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Abstract

Colorectal cancer (CRC) is a heterogeneous disease, arising from many possible etiological pathways. This heterogeneity
can have important implications for CRC prognosis and clinical management. Epidemiological studies of CRC risk and
prognosis—as well as clinical trials for the treatment of CRC—must therefore be sensitive to the molecular phenotype of co-
lorectal tumors in patients under study. In this review, we describe four tumor markers that have been widely studied as
reflections of CRC heterogeneity: (i) microsatellite instability (MSI) or DNA mismatch repair (MMR) deficiency, (ii) the CpG is-
land methylator phenotype (CIMP), and somatic mutations in (iii) BRAF and (iv) KRAS. These tumor markers have been used
to better characterize CRC epidemiology and, increasingly, may be used to guide clinical decision-making. Going beyond
these traditional tumor markers, we also briefly review some more novel markers likely to be of clinical significance. Lastly,
recognizing that none of these individual tumor markers are isolated attributes but, rather, a reflection of broader tumor
phenotypes, we review some of the hypothesized etiological pathways of CRC development and their associated clinical
differences.
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Introduction

As with most forms of cancer, colorectal cancer (CRC) is a bio-
logically and epidemiologically heterogeneous disease. Such
heterogeneity reflects the fact that there are many possible
etiological pathways responsible for driving CRC development,
each of which may be marked by distinct driver mutations and
genetic or epigenetic signatures. Importantly, this heterogeneity
can also have implications for CRC prognosis and the clinical
management of this disease. Efforts to characterize molecular
phenotypes and subtype classifications for CRC thus hold

relevance across the spectrum of the disease’s natural history—
from understanding how CRC develops and who is at risk, to
guiding treatment decisions and secondary prevention in an
informed manner.

Until recently, studies accounting for possible heterogeneity
in the epidemiology and etiology of CRC have been limited to
the consideration of higher-level tumor attributes, such as tu-
mor site (e.g. colon or rectum). For example, previous studies
have suggested that certain lifestyle factors, such as cigarette
smoking, are more strongly associated with risk of rectal cancer
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than with risk of colon cancer [1, 2]; however, in light of increas-
ing evidence indicating that the molecular profile of CRC differs
greatly according to tumor site [3, 4], more sensitive
epidemiological studies exploring possible etiological differ-
ences across specific molecular phenotypes of disease need to
be conducted.

Similarly, with respect to clinical management, the use of
surgery, chemotherapy and/or radiation therapy for CRC has
long been guided by the TNM stage classification and tumor site
[5], without consideration of molecular attributes. Stage I (T1–2
N0) colon or rectal cancer is treated with surgery or endoscopic
removal of the tumor alone. Patients with Stage II–III (T3–4 N0,
Tx N1–2) rectal cancer receive, as standard, neoadjuvant che-
moradiation with either 5-fluorouracil (5-FU) or oral capecita-
bine [6, 7]. The current standard of care for Stage III (Tx N1–2)
colon cancer is adjuvant therapy, i.e. six months of 5-fluoroura-
cil (5-FU) and oxaliplatin (FOLFOX) chemotherapy [8]. Although
there is a clear benefit from adjuvant treatment in the setting of
Stage III colon cancer, approximately one Stage III patient in
three will still experience recurrence within five years [9]; the
utility of adjuvant chemotherapy in Stage II (T3–4 N0) colon can-
cer remains controversial, even when it is restricted to patients
with high-risk clinical features [10, 11]. The mainstay treatment
for Stage IV (Tx Nx M1) colon and rectal cancer is chemotherapy;
however, the poor prognosis of Stage IV CRC calls for the devel-
opment of more targeted treatments; thus, biomarkers are
greatly needed to tailor adjuvant therapy and more accurately
guide the selection of chemotherapy regimens in CRC patients
of all stages.

