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Investigation of MicroRNA 
and transcription factor mediated 
regulatory network for silicosis 
using systems biology approach
J. K. Choudhari1,3, M. K. Verma1,2, J. Choubey3 & B. P. Sahariah1*

Silicosis is a major health issue among workers exposed to crystalline silica. Genetic susceptibility has 
been implicated in silicosis. The present research demonstrates key regulatory targets and propagated 
network of gene/miRNA/transcription factor (TF) with interactions responsible for silicosis by 
integrating publicly available microarray data using a systems biology approach. Array quality 
is assessed with the Quality Metrics package of Bioconductor, limma package, and the network 
is constructed using Cytoscape. We observed and enlist 235 differentially expressed genes (DEGs) 
having up-regulation expression (85 nos) and down-regulation expression (150 nos.) in silicosis; and 
24 TFs for the regulation of these DEGs entangled with thousands of miRNAs. Functional enrichment 
analysis of the DEGs enlighten that, the maximum number of DEGs are responsible for biological 
process viz, Rab proteins signal transduction (11 nos.) and Cellular Senescence (20 nos.), whereas IL-17 
signaling pathway (16 nos.) and Signalling by Nuclear Receptors (14 nos.) etc. are Biological Pathway 
involving more DEGs. From the identified 1100 high target microRNA (miRNA)s involved in silicosis, 
1055 miRNAs are found to relate with down-regulated genes and 847 miRNAs with up-regulated 
genes. The CDK19 gene (Up-regulated) is associated with 617 miRNAs whereas down-regulated gene 
ARID5B is regulated by as high as 747 high target miRNAs. In Prediction of Small-molecule signatures, 
maximum scoring small-molecule combinations for the DEGs have shown that CGP-60774 (with 20 
combinations), alvocidib (with 15 combinations) and with AZD-7762 (24 combinations) with few other 
drugs having the high probability of success.

The health risks of silica (silicon dioxide,  SiO2) primarily responsible for silicosis, one of the most frequent 
pneumoconiosis are highly documented as an occupational disease in mining workers and others with silica 
 exposures1–5. Silicosis is characterized by injury to the alveolar cells preceded by an initial immune response 
and followed by expansion and activation of fibroblasts, and finally the deposition of the extracellular matrix 
(ECM). Exposure dose, both duration and concentration plays an important role in the development of silicosis 
 types6,7. Exposure to crystalline silica (particles < 10 μm in diameter), amorphous silica (non-crystalline) and 
nano-silica (particles < 100 nm in diameter) exhibit a different effect on the development of silicosis, pulmonary 
fibrosis, and inflammation and cytotoxicity,  respectively8. Silicosis is broadly categorized into three forms namely, 
Chronic silicosis, (develops due to exposure at low-moderate exposure for 10 or more years), Accelerated sili-
cosis (develops from moderate to high-level exposure within 10 years) and Acute silicosis (results from intense 
exposure for a few weeks or to 5 years from the time of initial exposure).

Silicosis is illustrious irreversible lung fibrosis simultaneously coupled with many other diseases, such as 
pulmonary tuberculosis , lung cancer, renal failure, systemic sclerosis, rheumatoid arthritis, systemiclupus ery-
thematosus, gastrointestinal problem, and autoimmune conditions, etc.8,9. Silica-induced lung damage occurs 
by several mechanisms including cell death by apoptosis, fibrosis and production of  cytokines10. Due to the 
graveness of the element, International Agency for Research on Cancer (IARC) enlisted crystalline silica as a 
 carcinogen11. There is possibility of no apparent symptoms at the initial stage, however, silicosis can continue even 
after cease of the silica exposure making the situation critical, non-curable, irreversible and uncontrolled immune 
 processes12. Scientist and Medicine personnel recommend identification of workers at risk, prevention of further 
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exposure to silica dust by job rotation and use of personal protective equipment, etc. to control the issue enhanced 
with early diagnosisand  prediction9,13. Bandyopadhyay et al.14 stated that diagnostic challenges arise as silicosis 
shows resemblance in radiological and clinical overlap with pulmonary tuberculosis and neoplastic lesions.
Therefore, it is necessary to investigate the complex molecular mechanisms that underlie the disease. Identifica-
tion of differentially expressed genes (DEGs) in response to silica exposure and detail examination of the DEGs 
using the suitable statistical and computational approach may provide valuable information about the molecular 
mechanism(s) underlying the toxicity of crystalline  silica15. The DEGs (upregulation/ downregulation) and/or 
their products, regulators, mostly transcription factors (TFs) and micro RNA (miRNA) following appropriate 
validation to recognize as a suitable biomarker(s) for silicosis is under investigation. A thorough investigation 
of possible molecular targets and mechanisms can make a way to achieve successful treatment options as well 
as prevention of potential adverse effects of silica exposure. The behavior of genes and genetic components due 
to silica exposure and toxicity are still rarely explained and are a vast area of scientific  research16. Zhang et al.17. 
attempted to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients 
using Illumina Human Methylation 450 K bead chip arrays. In the past, microarray-based transcriptomics 
studies have been successfully employed to gain insights into the molecular mechanisms underlying the toxicity 
of  chemicals7 as well as to identify molecular markers for their  toxicities18. Advances in high throughput gene 
expression profiling, such as transcriptomics, microarray analysis can enlighten in a better understanding of the 
effects of toxic agents in biological systems.

