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We propose a novel approach to develop a computer-aided decision support system for radiologists to help them classify brain
degeneration process as physiological or pathological, aiding in early prognosis of brain degenerative diseases. Our approach
applies computational and mathematical formulations to extract quantitative information from biomedical images. Our study
explores the longitudinal OASIS-3 dataset, which consists of 4096 brain MRI scans collected over a period of 15 years. We
perform feature extraction using Pyradiomics python package that quantizes brain MRI images using different texture analysis
methods. Studies indicate that Radiomics has rarely been used for analysis of brain cognition; hence, our study is also a novel
effort to determine the efficiency of Radiomics features extracted from structural MRI scans for classification of brain
degenerative diseases and to create awareness about Radiomics. For classification tasks, we explore various ensemble learning
classification algorithms such as random forests, bagging-based ensemble classifiers, and gradient-boosted ensemble classifiers
such as XGBoost and AdaBoost. Such ensemble learning classifiers have not been used for biomedical image classification. We
also propose a novel texture analysis matrix, Decreasing Gray-Level Matrix or DGLM. The features extracted from this filter
helped to further improve the accuracy of our decision support system. The proposed system based on XGBoost ensemble
learning classifiers achieves an accuracy of 97.38%, with sensitivity 99.82% and specificity 97.01%.

1. Introduction

Medical image processing has travelled a long journey since
the last two decades. The past decade has seen the bridging
of medical and information technology. It led to the develop-
ment of decision support systems for early identification of
various brain diseases. Age and structural changes in brain
cause physiological alterations, which are reflected in routine
human behaviour [1, 2]. Along the years, various studies and
constant attempts have been made to study dementia.

Studies [3–5] focus on specific regions of interest in brain
volumes, and these are calculated from two dimensional
manually traced areas. Segmentation algorithms are used to
segment out gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF). Such volumetric studies are lim-
ited to known brain structures like hippocampus and amyg-
dala, perirhinal, entorhinal, and parahippocampal cortex.

Voxel-based studies [6–8] provide an alternative neuro-
imaging method. These studies apply a general linear model
(GLM) to each voxel of an MRI and statistically compare
them with standard voxel values using Jacobean matrices.

Many studies [9, 10] give detailed insights on compari-
sons between voxel based and volumetric studies.

Several studies [11–13] use cortical thickness measure-
ment as a biomarker for the process of identification of
various brain aging diseases.

With the advancements in the machine learning tech-
niques for image processing and image analysis and the
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availability of abundance of medical imaging data, medical
informatics [14, 15] has achieved great heights. The work-
shop MICCAI 2014 “Challenges of Computer aided diagno-
sis of Dementia on Structural MRI data” addresses the
challenges of applying different algorithms on the same data
and the same algorithm on different data. A summary of all
algorithms presented in MICCAI 2014 is listed in [16]. This
paper did a standardized comparison of different studies in
the domain of the computer-aided decision support system
for the identification of dementia-related diseases using
structured MRI data. The best performing algorithm yielded
an accuracy of 63% and receiver operating characteristics
area under the curve with value 78.8%.

A review of various studies used for brain disorder detec-
tion using the machine learning techniques is published in
[17]. Another review of the latest image processing tech-
niques for studying brain pathology is summarized in [18].

A set of studies have been done on how oxygen supply
changes the brain functioning [19, 20].

The functional modalities of medical imaging include
MRI (magnetic resonance imaging), PET (positron emission
tomography), and CT (computerized tomography) giving us
an insight about the pathophysiology of the organ under
observation. Radiologists analyze this information with their
experience and knowledge. They find this time consuming
and cumbersome. In this study, we explore machine learning
techniques to analyze data extracted from medical images.
Machine learning is the study of algorithms that solve a prob-
lem by leaning from underlying patterns in data, as opposed
to statistical heuristics or rule-based programming. Radio-
mics [21, 22] aids in extracting imaging-based statistical bio-
markers from medical images which can be used as features
for machine learning methods to get accurate predictions.
Ageing leads to degeneration of the brain, which may lead
to dementia, further precipitating such diseases like Alzhei-
mer’s dementia, vascular dementia, dementia with lewy body
dementia, posterior cortical atrophy, and front temporal
lobar degeneration. These diseases affect different regions of
the brain. Clinical Dementia Rating or CDR is a five-point
scale to stage dementia, ranging from 0 to 3, where 0 denotes
no pathological degeneration (control patients) while any
value greater than 0 indicates some pathological brain degen-
eration (test patients).

In this study, we propose a novel approach to develop a
computational decision support system capable of differenti-
ating control patients from test patients by analyzing features
of their MRI images using Radiomics. This system can be
used to assist radiologists for fast and accurate decisions.