In this review, we describe four ‘traditional’ tumor markers
that have been widely studied as reflections of CRC heterogene-
ity: microsatellite instability (MSI) or DNA mismatch repair
(MMR) deficiency, the CpG island methylator phenotype (CIMP),
somatic mutations in BRAF, and somatic mutations in KRAS.
The former two attributes (MSI/MMR and CIMP) represent global
phenomena across the colorectal tumor genome indicative of
genetic dysfunction, whereas the latter two (BRAF and KRAS
mutation status) are point mutations that may act as drivers of
CRC development. Here, we briefly review ways in which these
tumor markers have been used to better characterize CRC epi-
demiology and may be used to guide clinical decision-making.
Going beyond these traditional tumor markers, we also briefly
review some more novel markers that are likely to be of clinical
significance. Lastly, recognizing that none of these individual
tumor markers are isolated attributes but, rather, a reflection of
broader tumor phenotypes, we review some of the hypothe-
sized etiological pathways of CRC development and their asso-
ciated clinical differences.

Traditional Tumor Markers in Relation to
Etiology, Epidemiology and Treatment
Microsatellite instability or mismatch repair

Microsatellite instability (MSI) is recognized by the presence of a
high frequency of genetic alterations in microsatellite DNA re-
peat sequences (i.e., increased or decreased numbers of repeats
in tumor DNA relative to DNA from normal surrounding tissue),
resulting from deactivation of the DNA mismatch repair system.
Approximately 15% of colorectal tumors exhibit high levels of
MSI (MSI-high) [12]. In the majority of such tumors, MSI is due
to epigenetic silencing of a DNA mismatch repair (MMR) gene
(e.g. hypermethylation of the MLH1 promoter), although �20%
of MSI-high tumors are due to germline mutations in one of the

MMR genes (MLH1, MSH2, MSH6 or PMS2) (i.e. Lynch Syndrome)
[13]. Compared with patients with microsatellite stable (MSS)
CRC, patients with MSI-high CRC are more likely to be smokers
[14–17], more likely to consume alcohol [15, 16], and are less
likely to be obese [18].

MSI status is consistently associated with survival of CRC: a
recent meta-analysis showed MSI-high CRC to be associated
with a 40% better overall survival rate than MSS CRC [12]. Even
when matched for stage, individuals with MSI-high CRC—par-
ticularly in the proximal colon—appear to have a better progno-
sis than those with MSS CRC [19]. Emerging data suggest that
therapy should be tailored to MSI status in both early-stage and
advanced CRC. In particular, MSI has been shown to predict lack
of benefit from adjuvant 5-FU in Stage II–III colon cancer (and
possible harm in Stage II patients) [20]; however, the value of an
MSI as a predictive marker with modern combination chemo-
therapy regimens—such as FOLFOX and FOLFIRI (5-FU with iri-
notecan)—is uncertain. In a recent trial of Stage III colon cancer
treated with adjuvant FOLFOX, MSI status was not predictive of
outcomes overall [21]. In retrospective analyses of another adju-
vant trial for Stage II–III colon cancer, those with MSI-high tu-
mors again had a better prognosis but there was no association
between MSI status and benefit from oxaliplatin [22]. In con-
trast, MSI-high status has been shown to predict benefit from
adjuvant irinotecan (IFL regimen) in at least one trial; however,
MSI has not reliably served as a predictor of benefit from combi-
nation chemotherapy with 5-FU and irinotecan [23–25].
Observed differences between MSI as marker for 5-FU response
vs. response to combination chemotherapy may reflect differ-
ences across trials in specific chemotherapy regimens and/or
variability in multivariate models, as newer models often ac-
count for other tumor attributes, such as KRAS and BRAF muta-
tion status [26]; thus, while MSI status is largely accepted as a
prognostic marker, its role as a predictive biomarker with mod-
ern combination chemotherapy regimens remains
controversial.

