
HO Me HO, —Me HO —cClI HO —F HO, Me HO_ Me HO Me
Ph)\a/\ PR YT PR YT n 2 N
c c c c c G
y y y E y Br y FiG Cy
3h 88% 3i 82%, >95:5 d.r. 3j 58%, 78:22 d.r. 3k 66%, 82:18 d.r. 31 65%, >95:5 d.r. 3m 59%, >95:5 d.r. 3n 88%, 94:6 d.r.
HO_ Me HO Me MeO HO Me \)C\ HO, Me HO, Me HO Me
X MeO, X X v \X:/\ )\W\ // XX
c c c Cy &y c &
MeO v v v y Ph ¢y
from Sulcatone
30 50%, >95:5 d.r. 3p 57%, >95:5 d.r. 3q 38%, >95:5 d.r. 3r 70% 3s 76%, >95:5 d.r. 3t 93%, >95:5 d.r. 3u 66%, 33:67 d.r.
HO_ Me HO, Me OH HO, Me HO Me HO_ Me
S Y o o
éy &y \ éy cy éy
3v 86%, >95:5 d.r. 3x 65%, 66:34 d.r. 3y 87%, >95:5 d.r. 3z 88%, >95:5 d.r. 3aa 59%, >95:5 d.r.
cl
HO, Me HO  Me HO Me
X Y X A
5 T 7% fi : o o
MeO y Cy $ N

from Nabumetone
3ad 55%, 94:6 d.r.

from Estrone
3ac 78%, >95:5 d.r.

3ab 66%, >95:5d.r.

from Haloperidol
3af 91%, >95:5 d.r.

from Pentoxifylline
3ae 90%, 93:7 d.r.

“Reaction conditions unless stated otherwise: [H-B-9-BBN], (5 mol %), HBpin (1.2 equiv), ketone (1.0 equiv), allene (1.0 equiv), 16 h, hexane,
reflux. Diastereoselectivity determined by "H NMR spectroscopy of the crude reaction mixture.

process has yet to be reported in a catalytic manner. If this
reaction could be rendered catalytic, it would allow the use of
commercially available allenes to be used as allylation coupling
partners and negate the need for the prior synthesis of the
allylic boron reagents. Assuming the catalytic generation of the
allylic borane could be sufficiently controlled, it could be
coupled to a ketone allylation reaction with B—O trans-
borylation enabling catalytic turnover (Figure lc). Trans-
borylation offers a redox-neutral turnover strategy tailored to
main-group catalysis.

However, several reactivity and stereochemical challenges
must be overcome for success: (1) (E)/(Z ) Isomerizations of
the allylic borane by a series of 1,3-boratropic shifts must be
controlled. (2) Linear/branched isomerizations of the allylic
borane must be suppressed. (3) The rate of hydroboration of
the allene, by the catalyst, must exceed that of the ketone
(direct ketone reduction). (4) Turnover must occur on oxygen
and not carbon (deactivation of the allylic borane).*
Furthermore, and unlike the Lewis acid/base catalysis, this
method would represent a mechanistically unique allylboration
whereby the main-group catalyst is directly bonded to the
coupling partner in a manner far more akin to transition metal
catalysis. Herein, we report a boron-catalyzed allylation of
ketones from allenes.
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Investigations began by testing the secondary boranes, 9-
borabicyclo[3.3.1]nonane ([H-B-9-BBN],), dicyclohexylbor-
ane (HBCy,), and borane dimethylsulfide (Me,S-BH;), as
catalysts (10 mol %) for the allylation of acetophenone with
cyclohexylallene at room temperature in n-hexane (0.5 M) (see
Supporting Information). [H-B-9-BBN], gave the best results,
whereas HBCy, and Me,S-BH; gave reduced yields and
diastereoselectivity. Increasing the reaction temperature (69
°C) improved the yield (>95%) and diastereoselectivities
(>95:5 d.r.) to give the branched homoallylic alcohol with no
observed linear product. Presumably, the higher temperature
increased the rate of allylic borane isomerization from (Z)-
allyllic borane to (E)-allyllic borane and thus gave the
homoallylic alcohol, (2SR,3RS)-3-cyclohexyl-2-phenylpent-4-
en-2-ol, with improved diastereoselectivity.*”*® Using [H-B-9-
BBN], as the catalyst, the reaction conditions were optimized
(see Supporting Information, Table S1). A range of solvents
were screened, with the best results observed using n-hexane
(>95% vyield, > 95:5 d.r.) or THF (>95% yield, > 95:5 d.r.).
Increasing the allene stoichiometry reduced the diastereocon-
trol with no increase in yield (2 equiv. of allene gave 75:25 d.r.,
3 equiv. of allene gave 60:40 d.r.). Finally, the catalyst loading
could be reduced to 5 mol % while maintaining excellent yield
and diastereoselectivity (>95% yield, >95:5 d.r.).