Wang et al.19 reported phagocytosis of  SiO2 into the lung causes inflammatory on the cascade resulting in 
fibroblast proliferation and migration followed by fibrosis associated with monocyte chemotactic protein 1 
and sustaine increase in p53 and PUMA protein levels. Wang et al.19 interpreted involvement of MAPK and 
PI3K pathways in the  SiO2

− induced alteration of p53 and PUMA expression and to have possibility of link 
between  SiO2-induced p53/PUMA expression in fibroblasts and cell migration on the basis of miRNAs that 
can interference with p53 and PUMA and prevent  SiO2-induced fibroblast activation as well as migration. The 
study provide insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for 
silicosis treatment. Therefore, in the current study we target to investigate the molecular mechanism underly-
ing lung cell differentiation by identifying DEGs involved in silicosis, their expression (up/down-regulation), 
produce the possible network and gene ontology term analysis namely biological pathway and biological process 
for differentially expressed genes. We have also considered for identification of transcription factors (TFs) and 
microRNA (miRNA) associated with these DEGs for the regulation of the disease gene. A common network 
construction combining the relevant of TFs, miRNA, gene network, and small molecules for regulation of the 
disease progress is targeted.

Methodology
Microarray datasets. In this study, we have considered the work “Mechanisms of crystalline silica-induced 
pulmonary toxicity revealed by global gene expression profiling” and Dataset GSE30180 from the Gene Expres-
sion Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo)16. Datasets GSE30180 contains informa-
tion regarding clinical tissues of human lung epithelial cells (A549 cells) considering 10 samples (5 control 
and 5 crystalline silica exposed to 800 ug/ml for 6 h using differential gene expression profile induced by silica 
conducted by National Institute for Occupational Safety and Health  USA16). We have considered the available 
maximum concentration (800 ug/ml) from the study considering general worker’s shift exposure time period to 
have an idea at extreme conditions. Quality Control assessment of data quality is a major concern in microarray 
analysis.  arrayQualityMetrics20 is from Bioconductor package that provides a report with diagnostic plots for 
one or two colour microarray data are used.

We have used arrayQualityMetrics for data quality assessment of microarray data and Quality Control is 
performed to identify potential low-quality arrays. The removal of low-quality arrays is desirable to avoid nega-
tive impact in downstream analysis procedures, by introducing invalid information and ultimately impairing 
statistical and biological significance. Array quality is assessed through the computation of commonly used 
statistical measures arrayQualityMetrics, an R package for quality control and quality assessment analysis that 
supports different types of microarrays in R. Here, we use an additional QC/QA that provides an HTML report 
with interactive plots. The instensity distribution of the arrarys of each box correspeonds to one array which 
indicated the over all quatity of each array with other corresponds are goods (Figure S1, S2).

Screening of differentially expressed genes. To screen DEGs between control and crystalline silica 
exposed cell, differential expression analysis is conducted using Bioconductor. Bioconductor operates in R (a 
statistical computing environment) and is applied for genomic data analysis and comprehension. The normal-
ized data is analysed for identification of DEGs by limma package 3.26.8 in R (following adjust = “fdr” sort by B”, 
number 250). The robust MultiArray average  method21 is applied to perform background correction and data 
normalization using default parameters in the limma  package22. Subsequently, a differential analysis between 
silica exposed and the no silica exposed is performed using the limma  package22, a modified version of the 
standard t-test incorporating the Benjamini-Hochberg (BH) multiple hypotheses correction  technique23. DEGs 
are defined as the false discovery rate (FDR) set as the cut-off parameters to screen out 250 significant increases 
or decreases in gene expression  levels24.

Identification of transcription factor. IRegulon  plugin25 in Cytoscape (version 3.8.0)26 is used to detect 
transcription factors using motif2TF and their optimal sets of direct targets for a set of genes Chip-seq data. The 
minimum identity between orthologous genes is 0.05%, while the maximum FDR on motif similarity is 0.001. 
The normalized enrichment score (NES) > 5 is considered as a threshold value for the selection of potential rela-
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tionships. The NES for a given motif/track is computed as the Area Under the Recovery Curve (AUC) value of 
the motif/track minus the mean of all AUCs for all motifs (or tracks), and divided by the standard deviation of all 
AUCs. When the distribution of AUCs follows a normal distribution then the NES score is a z-score indicative 
of the significance. To maintain high accuracy of network inference large motif collections are collected from 
various species, and linking these to candidate human TFs via a motif2TF 25.

Identification of miRNA (microRNA) for regulation Silicosis. To identify targets, regulators and 
interactions of the molecular factors included in the deferential gene expressed network, we search for gene-
miRNA target and cross-validation using microRNA Data Integration Portal (mirDIP)27 in 30 database sources 
such as BCmicrO, BiTargeting, CoMeTa, Cupid, DIANA, ElMMo3, GenMir +  + , MAMI, MBStar, MirAncesTar, 
MirMAP, MirSNP, MirTar, Mirza-G, MultiMiTar, PACCMIT, PITA, PicTar, RNA22, RNAhybrid, RepTar, Tar-
getRank, TargetScan, TargetSpy, miRDB, miRTar2GO, miRcode, microrna.org, mirCoX and miRbase for regu-
lating the expressions using both unidirectional and bidirectional search method. All the database considered in 
the present study is from authenticated and publically available  sites27.