CpG island methylator phenotype

The genome is interspersed with dense CpG-rich regions,
termed ‘CpG islands’, which are found in the promoter regions
of roughly half of all genes [27]. Methylation of these islands of-
ten results in gene silencing [27–29], which can be a driver of
carcinogenesis (e.g. hypermethylation of the MLH1 promoter re-
gion) [30–32]. Two patterns of CpG island methylation have
been observed in CRC: low-level methylation that increases in-
crementally with age, and high-level methylation of a particular
subset of CpG islands, resulting in gene silencing [30]. CRC tu-
mors exhibiting the latter pattern are referred to as ‘CpG island
methylator phenotype (CIMP)-positive’. Approximately 30–40%
of tumors located in the proximal colon and 5–15% of tumors in
the distal colon and rectum can be classified as CIMP-positive
[33]. Compared with CRC patients with non-CIMP tumors, those
with CIMP-positive CRC are more likely to be smokers [14, 34]
and less likely to be obese [35].

Although CIMP is thought to play an important role in the
natural history of CRC, studies of the association between CIMP
status and survival of CRC have been inconsistent [36, 37]. In
part, investigation of CIMP as a prognostic or predictive bio-
marker has been slowed by the lack of consensus regarding
which CIMP panel to use in assaying this attribute. Despite the
lack of a ‘gold-standard’ CIMP assay, there has been some sug-
gestion of an association between CIMP and a favorable re-
sponse to 5-FU [38–41]; however, studies assessing the use of
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CIMP as a predictor for response to FOLFOX therapy have not
observed CIMP to be a valuable biomarker [42]; thus, the use of
CIMP status as a predictive marker for conventional chemother-
apy will require further investigation.

Somatic mutations in BRAF and KRAS

Activating mutations in BRAF and KRAS are evident in approxi-
mately 5–15% and 30–45% of colorectal tumors, respectively [36,
43–48]. Such mutations result in cell proliferation and inhibition
of apoptosis due to dysregulation of the MAPK signaling path-
way. As part of the same pathway, BRAF and KRAS mutations
tend to be mutually exclusive molecular events in CRC develop-
ment [49]. The BRAF V600E mutation accounts for approxi-
mately 90% of all BRAF mutations observed in CRC [50, 51]. In
comparison, mutations in ‘hot-spot’ codons 12 and 13 of exon 2
account for approximately 90% of all KRAS mutations in CRC
[45, 52–54]. Compared with patients with BRAF-wildtype tumors,
patients with BRAF-mutated tumors tend to be diagnosed at a
later age [43], are more likely to be female, and are more likely
to be smokers [14, 34]. In contrast, few epidemiological differ-
ences have been noted by KRAS mutation status [55–57].

While there is substantial evidence, from retrospective anal-
yses of cohort and randomized clinical trials, that mutated
BRAF in CRC is a marker of poor prognosis [26, 58], it is an active
question as to whether BRAF-mutant patients should receive
more aggressive ‘up-front’ chemotherapy. One small Phase II
trial recently suggested improved survival associated with the
use of FOLFOXIRI plus bevacizumab in patients with metastatic
BRAF-mutated CRC [59]; however, the predictive benefit of BRAF
has not been shown for either cytotoxic chemotherapy or anti-
epidermal growth factor receptor (EGFR) treatment [60, 61].
Notably, the success of BRAF-inhibitors seen in the treatment of
melanoma has not been paralleled in CRC [62]; thus, BRAF is
best considered as only a prognostic marker at this time.