https://doi.org/10.1021/acscatal.2c03158
ACS Catal. 2022, 12, 10887—-10893
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Table 2. Substrate Scope of Asymmetric Boron-Catalyzed Allylation of Ketones”

o

’%
B
MeO”

(10 mol%)

JI + A (S)-Ph-BBD-OMe
~ HBpin (1.5 equiv.)
(1.0 equiv.) (1.0 equiv.) 48 h, neat, 50 °C
HO Me HO Me HO Me HO Me HO Me
Ph X /©/k{\ X X -0 X
[ C C [ [
y F y FiC y o y y
(2R,3S)-3a (2R,35)-31 (2R,35)-3n (2R,35)-30 (2R,35)-3p

71%, >95:5d.r., 89:11 e.r. 46%, >95:5 d.r., 89:11 e.r.

HO, Me H

Ph
(2S,3S)-3b®
62%, 76:24 d.r., 89:11 e.r.

(2S,3R)-3a”
67%, >95:5 d.r., 92:8 e.r.

42%, 78:22 d.r., 89:11 e.r.

O, Me

Cy \ s Cy ~o Cy Cy

(2S,3R)-32"
64%, 79:21 d.r., 75:25 e.r.

55%, >95:5 d.r., 80:20 e.r. 72%,91:9d.r., 89:11 e.r.

~N
HO, Me O HO, Me
A

(2R,3R)-3adP

51%, 91:9 d.r., 60:40 e.r. traces

“Reaction conditions unless stated otherwise: (S)-Ph-BBD-OMe (10 mol %), HBpin (1.4 equiv.), ketone (1.0 equiv.), allene (1.0 equiv.), 48 h, SO
°C. Diastereoselectivity determined by "H NMR spectroscopy of the crude reaction mixture, and enantioselectivity determined by chiral HPLC.

bReaction using (R)-Ph-BBD-OMe (10 mol %) as precatalyst.