Functional enrichments analysis. ClueGO and  CluePedia28 plug-in of Cytoscape is used for functional 
enrichment analysis. ClueGO plug-in translates functionally grouped Gene Ontology (GO) and pathway anno-
tation networks with a hypergeometric test along with the kappa  coefficient28 of pathways as well as functional 
correlations among pathways. ClueGO provides enrichment scores for selected gene sets against the user-pro-
vided gene list.  CluePedia29 finds new markers that are potentially related with pathways and extend ClueGO 
functionality with other biological data deriving screened results. Default parameters are used, and only GO 
terms with P < 0.05 are selected in ClueGO with a Benjamini–Hochberg correction and a kappa score of 0.5 
(medium).

Network construction and analysis of clusters. Finally, regulatory networks are constructed for silico-
sis by merging selected DEGs and TFs-DEGs pairs using Cytoscape. Thereafter, the Molecular Complex Detec-
tion (MCODE) plug-in23 is used to screen Clusters of hub genes from the network with degree cut-off = 10, 
haircut on, node score cut-off = 0.2, k-core = 2, and max. depth = 100.

Prediction of small-molecule signatures considering DEGs of silicosis. L1000CDS2 web tool is 
used for prediction of the potential small-molecule signature that matches user input signature genes expres-
sions based on characteristic direction method in the underlying dataset. It is an ultra-fast LINCS L1000 Char-
acteristic Direction Search Engine for prediction the potential small-molecule  signature30 and DEGs are pasted 
into up/down text box and the top 50 signatures are considered.

Results and discussion
Identification of differentially expressed genes. The considered dataset is applied for significant 
DEGs identification by Bioconductor and 235 DEGs are found to be significantly associated with silicosis dis-
ease on the basis of the considered criteria. Table 1a, b enlist total of 235 DEGs, where down-regulated genes and 
up-regulated genes are 150 and 85 nos, respectively. On the basis of important pathway analysis and GO term 
Sellamathu et al.16 identified 60 DEGs for crystalline silica exposure in their study.

Identification of transcription factors (TFs) for differentially expressed genes. Adopting the 
iRegulon plugin in Cytoscape, 24 TFs are identified from publicly available database signatures/genesets (Gen-
eSigDB, Ganesh clusters or/and MSigDB) that are significantly associated with the DEGs involved in the silicosis 
disease. It is found that 20 TFs influence both up and down-expressed genes whereas four TFs are solely involved 
in controlling only the down-regulated genes (Table 2). 

Identification of miRNA for DEGs from database-driven expansion of the network. Using 
 CyTargetLinker31 authors observed initially only 2716 miRNAs responsible for silicosis affected gene regulation 
from databases as mentioned in the methodology. Therefore, the authors further explored a few other databases 
as mentioned in the methodology (public databases around 30 nos). We applied mirDIP and observed a total of 
2586 miRNAs associated with targeted DEGs responsible for silicosis and categorized as “very high” (top 1%) 
and “high” (top 5% (excluding top 1%))27. A total of 1105 miRNA is categorized as very high where 846 miR-
NAs influence upregulated genes, 1055 miRNAs regulate down-regulated genes and 801 miRNAs regulates both 
(Supplementary file 1). For example, among identified miRNA, miRNA- 29 influences epithelial-mesenchymal 
 transition32, and miRNA-489 can repress its target genes MyD88 and Smad3 responsible for  silicosis33. Chen 
et al.34 reported the involvement of IL-10-producing B cells in the development of silica-induced lung inflam-
mation and fibrosis of mice and many such in the list. Yang et al.35 observed significant genetic heterogeneity 
involved in the origin and development of silicosis from research data and recommended relevant miRNAs as 
biomarkers having a role in regulating pulmonary fibrosis. The research group reported differential miRNAs 
in leukocytes as up-regulated (18 nos.) and down-regulated (20 nos.) during silicosis, compared with the con-
trol group miR-19a in peripheral blood  leukocyte35. Faxuanet al.36 observed 39 differential expression miRNAs 
(14 up-regulated and 25 down-regulated in silicosis sample) between silicosis and normal lung tissues. Zhang 
et al.37 performed genome-wide miRNAs expression profiling in BALF cell fraction of 3 silicosis observation 
stages simultaneously with 6 silicosis patients. Among the identified 110 dysregulated miRNAs having down-



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1265  | https://doi.org/10.1038/s41598-020-77636-4