In contrast, KRAS mutation status is well established as a
predictive marker for anti-epidermal growth factor receptor
(EGFR) therapy in metastatic CRC. While initial studies of anti-
EGFR therapy in metastatic CRC produced mixed results, it was
soon shown that efficacy of treatment could be predicted by
KRAS mutation status [63–65]. Specifically, responses were ob-
served in patients whose tumors did not exhibit KRAS exon 2
mutations, while no response—or even harm—was seen in pa-
tients with KRAS-mutant tumors [66, 67]. Multiple retrospective
studies have now shown that KRAS testing restricted to exon 2
misses 15–17% of cases resistant to anti-EGFR therapy [68, 69].
‘Expanded RAS’ testing is now advocated, which also tests
exons 3 (codon 61) and 4 (codons 117 and 146) of KRAS and
exons 2–4 of NRAS [70]. The utility of KRAS mutation testing for
guiding treatment selection in patients with earlier stage colon
cancer has not been supported [71].

Additional Tumor Markers with Potential
Relevance to Clinical Management
Somatic mutations in PIK3CA

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase, critical in
the initiation of signaling pathways for cell proliferation, migra-
tion and survival [72, 73]. Mutations in the gene encoding the
catalytic sub-unit of PI3K (i.e. the phosphatidylinositol-4, 5-
bisphosphate 3-kinase, catalytic sub-unit alpha [PIK3CA] gene)
can result in constitutive activation of PI3K signaling and, thus,
disregulated cell proliferation contributing to the development

of cancer [74]. Somatic PIK3CA mutations have been noted in
approximately 10–20% of CRCs [73, 75–83]. Studies characteriz-
ing patients with PIK3CA-mutated CRC have suggested that tu-
mors exhibiting these mutations are more likely to be located in
the proximal colon [77, 80, 84], and to exhibit KRAS mutations
[75–80, 84] than PIK3CA-wildtype colorectal tumors.

PI3K is distinct from the RAS/RAF pathway but mutations in
PI3KCA may also affect responsiveness to anti-EGFR therapy, es-
pecially mutations in exon 20 [61]. PI3K pathway inhibitors have
been developed, but have largely failed to show benefit in treat-
ment [85, 86]. PIK3CA mutations may, however, suggest benefit
from aspirin for secondary prevention, since large studies have
demonstrated that aspirin reduces adenoma and CRC formation
in individuals with PIK3CA-mutated primary CRC [87, 88].

Hypermutation

Recent findings from The Cancer Genome Atlas (TCGA) network’s
genome-wide analysis of CRC indicated that 16% of colorectal tu-
mors displayed a significantly higher density of somatic se-
quence mutations than expected (i.e. hypermutated) [89]. The
majority of these cases were also MSI-high and/or CIMP-positive,
although a previously unrecognized class of hypermutated CRCs
was also observed. Further investigation has led to the identifica-
tion of the polymerase genes POLE and POLD1 which, when mu-
tated in the germline or somatically, can result in this
hypermutated phenotype with >1 000 000 base substitutions per
tumor [90]. The clinical relevance of mutations in POLE and
POLD1 and, more generally, hypermutated status, is emerging; for
example, recently published data notes that MSI-high CRCs re-
spond to programmed-death-1 (PD-1) checkpoint inhibitors,
while MSS CRCs do not [91]. This finding is believed to reflect the
fact that MSI CRCs have a mutation rate that is 20 times higher
than that in MSS CRC, and that the neo-antigens resulting from
this allow for better efficacy for immune-modulating agents.
Further research into how hypermutated CRC responds to avail-
able therapies is needed, and the development of therapies tar-
geting hypermutated CRC genomes is warranted.

Other emerging tumor markers

There continues to be considerable interest in identifying pre-
dictive molecular markers for chemotherapy effect, both in the
CRC adjuvant and metastatic settings [92]. Candidate bio-
markers that have been heavily scrutinized include mutant
TP53, thymidylate synthase (TS) expression, MEK, and amplified
ERCC1, among others [93–96]. Unfortunately, none of these
markers has been established as a predictive marker that is
ready to be used clinically. Other future directions include dual
pathway blockade to mediate mechanisms of resistance [97, 98];
however, such an approach has thus far been found to be sub-
optimal when applied to the clinical setting, often increasing
toxicity but not improving treatment outcomes [99, 100].