The optimized conditions were then applied to a diverse
substrate scope of allenes and ketones (Table 1). The reaction
of acetophenone with cyclohexylallene gave (2SR,3RS)-3-
cyclohexyl-2-phenylpent-4-en-2-ol 3a in excellent isolated yield
and diastereoselectivity (91% yield, >95:S d.r.). Application to
other monosubstituted allenes including penta-3,4-dienylben-
zene (3b, 65% yield, 85:1S d.r.), nona-1,2-diene (3¢, 63% yield,
79:21 d.r.), and hexa-S,6-dienylbenzene (3d, 49% yield, 74:26
d.r.) gave the corresponding homoallylic alcohols in moderate
to good yields and good diastereoselectivities. The diaster-
eoselectivity of susbtrates 3b—3d was presumably lower than
that of substrate 3a due to lower steric constraints of the allylic
borane. The reaction could be applied to the ester-function-
alized allene ethyl 2,3-butadienoate, which gave the function-
alized homoallylic alcohol (3e, 90%, 65:35 d.r.) without ester
reduction.”” The allylation protocol was applied to 1,1-
disubstituted allenes to give homoallylic alcohols with
contiguous quaternary centers in good yields (3f, 76%, 3g,
49%, 3h, 56%). Other ketones, including 1-phenyl-1-
propanone, were successfully used as coupling partners
including to give homoallylic alcohol 3i (82%, >95:5 d.r.). a-
Chloro-substituted (3j, 58%, 78:22 d.r.) and a-fluoro-
substituted (3k, 66%, 82:18 d.r.) ketones were successfully
reacted in good yields, though the diastereoselectivity appeared
to be affected by the steric bulk of the a-substituents. Fluoro
(31, 65%, >95:5 d.r.) and bromo (3m, 59%, >95:5 d.r.)
substituents around the arene of the ketone were tolerated on
the arene with good yields and diastereoselectivities obtained.
Substrates bearing electron-withdrawing trifluoromethyl (3n,
88%, 94:6 d.r.) and electron-donating methoxy (30, 50%,
>95:5 d.r.) groups underwent successful allylation with
excellent diastereoselectivities. Methoxy substituents on the
meta-position (3p, S7%, >95:5 d.r.) and ortho-position (3q,
38%, >95:5 d.r.) of the arene also gave the corresponding
homoallylic alcohols in moderate yield and excellent
diastereoselectivity. The allylation protocol was also applied
to alkylketones, giving homoallylic alcohols in good yields and
diastereoselectivities (3r, 70%, 3s, 76% >95:5 d.r.). Addition-

10889

ally, an alkylketone bearing an alkene functionality, sulcatone, a
biologically active mosquito attractant, underwent chemo-
selective allylation to give the homoallylic alcohol in excellent
yield and diastereoselectivity (3t, 93%, >95:5 d.r.) with no
observed alkene reduction. The allylation protocol tolerated
alkyne functionalities with good yields and moderate
diastereoselectivity (3u, 66%, 33:67 d.r.) and no observed
alkyne reduction; curiously, the syn-diastereomer was the
major product, presumably due to the very low steric
parameter of the alkyne adjacent to the ketone.*® Conversely,
a more sterically congested adamantyl ketone was reacted with
excellent diastereoselectivity (3v, 86%, >95:5 d.r.). A further
reducible functionality,*” an ester was tolerated in the reaction
to give the homoallylic alcohol product in good yield but low
diastereoselectivity (3w, 80%, 60:40 d.r.). Other competent
aryl ketone coupling partners included 1-indanone (3x, 65%,
66:34 d.r.), 2-furyl (3y, 87%, >95:S d.r.), and 3-thiophenyl
ketones (3z, 88%, >95:5 d.r.). Methylene dioxy bearing
arylketone was reacted to give the homoallylic alcohol in
reduced yield but excellent diastereoselectivity (3aa, 59%,
>95:5 d.r.). The reaction of acetylferrocene gave the
corresponding homoallylic alcohol in good yields and
diastereoselectivity (3ab, 66%, >95:5 d.r.) with single-crystal
X-ray analysis used to confirm the relative steroechemical
configuration (Scheme 1a). The reaction could be applied to
biologically active molecules including human sex hormone
estrone, which was reacted in good yields and excellent
diastereoselectivity (3ac, 78%, >95:5 d.r.) with no observed
reduction of the alkene functionality or deleterious side
reaction by the acidic aryl alcohol. Nabumetone, an anti-
inflammatory medication, underwent successful allylation in
good yield and excellent diastereoselectivity (3ad, 5%, 94:6
d.r.). Pentoxifylline, a drug used to treat peripheral artery
disease, underwent chemoselective allylation in excellent yield
and diastereoselectivity (3ae, 90%, 93:7 d.r.), with the
xanthene functionality, which is found in numerous bioactive
molecules, tolerated. Finally, haloperidol, an antipsychotic
found on the WHO list of essential medicines, underwent

https://doi.org/10.1021/acscatal.2c03158
ACS Catal. 2022, 12, 10887—-10893
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successful allylation in excellent yield and diastereoselectivity
(3af, 91%, >95:5 d.r.).