www.nature.com/scientificreports/

Sl. no Symbol logFC P value Sl. no Symbol logFC P value

(a) Down-expression

1 LTB − 0.3411 3.38E−07 76 MYC − 1.1121 3.18E−08

2 CDCP1 − 0.3691 1.25E−07 77 EIF1 − 1.1267 2.77E−07

3 ABL2 − 0.4115 1.53E−07 78 CITED4 − 1.133 4.62E−10

4 EEA1 − 0.415 1.07E−07 79 C16orf72 − 1.1369 2.89E−10

5 SERPINB8 − 0.4776 6.51E−08 80 PMP22 − 1.1442 2.10E−08

6 ZC3H12A − 0.4998 8.23E−08 81 CDKN1A − 1.215 3.91E−08

7 ABTB2 − 0.5189 9.46E−08 82 FOSL1 − 1.2205 2.31E−09

8 KLF10 − 0.5365 9.83E−08 83 TRIM8 − 1.2315 2.95E−08

9 IL1B − 0.5375 1.99E−07 84 DDIT4 − 1.2323 1.38E−08

10 ELF3 − 0.5526 2.55E−07 85 AEN − 1.2672 2.30E−08

11 UBAP1 − 0.5561 9.97E−08 86 MCL1 − 1.2687 1.50E−08

12 SLC25A25 − 0.5606 1.19E−07 87 SERPINE1 − 1.3011 4.86E−08

13 TP53BP2 − 0.5608 6.30E−08 88 SOD2 − 1.3201 1.41E−11

14 NAV3 − 0.569 4.66E−08 89 C3orf52 − 1.3231 6.38E−10

15 KLHL21 − 0.572 5.85E−09 90 F2RL1 − 1.3284 3.64E−08

16 ZBTB20 − 0.5817 8.21E−08 91 NRG1 − 1.3386 1.43E−08

17 CD274 − 0.5835 7.31E−08 92 FRMD6 − 1.3479 3.62E−10

18 SH3KBP1 − 0.5872 3.49E−08 93 NOCT − 1.3675 3.50E−07

19 TEX10 − 0.5877 4.32E−08 94 CLCF1 − 1.374 8.16E−10

20 TUBB2B − 0.5894 1.71E−07 95 BTG1 − 1.3812 2.45E−07

21 HIST1H4H − 0.5987 9.47E−08 96 IL1A − 1.388 6.36E−11

22 EREG − 0.6072 1.15E−08 97 ERRFI1 − 1.4065 1.00E−08

23 HIST1H4B − 0.6251 1.14E−09 98 HIST2H2AA3 − 1.4396 2.32E−08

24 HIST1H2BD − 0.637 5.37E−08 99 PDK4 − 1.4875 3.06E−07

25 SPRY4 − 0.6452 7.90E−09 100 TIPARP − 1.5105 9.14E−11

26 MNT − 0.6567 4.76E−09 101 EFNA1 − 1.5507 1.79E−08

27 ZNF787 − 0.6587 3.67E−08 102 HES1 − 1.5686 8.80E−09

28 TNFRSF10A − 0.6637 2.62E−07 103 DUSP1 − 1.5838 3.65E−11

29 VPS37B − 0.666 1.74E−08 104 BHLHE40 − 1.6055 1.92E−09

30 PPP3R1 − 0.6884 4.75E−08 105 TRIB3 − 1.6163 3.24E−09

31 PPARG − 0.7212 1.64E−07 106 CSRNP1 − 1.6418 2.52E−10

32 SNAI2 − 0.7478 2.92E−07 107 JUND − 1.707 3.89E−11

33 HIST1H2BK − 0.7562 2.39E−07 108 NFKBIZ − 1.7252 7.40E−10

34 BRD2 − 0.7742 5.13E−08 109 ZFP36L1 − 1.733 2.30E−07

35 SLC25A37 − 0.7751 7.63E−08 110 CXCL5 − 1.7693 4.87E−11

36 CITED2 − 0.7784 1.58E−08 111 HBEGF − 1.7961 1.48E−12

37 RASD1 − 0.7834 5.28E−10 112 SMOX − 1.8185 3.67E−09

38 EPAS1 − 0.7965 1.70E−08 113 SOX9 − 1.8386 3.29E−10

39 RELB − 0.7966 2.62E−09 114 ETS1 − 1.8392 1.59E−10

40 HIST2H2AC − 0.8065 3.30E−08 115 CEBPB − 1.8569 4.29E−10

41 MYEOV − 0.8132 1.55E−08 116 ARID5B − 1.8615 4.60E−10

42 VGF − 0.8144 1.93E−08 117 RND3 − 1.8847 9.85E−09

43 ZNF296 − 0.8163 2.07E−07 118 CSF2 − 1.9288 1.13E−11

44 PHLDA2 − 0.8249 2.43E−09 119 GADD45A − 1.93 2.46E−10

45 ZNF34 − 0.8412 1.81E−07 120 MMP10 − 1.9343 2.46E−11

46 SDC4 − 0.8467 2.17E−08 121 TRIB1 − 1.9631 5.73E−10

47 NPC1 − 0.8749 2.46E−08 122 SOWAHC − 2.0047 2.17E−09

48 FOXQ1 − 0.8766 1.73E−07 123 DDIT3 − 2.0533 2.47E−11

49 SEMA4B − 0.9049 4.29E−08 124 CCL20 − 2.055 4.35E−09

50 TSC22D1 − 0.9076 1.84E−08 125 NFKBIA − 2.1639 3.84E−12

51 ODC1 − 0.9077 3.40E−10 126 SERTAD1 − 2.1667 5.24E−11

52 ID3 − 0.9131 1.81E−07 127 FST − 2.2029 1.82E−11

53 CCNL1 − 0.9141 3.46E−08 128 IL11 − 2.2994 5.24E−11

54 HAS2 − 0.9215 7.31E−10 129 NR4A2 − 2.3141 9.86E−11

55 ITPRIP − 0.922 1.23E−08 130 PHLDA1 − 2.3232 5.65E−10

Continued
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Sl. no Symbol logFC P value Sl. no Symbol logFC P value