Molecular Classifications of CRC Subtypes
Based on Proposed Etiological Pathways

Although much research has been devoted to the epidemio-
logical and clinical implications of the previously-described CRC
tumor markers individually, these highly correlated markers
may be of even greater utility to clinical research when consid-
ered in combination. Previously-described pathways of CRC
development have been suggested to result in tumor subtypes
that can be distinguished by specific combinations of MSI,
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CIMP, BRAF-mutation, and KRAS-mutation status. Preliminary
research suggests marked differences in prognosis across these
pathway-informed tumor subtypes, suggesting opportunities
for more closely targeted clinical management of CRC.

Traditional adenoma–carcinoma sequence

The majority (55–70%) of colorectal tumors arise via the well-
characterized sequential transition from normal mucosa to ade-
noma to carcinoma [101–103]. This traditional pathway involves
an accumulation of activating mutations in oncogenes and
deactivating mutations in tumor-suppressor genes, and appears
to result in CRC resulting from MSS, non-CIMP, and absent BRAF
or KRAS somatic mutations [101]. Tumors resulting from this
pathway are typically also characterized by driver mutations in
APC and by chromosomal instability (i.e. large genomic alter-
ations including the gain or loss of chromosomal regions and/or
aneuploidy) [101, 104]. Given that this pathway is, by far, the
predominating pathway responsible for CRC development,
studies that have not incorporated information on CRC molecu-
lar phenotype are likely to most closely reflect the epidemiology
and clinical course of tumors resulting from this pathway. In
particular, these tumors tend to be associated with a more fa-
vorable prognosis than BRAF-mutated CRC, but a less favorable
prognosis than MSI-high CRC [105, 106].

Serrated pathway

An estimated 20–30% of all CRCs develop through a serrated
neoplasia pathway, named for the saw-toothed pattern of
crypts in the precursor polyps [104, 107]. Precursor lesions in
this pathway differ from those reflective of the traditional ade-
noma–carcinoma sequence, not only in appearance, but also in
molecular attributes and in rates and risk of progression [104,
107–109]. Classification schemes for delineating serrated CRC
based on molecular attributes continue to evolve; however, ser-
rated CRC is generally distinguished by the presence of CIMP
and mutated BRAF or KRAS [101, 105, 107].

In addition to molecular differences, several differences be-
tween serrated and non-serrated CRC have been reported in
terms of genetic predisposition, anatomical site, and tumor ag-
gressiveness [110–112]. Several studies suggest that susceptibil-
ity loci for CRC identified from genome-wide association
studies (GWAS) are associated with early precursors for non-
serrated CRC (adenomas), but not with serrated CRC precursors
(serrated polyps) [110, 113]. Colorectal tumors exhibiting ser-
rated molecular features are also more likely to present as prox-
imal colon cancers than as distal colon or rectal cancers [4].
Because proximal tumors are more likely to present at later
stages [114, 115], this proximal distribution of serrated CRC-de-
fining attributes could translate to a later stage at diagnosis in
serrated vs. non-serrated CRC cases; however, previous studies
have not consistently demonstrated differences in the distribu-
tion of stage by BRAF mutation [37, 116, 117], CIMP [36, 118], or
KRAS mutation status [37, 119].

The existence of the serrated pathway has implications for
CRC screening programs: e vidence suggests that serrated tumors
may develop more rapidly than other types of CRC, as the tumor
markers indicative of serrated CRC are more prevalent in cancers
arising within 3–5 years of a colonoscopy (i.e. interval cancers)
[120, 121]. This probably reflects the more aggressive nature of
CRC arising from the serrated pathway, but also probably reflects
the fact that serrated polyps are often more difficult to detect us-
ing standard screening techniques: they are less likely than

adenomas to bleed, making detection by fecal occult blood testing
unlikely [122]; since serrated polyps are more likely to develop in
the proximal colon [107], they are less likely to be identified
through sigmoidoscopy and, because of their sessile, minimally
elevated morphology, serrated polyps can also be difficult to de-
tect via colonoscopy [104]. If colonoscopy and other screening
methods are less efficacious for the prevention and early detec-
tion of serrated CRC than for other forms of CRC, this shortcom-
ing will present a considerable public health challenge.