After developing the diastereoselective boron-catalyzed
allylation of ketones, attention turned to the development of
an enantioselective process. Very few stoichiometric allylic
borane reagents are reported to react with ketones in good
enantioselectivity,'> with one exception being Soderquist’s
enantioenriched 9-borabicyclo[3.3.2]decane reagents.50 These
secondary boranes were shown to require low temperatures to
achieve high enantioselectivity (—78 °C up to >99:1 e.r.) in the
allylation of ketones; however, only a moderate loss of
stereoselectivity was observed when the reaction temperature
was increased to 0 °C (95:5 e.r.). Application of Soderquist’s
boranes to this catalysis protocol would require enantio- and
diastereoselectivity to be maintained at significantly higher
reaction temperatures for effective catalyst turnover by B—O
transborylation. Unlike Soderquist’s study, where the allylic 9-
borabicyclo[3.3.2]decanes were prepared prior to reaction,
here, allene hydroboration would be used to generate the
allylic borane in situ and thus the secondary borane was
required. This was easily accessed by B—O transborylation
from the B-methoxy-9-borabicyclo[3.3.2]decane precatalyst
with HBpin.

Use of B-methoxytrimethylsilyl-9-borabicyclo[3.3.2]decane
showed no turnover (see Supporting Information). Switching
to the phenyl-substituted variant, (S)-B-methoxy-phenyl-9-
borabicyclo[3.3.2]decane [(S)-Ph-BBD-OMe], and neat re-
action conditions (see Supporting Information Table S2 for
details), asymmetric allylation was achieved using (S)-Ph-
BBD-OMe (10 mol %) as a catalyst to give the
enantioenriched homoallylic alcohol, (2R,3S)-3-cyclohexyl-2-
phenylpent-4-en-2-ol, in good yield, excellent diastereoselec-
tivity, and good enantioselectivity [(2R,3S)-3a, 71%, >95:S d.r.,
89:11 er.]. Increasing the reaction temperature to 80 °C
reduced reaction times (16 h); however, reduced diaster-
eoselectivity and enantioselectivity (75:25 d.r,, 78:22 e.r.) were
also observed. Reaction at 60 °C resulted in a slightly reduced
stereoselectivity (90:10 d.r., 85:15 e.r.). Application of
alternative turnover reagents was unsuccessful; ‘Pr,NBH,
resulted in recovery of starting materials, and HBcat gave 1-
phenylethanol by direct reduction (1,2-hydroboration) of
acetophenone to 1-phenylethanol. The optimized conditions
were applied to a range of allenes and ketones (Table 2).

Other ketones were successfully reacted including those
bearing fluoro [(2R,3S)-31, 46%, >95:5 d.r, 89:11 er.] and
trifluvoromethyl [(2R,3S)-3n, 42%, 78:22 d.r., 89:11 e.r.]
substituents. 4-Methoxyacetophenone was reacted in reduced
enantioselectivity [(2R,3S)-30, 55%, >95:5 d.r, 80:20 e.r.];
however, 3-methoxyacetophenone was reacted in enantiose-
lectivity comparable to that of other substrates [(2R,3S)-3p,
72%, 91:9 d.r, 89:11 e.r.]. ortho-Substituted 2-methoxyaceto-
phenone was unreactive despite being a viable substrate for the
previous achiral reaction, possibly due to the increased steric
bulk of phenyl-BBD compared to that of [H-B-9-BBN],. The
(R)-enantiomer of the catalyst could be used to give products
of the opposite enantiomer [(2S,3R)-3a, 67%, >95:5 d.r., 92:8
er.] with equal levels of enantioselectivity and diastereose-
lectivity. Coupling using penta-3,4-dienylbenzene gave moder-
ate diastereoselectivity and good enantioselectivity [(2S,3S)-
3b, 62%, 76:24 d.r, 89:11 er.] of the homoallylic alcohol;
however, application to di- and trisubstituted allenes was
unsuccessful. Thiophene-bearing ketone reacted with reduced
enantioselectivity [(2S,3R)-3z, 64%, 79:21 d.r., 75:25 e.r.]. The