56 HES4 − 0.9358 1.66E−10 131 TNFAIP3 − 2.3238 6.14E−12

57 KCNF1 − 0.95 2.37E−07 132 TMEM158 − 2.3369 7.44E−12

58 PIM1 − 0.9635 1.97E−07 133 STC1 − 2.4343 5.40E−14

59 CREBRF − 0.9638 5.34E−08 134 GEM − 2.7581 1.41E−10

60 FOXD1 − 0.971 1.84E−08 135 KLF6 − 2.7745 4.91E−12

61 TICAM1 − 0.9763 2.72E−10 136 IRAK2 − 2.8376 5.47E−11

62 DDX10 − 0.9801 2.20E−09 137 IER3 − 2.9841 8.31E−13

63 ZNF143 − 0.9831 2.08E−07 138 DUSP5 − 3.0033 4.70E−12

64 TSC22D2 − 0.9901 1.97E−08 139 CXCL2 − 3.0447 4.31E−13

65 CLK1 − 0.9959 7.49E−08 140 BIRC3 − 3.0477 4.14E−14

66 EHD1 − 1.0058 1.26E−09 141 IL6 − 3.09 4.80E−14

67 RYBP − 1.0184 2.31E−08 142 GDF15 − 3.2752 5.89E−14

68 STC2 − 1.0209 2.01E−07 143 JUN − 3.4108 8.15E−13

69 TMEM156 − 1.037 4.80E−08 144 ZFP36 − 3.4123 6.61E−11

70 FBXO32 − 1.0608 5.93E−09 145 PPP1R15A − 3.4502 5.73E−14

71 PTHLH − 1.0665 2.10E−10 146 PTGS2 − 3.9915 1.10E−12

72 AGO2 − 1.0675 6.71E−09 147 FOS − 4.3462 1.87E−12

73 ISG20 − 1.0961 3.05E−10 148 FOSB − 5.118 7.37E−15

74 PLAUR − 1.098 3.53E−10 149 EGR1 − 5.1837 7.67E−15

75 SERTAD2 − 1.104 2.80E−09 150 CXCL8 − 5.3785 7.60E−17

(b) Up-expression

1 MAT2A 1.9868 8.29E−09 44 MUM1 0.6787 7.56E−08

2 TNS3 1.4299 4.96E−08 45 AFAP1L2 0.6772 3.33E−10

3 FZD2 1.3399 3.41E−08 46 RSPRY1 0.6733 7.20E−08

4 BAAT 1.173 2.88E−10 47 FAM120B 0.666 1.13E−07

5 SRSF5 1.1311 2.43E−08 48 IDH1 0.6532 3.22E−07

6 KIF20A 1.1296 8.54E−10 49 STK36 0.6508 1.52E−07

7 MIR503HG 1.0687 2.56E−08 50 OIP5 0.6505 6.00E−08

8 FAM83D 1.0517 2.22E−08 51 SUOX 0.6391 1.59E−08

9 PDXK 1.0353 5.96E−08 52 PHLDB1 0.6384 8.64E−08

10 FAM217B 1.0242 9.44E−09 53 AP3M2 0.634 2.75E−08

11 MED20 1.0059 2.15E−08 54 CKAP2 0.6166 4.08E−08

12 CENPF 0.9756 1.14E−08 55 C17orf58 0.6126 6.55E−08

13 TMEM203 0.9476 3.90E−08 56 LGR4 0.6104 6.92E−08

14 CPSF4 0.9226 1.37E−08 57 RNFT2 0.6083 1.46E−07

15 MSRB1 0.9176 2.00E−07 58 MCEE 0.5906 8.08E−08

16 EPDR1 0.9021 5.20E−08 59 ZNF30 0.5901 2.43E−07

17 GEMIN6 0.8992 1.65E−07 60 PHF21A 0.5889 2.24E−07

18 HSPA2 0.8958 3.12E−08 61 FAM64A 0.5868 1.58E−07

19 PDE7B 0.8926 1.33E−08 62 NREP 0.5857 1.20E−07

20 LACTB 0.8845 1.37E−08 63 OGT 0.5782 1.18E−07

21 ANG 0.8734 3.98E−08 64 FANCL 0.5766 1.19E−07

22 TMEM2 0.8729 5.82E−09 65 ZBED8 0.561 3.45E−08

23 MALSU1 0.8366 1.34E−07 66 KLHL12 0.5563 8.06E−09

24 RAB40B 0.8208 1.70E−07 67 GMCL1 0.5349 2.89E−07

25 IMP3 0.8158 5.93E−08 68 CCDC117 0.5166 3.28E−07

26 SKP2 0.7971 3.97E−09 69 ANKRA2 0.5163 1.73E−07

27 GID8 0.7961 1.26E−07 70 CBX2 0.5119 5.66E−08

28 GSPT2 0.7938 8.55E−08 71 CCDC25 0.5029 2.14E−07

29 HOXC8 0.7813 1.93E−07 72 TIA1 0.5002 8.52E−08

30 TOP2A 0.7797 1.84E−07 73 AGGF1 0.4931 2.06E−07

31 DCBLD1 0.7778 6.79E−08 74 NUPL2 0.4768 1.63E−07

32 CDCA8 0.7776 6.30E−08 75 CCDC34 0.4618 1.46E−07

33 CXXC5 0.7511 1.01E−07 76 THNSL1 0.4595 1.86E−07

34 UNC50 0.7461 2.13E−07 77 SNUPN 0.4576 1.52E−07

35 OARD1 0.7395 3.17E−07 78 MAGEE1 0.4561 1.55E−07

Continued
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regulation trend, 23 miRNAs abundantly expressed in stage I and Stage II silicosis suggesting different stages of 
silicosis are associated with distinct changes in miRNAs expression.