(1) We explore the OASIS-3 dataset [23], which is a
longitudinal dataset with 4096 MRI scans. This data-
set also gives specific details about how the CDR
value changes for a subject with respect to changes
in the subject’s MRI scan. These ratings can be used
to label the MRI scans as healthy scans or scans
showing signs of brain degeneration. Using these
labels for a scan, a supervised machine learning
binary classifier can be trained to support brain
degeneration prognosis

(2) We employ data preprocessing best practices such as
data augmentation and feature selection which help
to mitigate overfitting and underfitting of the classifier
and drive it to achieve optimal accuracy on our data

(3) Feature extraction is done using Pyradiomics, which
provides a python implementation of the study
[24]. Pyradiomics provides a unified and standard-
ized set of features from structured MRIs based on
shape and volume as well as texture-based statistical
features. Advanced Pyradiomics algorithms can han-
dle missing data in case of low resolution MRI scans.
Literature studies indicate that Radiomics has mostly
been explored for oncological studies [25, 26], but not
for understanding brain cognition. Our study is also
an effort to determine the efficiency of Radiomics
features from structural MRI scans for classification
of brain degeneration diseases

(4) We explored various ensemble learning classification
algorithms such as random forests, bagging-based
ensemble classifiers, and gradient-boosted ensemble
classifiers such as XGBoost and AdaBoost for our clas-
sification tasks. Such ensemble learning classifiers
have not been used for biomedical image classification

(5) We propose a novel image texture analysis filter,
Decreasing Gray-Level Matrix, which further improves
the performance of our ensemble learning classifiers

We conclude the paper by comparing our novel solution
with existing work in this field. Our results show that the pro-
posed solution outperforms existing studies on various perfor-
mance metrics such as accuracy, specificity, and sensitivity.

2. Materials and Methods

2.1. Data Acquisition. Magnetic resonance imaging is the
process of acquiring images of anatomical structures using
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Figure 1: MRI acquisition process.
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magnetic field and radio frequency signals to detect diseases
and functional problems. The “image is snapped” with
different contrasts as different tissues and fluids react differ-
ently to magnetization signals. Tissue demagnetization time
is different for different tissues. These times are identified as
T1 and T2. Another characteristic of a tissue that affects an
MRI is its proton density known as PD. Figure 1 depicts
the complete MRI acquisition process.

In our study, we used the latest OASIS-3 dataset [23],
which is an open source brain MRI database published in
2019. Most of the earlier studies have been done using ADNI

datasets, which are cross-sectional datasets and do not
include more than 500 subjects. OASIS-3 is the largest longi-
tudinal dataset of longitudinal MRI images that consists of
1068 subjects (age group of 46 to 95), collected over a period
of 15 years.

“The CDR is a 5-point scale used to characterize six
domains of cognitive and functional performance applicable
to Alzheimer disease and related dementias: Memory, Orien-
tation, Judgment & Problem Solving, Community Affairs,
Home & Hobbies, and Personal Care. The necessary infor-
mation to make each rating is obtained through a semi-
structured interview of the patient and a reliable informant
or collateral source (e.g. family member)” [27].

The OASIS database also provides CDR for each subject.
The CDR values of a person over a particular period of time
may or may not be the same. There are multiple scans of the
same subject (4-5 times) in the time period of 15 years with
different CDR values. These scans can be further used as
samples. Hence, the database has more than 4000 MRIs.

2.2. Data Preprocessing. We performed data preprocessing
using Python and FreeSurfer [28]. Main steps of data prepro-
cessing are listed below and more visually shown in Figure 2.

2.2.1. Data Augmentation. We augmented our data to make
our classifier much more tolerant towards variance in the data
(prevents overfitting) and to increase dataset size (prevents
underfitting). We employed 4 augmentation techniques:

(1) Flips. Each image is flipped horizontally as well as
vertically.

(2) Scaling. Each image is scaled in either “x” or “y”
direction with the help of a transform matrix
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Figure 2: Data preprocessing flow.
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(3) Rotations. Affine transform matrix
cos ∅− sin∅
sin∅cos∅

 !

gives rotated MRI images in different directions. “∅”
was varied between 25 and 195.

(4) Shears. Affine transform matrix
1 s
0 1

 !
applied to

each image where Shear value changes from 0.3 to
0.7.

2.2.2. De-Oblique.During the MRI process, the subject’s head
may be tilted from to cover the whole brain or to avoid arte-
facts caused by water and air in the nose and eyes of the sub-
ject. This causes the MRI to be oblique and makes
intersubject or intrasubject registration more difficult. The
MRI images in our dataset were de-obliqued using the Free-
Surfer software.