asymmetric allylation of Nabumetone resulted in poor
enantioselectivity [(2R,3R)-3ad, 51%, 91:9 d.r., 60:40 e.r.],
presumably due to the minimal steric bias between methyl and
the alkyl chain of the ketone.

The mechanism of catalytic turnover was investigated as
both allylic borane 4 and borinic ester § could plausibly

Scheme 1. (a) Single-Crystal X-ray Structures of Products
3ab and 3af. (b) Mechanistic Studies. (c) Proposed
Reaction Mechanism.”
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undergo transborylation, B—C and B—O transborylation
respectively, with only transborylation of the borinic ester §
enabling turnover and catalyst regeneration.SI_60 Reaction of
allylic borane 4 with HBpin under catalytic reaction conditions
gave no B—C transborylation with only the recovery of starting
material (Scheme 1b). Reaction of borinic ester § with HBpin
under catalytic reaction conditions gave boronate ester 6 and
regeneration of the catalyst H-B-9-BBN, observed by ''B NMR
spectroscopy (see Supporting Information). It was therefore
proposed that the catalytic protocol proceeds by B—O
transborylation. To confirm that the isomerization of allylic
borane diastereomers was an intramolecular process, a
crossover experiment was carried out between allylic borane
4 and vinylidenecyclohexane. No crossover was observed,
confirming the intramolecular nature of isomerization of (Z)-
allylic borane to the (E)-allylic borane (Scheme 1b). Single
turnover experiments were used to identify and characterize in
solution each intermediate on the catalytic cycle (Scheme 1c).

A catalytic cycle for the allylation of ketones was thus
proposed, whereby, in the case of the asymmetric reaction, the
precatalyst was activated in situ by reaction with HBpin
(Scheme 1c). The dialkylborane reacted with the allene to give
a (Z)-allylic borane which isomerized to the (E)-allylic borane
(E)-4 by a series of 1,3-boratropic shifts and with a d.r.
reflective of thermal isomerization.””®" The (E)-allylic borane
then reacted with the ketone, likely through a Zimmerman—
Traxler-type transition-state structure® controlling diastereo-
and enantioselectivity, giving the branched homoallylic borinic
ester S only. Diastereoselectivity was reflective of the (E)-
allylic borane d.r. and the pseudoaxial versus pseudoequatorial
positioning of the ketone substituents in the Zimmerman—
Traxler-type transition-state structure. In line with stoichio-
metric reports®”®* the (E)-allylic borane gave an anti-
homoallylic borinic ester. Reaction with HBpin regenerated
the catalyst and gave the product as a Bpin-protected alcohol,
alkoxy boronic ester 6.

In summary, a protocol for the boron-catalyzed allylation of
ketones with allenes has been developed, giving homoallylic
alcohol products in excellent yields, diastereoselectivity, and
enantioselectivity. The unique mechanism of catalysis allows
for the application of allenes rather than preformed allylic
metal(loid) species, with an allylic borane formed in situ
through direct reaction with the borane catalyst. This reactivity
provides the first example of transborylation in carbon—carbon
bond forming reactions and is the first example of a main-
group-catalyzed ketone allylation with allenes. The reaction
was applied to a variety of electronically and sterically
differentiated allenes and ketones exhibiting excellent func-
tional group tolerance, including across a range of reducible
functionalities. This protocol was expanded to an asymmetric
variant using Soderquist’s borane to give homoallylic alcohols
with good diastereoselectivity and enantioselectivity.
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