Regulatory network construction. We identified targets, regulators and integrators of the molecular 
factors included in the DEG Network. Gene expressed network is a node and edge interaction between gene–
gene or gene-miRNA and regulatory transcription factors. Precisely, we searched for gene regulatory interaction 
network as a) TF-target gene interactions and b) miRNA–gene interactions. We merged all the extracted interac-
tions with the gene expressed Network using the same annotation principles as above.

TFs‑DEGs network analysis. The interaction network is derived using plugin Cytoscape with 147 Nodes and 
769 edges (Fig. 1). The blue nodes indicate here are the genes namely, RELA, JUND, and CEBPB which act 
simultaneously as TF, so function as both regulator and regulated gene. 

The most interacting TFs are CHD1, CEBPG, FOXF1, CREB3, RELA, and FOXP2, etc. as given in Table 2. 
The TF CHD1 is a gene similar to various other genes that act as TF and can regulate the activity of certain genes 
providing instructions to make epithelialcadherin or E-cadherin (a protein) having influence in cell adhesion, 
the transmission of chemical signals within cells, control of cell maturation and  movement38. ATF4 TF is known 
to regulate memory, metabolism, and adaptation of cells to stress factors such as anoxic insult, endoplasmic 
reticulum stress, and oxidative  stress39. In normal bronchial epithelial cells, CEBPG TF correlates with antioxi-
dant and DNA to repair genes which is absent for individuals with bronchogenic  carcinoma40. Expression of 
KAT2A(Tyr645Ala), reduces gene expression and inhibits tumor cell proliferation as well as tumor  growth41. 
CREB3 influences leukocyte migration, tumor suppression, and endoplasmic reticulum stress-associated pro-
tein  degradation42,43. PAX3 plays critical roles during fetal development as well as neural  crest44,45. Mutations 
in paired boxgene 3 are associated with Waardenburg syndrome, craniofacial-deafness-handsyndrome, and 
alveolar  rhabdomyosarcoma46. FOXF1 promote slung regeneration after partial pneumonectomy and involved 
in murine vasculogenesis, lung, and foregut development. Mice with reduced levels of pulmonary FOXF1 may 
face death due to pulmonary hemorrhages with deficient alveolarization and vasculogenesis47,48. POLR2A geneis 
associated with poor overall and disease-free survival of patients with early-stage non-small cell lung  cancer49. 
FOXP2 is responsible for defective postnatal lung alveolarization resulting in postnatal lethality in mice. T1 alpha, 
a lungalveolar epithelial type 1 cell-restricted gene crucial for lung developmentand function, is a direct target 
of FOXP2 and FOXP0. Both FOXP2 and FOXP1 are crucial regulators of lung and oesophageal  development50. 
E2F1significantly influences S phase progression and apoptosis as well FOXM1 expression, cell survival, epi-
rubicin  resistance51 and its low level in primary lung adenocarcinoma may lead to  cancer52. In small cell lung 
cancer, activation of oncogene EZH2 is often triggered by genomic deregulation of the E2F/Rb  pathway53. Alveo-
lar macrophages from RELA deficient animals are significantly less capable to involve in the canonical NF-κB 
pathway (a prototypical immune transcription pathway) and stimulate epithelial  cells54.

miRNA regulatory network analysis. In present study, from the dataset GEO30180 we enlisted significant DEGs 
and investigated associated miRNAs using CyTargetLinker and in-silico validation for miRNA through cross 
validation with the multiple database mirDIP is carrird out for creation of Gene-TFs-miRNAs regulatory net-
work. We have chosen the miRNA and mRNA from microRNA Data Integration Portal (mirDIP) web tools. In 
present manuscript, authors tried to identify the significant DEs, regulatory TFs and relevant miRNAs and pre-
dict the small molecules for drug combination of silicosis. Interaction network for genes and miRNAs is derived 
with 2461 Nodes and 13,343 edges as given in Fig. 2 using a plug-in CyTranslinker. An enlarged part is showing 
GPRY gene with its regulating miRNAs as an example. A grand total of 1100 number of very high target miRNA 
is identified from the considered database mirDIP using score class “very high”. For many upregulated genes, 
miRNA (numbers are given in parenthesis) is associated in several hundred; for example, CDK19 (617), OGT 
(552), LGR4 (426), MAT2A (409),NREP (408), TIA1 (387), and TMEM2 (202).

Similarly, for down-regulated genes, a grand total of 1055 very high target miRNA is identified to be associ-
ated with theconsidered database mirDIP using score class “very high”. For example, RYBP (899), SERTAD2 
(666), CREBRF (675), NAV3 (629), PPP3R1 (560), TSC22D2 (555), STC1 (523), MCL1 (463), EEA1(414), and 
ZFP36L1(387).