2.2.3. Inhomogeneity Correction. Brain consists of different
types of tissues like gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF), and all these tissues have dif-
ferent range of penetration to the magnetic field and may
result into very bright or very dull artefacts in the MRI
images. This may confuse a radiologist since all tissues of a

(a)

Oxj

Oyj
Ozj

(b)

Figure 5: (a) Decimation of triangles as a mesh of the whole brain. (b) The trapezium points and edges. Xv is the number of voxels included in
the masked region. Vm is the volume of the mesh mm3. Am the surface area of the mesh in mm2.

1 1

1
1 1

1

1
1

1

1
0

0
0

0

0
3

3

3
3

2

2
2

2

4
4

1
1

2

2

3

3

4

4

5

5

Image
matrix

P (1, 1) = 1 in GLCM
matrix means pixel i
with intensity value
1 co occurs with
intensity value j = 1
only once with 𝜙 =
0 and distance δ = 1

GLCM
matrix

P (2, 3) = P (3, 2) = 4
means pixel with
intensity 2 co exists
with intensity 3,
four times with 𝜙 =
0 and distance δ = 1

Figure 6: GLCM procedure. Different color schemes were used to
track the steps.

1 1

1
1 1

11

1 0
0 0 0

0
0
0 0

0
00

0
0

0
2 2

2

1 2 3

3

4

4

5

5

2
1

Image
matrix

GLSZM
marix

P (1, 5) element of GLSZM matrix
is 0 means the pixel value 1 with
size 5 doesn’t co exist in the image
matrix at all
P (3, 2) element of GLSZM matrix
is 2 means the pixel value 3 with
size 2 exists twice in the image
matrix.The size zone is
independent of the angle
P (5, 3) element of GLSZM matrix
is 1 means the pixel value 5 clubs
in the size groups only once in
the image

Figure 7: GLSZM procedure. Different color schemes were used to
track the steps.

0 0 0
0
0
0
00

0
0
0

0
0

0
0
0

4 1
1

1
1

3
3
3
2

1
1

2

2

3

3

4

4

5

5

Image
matrix

GLRLM
matrix

The element P (1, 1) of
GLRLM matrix represents the
intensity level 1 with run
length 1 in the direction 𝜙 = 0
occurs 4 times in the image
matrix

The element P (4, 3) of GLRLM
matrix represents the intensity
level 4 with run length 3 in the
direction with 𝜙 = 0 occurs
once in the image matrix

Figure 8: GLRLM procedure. Different color schemes were used to
track.

4 Computational and Mathematical Methods in Medicine



particular type should have exact intensity and brightness
values. The process of correcting this is known as inhomoge-
neity correction.

2.2.4. Skull Stripping. The nonbrain parts (skull, neck, eyes,
and nose) were removed from all MRI images to have a uni-
form area of study.

2.2.5. Registration. The brain consists of very fine spatial
structures, due to which it is very difficult to extract and inte-
grate the information from different images. The thickness of
the cortex can be as small as 5mm. The thickness of thalamic
nuclei only extends to few millimetres. Registration is the
process of aligning different MRI images in such a way that
the voxels of a particular tissue from all of those images
correspond to the same 3D location. We applied and
adjusted the registration parameters, i.e., translations, rota-
tions, scaling, and shear operations at voxel level to make
the MRI images concurrent.

2.3. Feature Extraction

2.3.1. Features Based on Shape. To extract features based on
shape, we studied spatial characteristics of MRIs as depicted
in Figure 3.

Slice: an MRI is a 3D image. It consists of a set of contig-
uous 2D slices. These slices may either represent the axial,
sagittal, or longitudinal cross section of the subject’s brain.

Voxel: each slice is subdivided into rows and columns.
The intersection of each row and column represents a

volume of the brain. This is known as a voxel. The field-of-
view matrix of a particular size of the slice is used to deter-
mine the voxel size. The voxel details are depicted in Figure 4.

Shape features include legends of 3D size and shape. We
took the whole brain area and volume as our region of inter-
est. A triangular mesh encapsulating the whole brain area
was used to extract various shape features. Figures 5(a) and
5(b) show how a brain is treated as a mesh surface [28].
The mesh has Xf number of triangles.

From this meshed surface of brain, as in Figure 5(b), we
calculated the following different shape features [24].

(i) Mesh volume V j =Oxi,:ðOyj ×OzjÞ/6 (Oxi,Oyj,Ozj are
the tetrahedral vertices)

Vm = 〠
X f

j=1
V j: ð1Þ

(ii) Voxel Volume. Voxelvolume =∑Xv
j=1Vm

The whole brain volume can be obtained by multiplying
the voxel volume V j with the number of voxels in the brain.