In a recent analysis of CRC subtype-specific survival, colo-
rectal tumors exhibiting a serrated phenotype marked by mu-
tated BRAF, CIMP-positive, and MSS status, were associated
with the poorest prognosis [105]; specifically, patients with
these serrated cancers were more than twice as likely to die
from their disease than patients with tumors exhibiting a phe-
notype indicative of the traditional adenoma–carcinoma se-
quence. In contrast however, patients with CRC exhibiting
mutated BRAF, CIMP-positive, and MSI-high were significantly
less likely to die from their disease than those with traditional
adenoma–carcinoma pathway tumors [105]; thus, even among
patients with CRC suggestive of serrated pathway origins, there
is considerable heterogeneity in clinical outlook. This supports
the need to consider multi-marker tumor phenotypes in proj-
ecting CRC prognosis and in guiding clinical management of
disease.

Alternative pathway

Although sometimes grouped with serrated pathway cancers,
colorectal tumors that are KRAS-mutated, CIMP-low, and MSS
have been suggested to arise from an ‘alternative pathway’ [101,
104, 107, 123, 124]. The low levels of CIMP methylation seen in
this group could represent a second type of CIMP [48], or may re-
flect a high level of methylation at different loci than those
measured on current CIMP panels [104]. The finding that silenc-
ing of the DNA repair gene MGMT by promoter hypermethyla-
tion is associated with KRAS-mutated and CIMP-low status
[124–126] suggest that MGMT methylation may be another char-
acteristic of this alternative pathway. It is unclear which precur-
sor lesions might be indicative of this pathway, although
possibilities include traditional serrated adenomas, tubulovil-
lous adenomas with serrated features, and serrated polyps with
dysplasia [101, 107]. Although previous studies have not consis-
tently found KRAS mutation and CIMP status individually to be
significant indicators of prognosis, at least one recent study has
found that CRC with a KRAS-mutated/CIMP-low phenotype in-
dicative of this alternative pathway confer a significantly poorer
prognosis than tumors derived from the traditional adenoma–
carcinoma sequence [105, 106].

Conclusions and Future Directions

With the exception of KRAS mutation testing for Stage IV CRC,
current clinical practice for the management of CRC does not in-
volve an assessment of a tumor’s molecular phenotype; how-
ever, recognizing that CRC is a heterogeneous disease, there are
great opportunities to improve CRC prognosis by better incorpo-
rating information on tumor biology into treatment decisions
and the design of targeted treatment strategies. Even in the
absence of agents specifically targeting the treatment of
CIMP-positive or BRAF-mutated or MSI-high CRC, these
markers—alone and particularly in combination—provide in-
sights into the natural history of CRC. In some instances, these
markers may also serve as prognostic or predictive markers,
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providing even greater incentive to collect this information in
clinical settings.

As we evolve a better understanding of the diverse pathways
that lead to CRC and improve our recognition of the driver mu-
tations and molecular events that contribute to those pathways,
approaches to the clinical management of CRC will also need to
evolve and improve. Aggressive serrated BRAF-mutated/CIMP-
positive/MSS tumors will probably necessitate more aggressive
treatment and, potentially, different treatment agents than CRC
exhibiting high levels of MSI or CRC resulting from the tradi-
tional adenoma–carcinoma sequence. As we continue to gain
insight into the heterogeneity of CRC biology, etiology, epidemi-
ology and clinical profile, the clinical management of CRC will
continue to evolve in order to incorporate this information into
clinical decision-making, to personalize and improve the care of
CRC patients.
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