Sl. no Symbol logFC P value Sl. no Symbol logFC P value

36 POC1A 0.7372 7.79E−08 79 ASB13 0.4215 3.36E−07

37 AURKA 0.7346 3.10E−07 80 PXYLP1 0.4214 7.53E−08

38 HNRNPA0 0.7228 2.46E−09 81 AXIN2 0.4176 1.65E−07

39 RBM4B 0.7161 1.61E−07 82 RNASE4 0.4174 3.70E−08

40 C1orf131 0.7144 3.04E−08 83 CDK19 0.4174 1.95E−07

41 TSEN2 0.7092 2.24E−07 84 ZNF17 0.4124 3.44E−07

42 ZNF512 0.7006 2.02E−07 85 CDH1 0.3405 2.50E−07

43 SLC35E3 0.6925 9.92E−08

Table 1.  DEGs gene in Silicosis.
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Sl. no TF Target gene with expressions

1 CHD1

Up A34A1:A25

Down
CEBPB, PPP1R15A, DUSP1, DUSP5, FOSB, FOSL1, MCL1, KLF10, JUN, CDKN1A, JUND, ATF3, NR4A2, 
SOD2, FOS, SOX9, RELB, ERRFI1, SNAI2, TP53, SERPINE1, EGR1, STC2, CSRNP1IL6, RND3, ETS1, EIF1, 
PIM1, DDIT3, TP53BP2, ELF3, TSC22D1, TSC22D2, KLHL21

2 ATF4
Up NA

Down FOSB, ATF3, CDKN1A, JUN, FOSB, ERRFI1, EIF1, DDIT4, CEBPB, TRIB3, CCL20, HAS2, PPARG, 
DDIT3, STC2, IL1A

3 BACH1

Up BAAT, OGT, PHF21A, CXXC5, EPDR1

Down
FOSB, FOSL1, DUSP1, DUSP5, NR4A2, CDKN1A, IL6, CEBPB, SOD2, PPARG, ATF3, SOX9, HAS2, RELB, 
ERRFI1, RND3, ETS1, PIM1, IL1A, DDIT3, STC2, SERPINE1, TSC22D1, TSC22D2, TRIB3, EEA1, CSF2, 
BIRC3, PTGS2, TNFAIP3, CITED2, CSRNP1, F2RL1, KLHL21, EREG, CXCL2, SERTAD1, PTHLH, HBEGF

4 CEBPG

Up CXXC5, OGT, CENPF, GEMIN6, PHF21A, SLC35E3, BAAT, CDK19, EPDR1, FAM83D, MED20, CBX2

Down
ATF3, CDKN1A, ERRFI1, RND3, ETS1, DDIT3, DDIT4, SNAI2, SERPINE1, EGR1, STC2, 
TSC22D2,TSC22D1, TRIB3, HAS2, IL1A, EEA1, CSF2, PTGS2, TNFAIP3, CXCL2, PPARG, CSRNP1, 
KLHL21, EREG, CEBPB, PPP1R15A, SOX9, PPP3R1, NR4A2, EIF1, DUSP1, FOS, FOSB, FOSL1, MCL1, 
KLF10, JUN, JUND, IL6, NR4A2 RELB,, PTHLH, NFKBIA, BIRC3, HIST1H2BD, CITED2

5 KAT2A
Up TMEM203

Down FOS, FOSB, FOSL1, DUSP5, MCL1, CDKN1A, KLF10, NR4A2, JUN, SOD2, JUND, ERRFI1, ATF3, EIF1, 
PIM1, DDIT4, EGR1, TSC22D1, HIST1H2BD

6 PAX3
Up NA

Down FOS, FOSB, NR4A2, FOSL1, RELB, PPARG, KLF10, ERRFI1, EIF1, EGR1, RND3, TSC22D2, HAS2, 
PTHLH, PPP1R15A, TP53BP2, ATF3, FOSB, CDKN1A, IL6

7 FOXF1

Up BAAT, PHF21A, CXXC5, CDH1, CDK19

Down
FOSB, FOSL1, DUSP5, KLF10, IL6, CDKN1A, PPP1R15A, KLF10, JUND, NR4A2, SOX9, ERRFI1, TNF, 
RND3, ETS1, EIF1, DDIT4, ELF3, SERPINE1, EGR1, STC2, TRIB3, CEBPB, HAS2, EEA1, CSF2, BIRC3, 
CITED2, F2RL1, KLHL21, CXCL2, PTHLH, NFKBIA, HBEGF, HIST1H2BD, RELB, PPP3R1

8 CREB3

Up CXXC5, CDK19, CENPF

Down
DUSP1, FOS, FOSB, DUSP5, JUND, NR4A2, CDKN1A, JUN, ATF3, EIF1, IL6, SOX9, HAS2, EGR1, 
PPP1R15A, RELB, TNFAIP3, CITED2, KLHL21, PTHLH, STC2, HIST1H2BD, ERRFI1, IL1A, TSC22D2, 
CEBPB, PPARG, PPP3R1, HBEGF

9 POLR2A
Up NA

Down FOS, FOSB, MCL1, NR4A2, JUND, PPP1R15A, DUSP1, JUN, EIF1, DDIT3, EREG, HIST1H2BD, EGR1

10 HOMEZ
Up CDK19, CENPF, CXXC5, OGT

Down ATF3, NR4A2, ETS1, PIM1, CDKN1A, PPARG, PPP3R1, TP53BP2, CSRNP1

11 CEBPB
Up PHF21A, OGT

Down KLF10, NR4A2, ATF3, SOD2, PPP1R15A, CDKN1A, DDIT4, TRIB3, HAS2, IL1A, EREG, CXCL2, NFKBIA, 
HIST1H2BD, PPARG 

12 ZNF513
Up PHF21A, CXXC5

Down FOS, FOSB, NR4A2, JUND, DDIT4, EGR1, TSC22D1, HAS2, TNFAIP3, ATF3, F2RL1, CDKN1A, 
TSC22D2, ERRFI1, PIM1, HIST1H2BD, CITED2, PPARG 