(i) Surface Area. AJ = 1/2ðXjY j × XjZjÞ

Sum of abosulte differences for pixel with level 1 =
|1-7/3|+|1-10/5|+|1-14/5|+|1-23/8|+|1-14/5|+|1-15/5| = 90775

(a)

Sum of abosulte differences for pixel with grey level 2
= |2-11/5|+|2-17 /5|+|2-24/8|+|2-17/5|+|2-14/5| = 4.8

(b)

Sum of abosulte differences for pixel with grey level 3
= |3-14/5|+|3-21/8|+|3-8/3|+|3-17/5|+|3-27/8| = 1.683

(c)

Sum of abosulte differences for pixel with grey level 4
= |4-28/8|+|4-17/5|+|4-24/8|+|4-13/5| = 3.5

(d)

Sum of abosulte differences for pixel with grey level 5
= |5-17/8|+|5-27/8|+|5-23/8|+|5-8/3| = 8.958

(e)

Figure 9: (a) NGTDM for neighbours of 1. Different color schemes were used to track NGTDM procedure to calculate the absolute sum of
gray-level difference. (b) NGTDM for neighbours of 2. Different color schemes were used to track NGTDM procedure to calculate the
absolute sum of gray-level difference. (c) NGTDM for neighbours of 3. Different color schemes were used to track NGTDM procedure to
calculate absolute sum of gray-level difference. (d) NGTDM for neighbours of 4. Different color schemes were used to track NGTDM
procedure to calculate the absolute sum of gray-level difference. (e) NGTDM for neighbours of 5. Different color schemes were used to
track NGTDM procedure to calculate absolute sum of gray-level difference.
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Am = 〠
Xf

j=1
Aj: ð2Þ

To calculate the surface area of the whole brain, it is
divided into small mesh areas. We first calculate the surface
area of each mesh and then sum all of them.

(i) Ratio of the Surface Area to the Volume of the Brain.
Am/Vm

(ii) Lower the ratio more the compactness

(iii) Maximum 3D Diameter. It is the largest Euclidean
distance on the various mesh surfaces on the whole
brain.

(iv) The Maximum 2D Diameter of the Slice. It is the
defined as the largest Euclidean distance on the
whole brain mesh surfaces where mesh vertices
are in the axial plane.

(v) Major Axis length. 4 ffiffiffiffiffiffiffiffiffiffiffi
γmajor

p
(vi) This feature calculates the largest axis length of the

whole brain area

(vii) Minor Axis Length. 4 ffiffiffiffiffiffiffiffiffiffiffi
γminor

p

(viii) This feature represents the minimum axis length of
the whole brain area

(ix) Elongation. This feature gives the relationship
between the largest and smallest component of
the whole brain.

(x) Elongation = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γminor/γmajor

p
(xi) Flatness = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γleast/γmajor
p

2.3.2. First-Order Features. These features are obtained by the
statistical analysis of the whole brain based on values of voxel
intensities [24].

Let S be a set of Nv voxels in the whole brain.
Let Nv be the discrete level of intensities in the whole

brain then XðiÞ is the first-order histogram.
The normalized first-order histogram xðiÞ = XðiÞ/Nv

(i) Energy =∑Nv
i=1ðSðiÞ + cÞ2

(ii) Total energy=Vvoxel∑
Nv
i=1ðSðiÞ + cÞ2

(iii) Entropy = −∑Nd
i=1xðiÞ log2ðxðiÞ+∈Þ

(iv) Minimum =min ðSÞ
(v) 10th percentile of S

(vi) 90th percentile of S

(vii) Maximum =max ðSÞ
(viii) Mean = 1/Nv∑

Nv
i=1SðiÞ is the average gray-level

intensity of the whole brain

(ix) Median = themedian gray level of the whole brain
(x) Range =max ðSÞ −min ðSÞ

(xi) Absolute mean deviation=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1jSðiÞ − �Sj

q

(xii) Rootmean square value of the whole brain ðRMSÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ + cÞ2

q

(xiii) Standard deviation =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ2

q

(xiv) Skewness =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ3

q
/

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ2

q
Þ
3
= μ3/σ3

(xv) Kurtosis =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1

q
ðSðiÞ − ŚÞ4/

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nv∑

Nv
i=1ðSðiÞ − �SÞ2

q
Þ
2
= μ4/σ4

(xvi) Variance = 1/Nv∑
Nv
i=1jSðiÞ − �Sj

2.3.3. Gray-Level Cooccurrence Matrix [24]. GLCM is a
texture filter that gives the pixel distribution of a particular
set of pixels i, j in a specific direction and distance. The
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pði, jÞ ∣ ∅,δ| value of GLCM represents the number of
times; the pixel with intensity i coexists with intensity j
with angle Ø and distance δ. Figure 6 shows how GLCM
can be obtained from image matrix. The different color
schemes indicate a particular pixel’s coexistence. Generally,
the following statistical features are extracted and then
averaged over GLCM for each direction (angle).

(i) Autocorrelation

(ii) Joint average

(iii) Entropy

(iv) Variance

(v) Contrast

(vi) Energy

(vii) Homogeneity

(viii) Inverse of the difference movement

(ix) Inverse variance

2.3.4. Gray-Level Size Zone Matrix [24]. GLSZM quantifies
different pixel intensity values in different size zones. A size
zone is defined as connected pixels/voxels with the same
gray-level irrespective of direction. The Pði, jÞ element of
GLSZM represents the number of times the intensity value
i of the size zone j exists in the image matrix. Figure 7 depicts
how GLSZM can be obtained from the image matrix. Differ-
ent colors indicate different size zones of different intensity
values.

GLSZM can be used to extract the following features:

(i) Emphasis on small areas

(ii) Emphasis on large areas

(iii) Gray-level nonuniformity

(iv) Normalized gray-level nonuniformity

(v) Size zone nonuniformity

(vi) Normalized size zone nonuniformity

(vii) Low gray-level emphasis on small areas

(viii) High gray-level emphasis on small areas

(ix) Low gray-level emphasis on large areas

(x) High gray-level emphasis on large areas
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Figure 13: (a) Feature importance prediction by XGBoost. (b)
Feature importance prediction by AdaBoost. (c) Feature importance
prediction by bagging. (d) Feature importance prediction by
random forest.

Table 1: Sensitivity, specificity, and accuracy comparison of
different ensemble classifiers.

Classifiers Sensitivity Specificity Accuracy

XGBoost 99.82% 97.01% 97.38%

AdaBoost 94.91% 97.76% 97.21%

Bagging classifier 74.22% 90.07% 87.56%

Random forest 94.44% 87.07% 87.72%
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2.3.5. Gray-Level Run Length Matrix (GLRLM) [24]. The
intensity runs in a GLRLM are defined as the length of con-
nected pixels of equal intensity values and in a particular
direction. A GLRLM element Pði, jÞ ∣ ∅ represents the num-
ber of times a particular run length j of intensity i in direction
Ø occurs in the image matrix. Figure 8 depicts how GLRLM
can be obtained from image matrix. Different colors indicate
different run lengths of the particular length in a particular
direction.

The GLRLM is used to extract following features:

(i) Emphasis on short run

(ii) Emphasis on long run

(iii) Nonuniform gray level

(iv) Normalized nonuniform gray level

(v) Nonuniform run length

(vi) Normalized nonuniform run length

(vii) Run percentage

(viii) Variance of gray level

(ix) Run variance

(x) Run entropy

(xi) Low gray-level run emphasis

(xii) High gray-level emphasis

(xiii) Short run low gray-level emphasis

(xiv) Short run high gray-level emphasis

(xv) Long run low gray-level emphasis

(xvi) Long run high gray-level emphasis

2.3.6. Neighbouring Gray Tone Difference Matrix [24]. Here,
we consider neighbouring pixels of a particular pixel at a
distance ∂ of that pixel. Thismatrix is the set of absolute differ-
ences of the gray levels of the voxel and its neighbouring vox-
els. Let Pnv be the set of whole brain voxels; then, pnvðix , iy , izÞ
belongs to Pnv where pnv denotes the gray level of the voxel at
position ðix, iy , izÞ. The average gray level of the neighbour-

hood is given as follows: �Gj = �Gðix, iy, izÞ = 1/v∑∂
kx=−∂∑

∂
ky=−∂

∑∂
kz=−∂pnvðix + kx, iy + ky, iz + kzÞ where V is total number of

voxels in the whole brain.

(i) Let i denote the value of gray levels in the image

(ii) Let ni denote the number of voxels of gray level i

(iii) Let pi denote the gray-level probability
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Figure 14: Area under the accuracy curve for different ensemble classifiers.
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(iv) Let si be the sum of absolute difference of a gray level
i

Figures 9(a)–9(d) are the required NGTDM for the pixel
with intensities 1-4. Figure 9(e) describes how the absolute
difference of the different gray levels is calculated. Different
colors are used to track down the neighbours of a particular
gray level as shown in the following example where we have
5 discrete gray levels 1 to 5. Figure 10 is the final NGTDM.

Features calculated from NGTDM are as follows:

(i) The neighbourhood-based coarseness

(ii) Neighbourhood-based contrast

(iii) Rate of change of gray levels within voxels

(iv) The complexity of neighbourhood gray levels

(v) Strength of neighbourhood gray levels

2.3.7. Gray-Level Dependence Matrix [24]. GLDM represents
the dependencies of one gray level on other gray levels. It is
defined as a set of connected voxels within distance ∂ depen-
dent on a central voxel. A voxel with a gray level i is depen-
dent on another voxel of gray level j if

i − jj j ≤ γ: ð3Þ

The ði, jÞth element of GLDM Pði, jÞ represents how often
a voxel with the gray value i coexists with its dependent voxel
having gray level j occurs in the whole brain image. Figure 11
describes how GLDM is obtained from brain MRI with n = 5,
i.e., 5 discrete gray levels, γ = 0, and ∂ = 1. The GLDM col-
umns start from 0, and it can go to any finite number of
dependent voxels.

The above GLDM is used to extract the following features:

(i) Small dependence significance

(ii) Large dependence significance

(iii) Gray-level heterogeneity

(iv) Dependence heterogeneity

(v) Dependence heterogeneity normalized

(vi) Gray-level deviation

(vii) Dependence deviation

(viii) Entropy of dependency

(ix) The low gray-level significance

(x) The high gray-level significance

(xi) Small dependency and low gray-level significance

(xii) Small dependency and high gray-level significance

(xiii) Large dependency and low gray-level significance

2.3.8. Decreasing Gray-Level Matrix (Novel Filter). We pro-
pose a novel filter matrix to improve feature set. The pði, jÞ
∣ ∅,δ pixel of DGLM represents the occurrence of the pixel
with intensity i and pixel with intensity j such that i ≤ j.
Figure 12 depicts and obtains a DGLM from the image with
Ø = 0 and δ=1. Colors are used to track down the location
of pixels for which the condition i < j holds true.

The DGLM is used to extract the following features in
four directions, i.e., 0, 45, 90, and 135. Then, the average is
taken to get the summary of the following features:

(i) Energy

(ii) Mean

(iii) Absolute mean deviation

(iv) Skewness

(v) Kurtosis

Table 2: Comparison with similar studies.

Research study Year Dataset Brain area Classifier Accuracy

Ahmad Chaddad [32] 2018 OASIS-1
Hippocampus
Amygdala

Random forest
Random forest

84.09%

CNN 92.5%

Feng Feng [33] 2018
Local hospital

data
Hippocampus SVM 86.75%

Yupeng Li and Jiehui Jiang [34] 2019
Local hospital

data
Hippocampus SVM 91.5%

Kun Zhao [35] Jan 2020 ADNI Hippocampus SVM 88.21%

Tao-Ran Li [36]
Dec
2020

ADNI
Right posterior and left superior cingulate

Gyrus
SVM 95.9%

Current study proposed by us 2021 OASIS-3 Whole brain

Ensemble
classifiers

XGBoost 97.38%

AdaBoost 97.21%

Bagging 87.56%

Random forest 87.72%
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(vi) Entropy

(vii) Autocorrelation

2.4. Feature Selection. Feature selection is the process of eval-
uating and selecting the most important features from the set
of all features depending on their contribution to the
machine learning task at hand. This process helped us to
select the features with the highest predictive relevance to
our classification task. This in turn also helps to eliminate
redundant features.

In our study, we focused on tree-based classification
methods. These methods have intrinsic feature selection
methods. Using these intrinsic methods, we found the feature
relevance for that each classifier.

Figure 13(a) denotes that the novel feature “first order
mean of DLGM” has the highest predictive power for
XGBoost classifier; hence, it is the most important feature
for this classifier. The other important features for XGBoost
classifier are as follows:

(i) Decreasing Gray-Level Matrix feature first-order
mean 0.26

(ii) Gray-Level Dependence Matrix feature high gray-
level emphasis 0.16

(iii) Gray-Level Run Length Matrix feature gray-level
run emphasis 0.14

(iv) Gray-Level Cooccurrence Matrix feature correlation
0.08

(v) Gray-Level Cooccurrence Matrix feature cluster
shade 0.05

(vi) Decreasing Gray-Level Matrix feature information
measure of correlation

Figure 13(b), denotes that the novel feature “first order
mean of DLGM” has the highest predictive power for
AdaBoost classifier; hence, it is the most important feature
for this classifier. The other important top five features for
AdaBoost classifier are as follows:

(i) Decreasing Gray-Level Matrix feature first-order
mean 0.17

(ii) Neighbouring Gray Tone Difference Matrix feature
busyness 0.05

(iii) Decreasing Gray-Level Matrix feature maximal
correlation coefficient 0.04

(iv) Decreasing Gray-Level Matrix feature information
measure of correlation 0.035

(v) Gray-Level Cooccurrence Matrix feature correlation
0.03

Figure 13(c) denotes that the novel feature “Maximal
Correlation coefficient of DLGM” has the highest predictive
power for bagging classifier; hence, it is the most important

feature for this classifier. The other important top five fea-
tures for bagging classifier are as follows:

(i) Decreasing Gray-Level Matrix feature maximal cor-
relation coefficient 0.16

(ii) Gray-Level Dependence Matrix feature large depen-
dence emphasis 0.05

(iii) Decreasing Gray-Level Matrix feature information
measure of correlation 0.03

(iv) Gray-Level Cooccurrence Matrix feature difference
average 0.03

(v) Gray-Level Dependence Matrix feature high gray-
level emphasis 0.03

Figure 13(d) denotes that the novel feature “first order
mean of DLGM” has the highest predictive power for ran-
dom forest classifier; hence, it is the most important feature
for this classifier. The other important features for random
forest classifier are as follows:

(i) Decreasing Gray-Level Matrix feature first-order
mean 0.12

(ii) Decreasing Gray-Level Matrix feature information
measure of correlation 0.07

(iii) Decreasing Gray-Level Matrix feature maximal cor-
relation coefficient 0.06

(iv) Gray-Level Run Length Matrix feature high gray-
Level run emphasis 0.05

(v) First-order mean absolute deviation 0.05

2.5. nsemble Learning Classifiers. “Ensemble learning is a
machine learning paradigm where multiple learners are
trained to solve the same problem. In contrast to ordinary
machine learning approaches which try to learn one hypoth-
esis from training data, ensemble methods try to construct a
set of hypotheses and combine them to use” [29]. A good
number of studies [30, 31] proved that the generalization
capability of a set of learners is much greater than a single
learner. Ensemble classifiers have been applied in diversified
fields, e.g., cyber security, intrusion detection system, face
recognition system, and traffic control systems. The concept
of ensemble classification proceeds in two stages:

(a) Classifier generation

(b) Aggregation of results of these classifiers

There are three approaches to classifier generation and
aggregation.

(i) Bagging

(ii) Boosting

(iii) Stacking
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2.5.1. Bagging. In this method, different training datasets are
generated by resampling the training dataset, i.e., replacing
some of the samples randomly. Suppose we have the follow-
ing dataset: (4,5,6,7,8,9,10) and we have 5 classification algo-
rithms. A different dataset is created by randomly resampling
our data and passed to each classifier for training:

Dataset for classifier 0: (4,5,5,7,8,10,10) by replacing 6
with 5 and 9 by 10.

Dataset for classifier 1: (4,5,7,7,9,9,10) by replacing 6 by 7
and 8 by 9.

Dataset for classifier 2: (5,5,7,7,9,9,6) by replacing 4 by 5
and 10 by 6.

The results of all these classifiers are aggregated when
taking predictions and inference time.

2.5.2. Boosting. Boosting attempts to create chains of different
classification algorithms. The chain with the best perfor-
mance on training data is then used for inference, coming
back to our previous example where we had our training
dataset as (4,5,6,7,8,9,10) and 5 classification algorithms. If
we are creating chains of 3 classifiers, we can create 10 such
chains. A single chain of 3 classifiers is created in the follow-
ing manner:

(a) A batch of training dataset is passed through classifi-
cation algorithm 1, i.e., classifier 0

Dataset for classifier 0: (4,5,6,7,8,9,10)

(b) Based on the performance of classifier 0 on this train-
ing batch, the whole batch is redistributed. The incor-
rectly predicted samples (by classifier 0) from the
training batch are chosen more often to create the
training batch for classifier 1. In this manner, classi-
fier 1 will try to improve on the mistakes done by
classifier 0. This is true for each classifier in the chain

Dataset for classifier 1: (4,5,7,7,9,9,10) by replacing 6 by 7
and 8 by 9 as 7 and 8 was incorrectly predicted.

(c) The same process will be repeated for classifier 2

Dataset for classifier 2: (10,9,7,7,9,9,10) by replacing 4 by
10 and 5 by 7 as both 4 and 5 was incorrectly predicted.

In essence, boosting will create and choose the chain which
is able to collectively give better results than other chains.

In this study, we have explored two boosting ensemble
classifiers XGBoost and AdaBoost. As is evident from our
results, the prediction accuracy with these classifiers is much
higher than bagging classifiers.

2.5.3. Stacking. Stacking is usually a 2 step approach. The
classifiers in step 1 are known as base learners while the clas-
sifiers in step 2 are called stacking model learners. Each step
is an ensemble of few classification algorithms. Predictions
from the base learners are used as dataset for stacking model
learners. Note that the predictions from base-level classifiers
still maintain relationships with initial dataset which the
stacking level classifiers can understand. The predictions
from the stacking model learners are used at inference time.

3. Results

Along with accuracy, the most important metrics to analyze a
biomedical machine learning study are sensitivity and
specificity.

Sensitivity is the measure of true positives, which means
accurate identification of patient with the disease. The test
should have more true positives and minimum false nega-
tives. False negatives mean we may miss out the positive
identification of disease. Our study is a kind of screening test
hence should have more sensitivity. Table 1 shows highest
sensitivity is 99.82% hence in accordance to screening test.

Specificity is the measure true negatives, which is the abil-
ity of a test to rule out the disease accurately. Target of study
is to have minimum false positives. As the study is screening
test, we can have false alarms and less specific. The specificity
of our study is 97.01%.

The three metrics are measured with following formulae:
(i) Specificity = true negative outcomes/true negative

outcomes + false positive outcomes
(ii) Sensitivity = true positive outcomes/true positive

outcomes + false negative outcomes
(iii) Accuracy = true negative outcomes + true positive

outcomes/true negative outcomes + false positive outcomes
+ true positive outcomes

3.1. Analyzing Different Ensemble Methods and Results. In
our study, we observed that boosting ensemble learning clas-
sifiers such as AdaBoost and XGBoost perform better than
bagging and randomized classifiers. Bagging classifiers and
random forest classifiers yield almost the same accuracy of
87%. The results are listed in Table 1. The accuracy calculated
from the area under the curve is depicted in Figure 14 for all
four ensemble classifiers.

4. Conclusion

In this study, we have proposed to build a decision support
system for radiologists in order to make fast and accurate
decisions for early detection of brain degeneration by map-
ping CDR values to MRI images. The most important perfor-
mance metrics in the field of computer-aided biomedical
studies are sensitivity, specificity, and accuracy. Through this
study, we have shown that better data collection and prepro-
cessing (data augmentation and feature selection) along with
gradient-boosted ensemble learning classifiers contribute to
improvements in all 3 metrics.

Data is one of the most important factors for driving the
accuracy of any study. In our study, we worked on the
OASIS-3 dataset, which is a longitudinal dataset with 4096
MRI scans while earlier studies are performed on cross-
sectional datasets with less than 500 MRI scans. This dataset
also gives specific details about how the CDR value changes
for a subject with respect to changes in the subject’s MRI
scan. Any machine learning system requires large amount
of data to be optimally trained. In our study, we have also
employed data augmentation techniques. Data augmentation
resulted in our classifier being much more tolerant towards
variance in the data; this prevents overfitting. Another major

11Computational and Mathematical Methods in Medicine



impact of data augmentation was the increase in dataset size
from 4096 to 10000 MRI scans; this prevents underfitting.
Mitigating overfitting and underfitting helps to achieve opti-
mal accuracy on any dataset, irrespective of the classifier
being used.

Our domain experts (Dr. Kunal Jain and Dr. Tanu)
suggested that brain degeneration is not localized and affects
the brain as a whole. As such, we have utilized whole brain
volumes for our study and classification.

We experimented with Radiomics features and found
that, for our data, the most promising features of

(i) GLCM are correlation, cluster shade, joint average,
and cluster prominence

(ii) GLRLM are gray-level run emphasis, short run high
gray-Level emphasis, short run low gray-level
emphasis, and gray-level variance

(iii) NGTD Matrix is busyness

(iv) GLDM are high gray-level emphasis and small
dependence low gray-level emphasis

(v) GLSZM is small area low gray-level emphasis

Our study also proposes a novel texture filter DGLM. The
features mean, information measure of correlation, maximal
correlation coefficient, first-order entropy, and first-order
skewness from novel DGLM improved the accuracy from
95.6% to 97.38%.

This study also reaffirmed the fact that ensemble learning
classifiers are usually much more accurate than a single
classification algorithm. The study observed that gradient-
boosted classifiers do not suffer from overfitting and also help
to reduce generalization error, hence improving accuracy,
sensitivity, and specificity.

The study results have been compared to other different
studies in this area as depicted in Table 2.

Data Availability

In this study, we used open source data. Data is available at
https://www.oasis-brains.org/, the data was requested to
Oasis-3 Brain team, and it provided the login and password
to download the data; the same can be shared as and when
needed.
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