13 E2F1
Up PHF21A, CXXC5

Down ATF3, DUSP5, NR4A2, SOX9, IL6, ERRFI1, RND3, ETS1, PIM1, TSC22D1, HAS2, BIRC3, PTGS2, 
TNFAIP3, F2RL1, TSC22D2

14 EGR2
Up RELA,

Down FOS, NR4A2, CDKN1A, ETS1, PIM1, EGR1, HAS2, PTHLH

15 FOXM1
Up FAM83D, CENPF, CXXC5, KIF20A, TOP2A, RNFT2, ASB13, AURKA, OIP5, CDK19, CDH1, CDCA8

Down FOS, KLF10, SOX9, PIM1, ELF3, STC2, TSC22D2, CITED2, EREG, HIST1H2BD, C3orf52

16 ZNF683
Up PHF21A, CXXC5

Down FOS, JUND, NR4A2, CDKN1A, DDIT4, HAS2, SERTAD1, PTHLH, ERRFI1, STC2, ATF3

17 RELA

Up OGT, PHF21A, EPDR1, CXXC5, KIF20A, CBX2, GEMIN

Down
FOSB, DUSP5, NR4A2, CDKN1A, IL6, ATF3, CSRNP1, JUND, SOX9, TP53, CSF2, HAS2, PPARG, PTHLH, 
DDIT4, BIRC3, TNFAIP3, CITED2PIM1, ETS1, STC2, SERPINE1, EGR1, TSC22D1, CCL20, CENPF, 
ERRFI1, TNF, RND3, EIF1, F2RL1, EREG, NFKBIA, HBEGF, HIST1H2BD, PPP3R1

18 MEF2D
Up CXXC5, BAAT, PHF21A, OGT

Down ATF3, JUND, PPP1R15A, FOSB, NR4A2, CEBPB, SOX9, TNF, CDKN1A, HAS2, ELF3, EGR1, PTHLH, 
RELB, ERRFI1, EIF1, DDIT4, TRIB3, SERPINE1

19 FOXP2

Up PHF21A, CDK19, FAM83D

Down
FOSB, FOSL1, DUSP5, KLF10, JUND, ATF3, DUSP1, CDKN1A, CSRNP1, JUN, F2RL1, CITED2, SOD2, 
ERRFI1, EEA1, ETS1, EIF1, PIM1, DDIT3, STC2, EGR1, DDIT4, TP53BP2, PPP3R1, TSC22D2, CEBPB, 
TRIB3, KLHL21, SERTAD1, HBEGF

20 PSMC2
Up CXXC5

Down KLF10, NR4A2, CDKN1A, EIF1, ETS1, NFKBIA

Continued
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Sl. no TF Target gene with expressions

21 JUND
Up NA

Down FOSL1, NR4A2, CSRNP1, SOX9, PPARG, ERRFI1, DDIT4, EGR1, TSC22D1, DDIT3, CITED2, F2RL1, 
EREG, PTHLH, HIST1H2BD

22 ESR1
Up FAM83D

Down ATF3, CDKN1A, CSRNP1, ETS1, CCL20, NFKBIA,

23 TBPL2
Up PHF21A, CDH1, CXXC5, BAAT 

Down ATF3, FOSB, DUSP5, NR4A2, JUND, FOS, SOX9, ERRFI1, EGR1, STC2, EIF1, TSC22D1, CDKN1A, 
DDIT4, KLHL21, PTHLH, TNF

24 RDBP
Up FAM83D, OIP5

Down ATF3, FOS, FOSL1, JUN, DUSP1, EIF1, DDIT3, DDIT4, EGR1, CITED2, HIST1H2BD

Table 2.  Identified TFs for regulation DEGs genes in Silicosis.

Figure 1.  The gene-transcription factor regulation network. Notes: a round node represents a gene (yellow 
node) with differencial expresstion, a triangle nodes (green node) represents the TFs, and a rectangular 
rectangular nodes (pink node) represent the TFs that plays a role as regulator and regulated.
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Integrating TF and miRNA regulatory networks. TFs induce micro RNAs (miRNAs) transcription and miRNAs 
influence mRNA translation as well as transcript degradation for the regulation of gene expression and all these 
results in complex relationships feedback or feed-forward  loops54–56.

Furthermore, miRNAs and TFs are capable to alter each other’s expression which results in difficulties for 
ascertaining the effect either one has on the target gene (TG) expression. The Integrated network (Fig. 3) consists 
of a total of 1396 nodes and edges 17,248 is constructed using Cytoscape from 235 (85 + 150) DE TGs, 24 regulat-
ing TFs and 1100 (846 up regulators + 1055 down regulators; 801 are common for both) very high target miRNA. 
In the network analysis, 14 clusters are achieved. The highest score of the cluster 1 is found to be 5.22 as given in 
Table 3. The present Gene-TFs-miRNAs regulatory network to find out the potential regulatory and regulated 
nodes provide detail insight for the gene associations, regulations by relevant TFs, and controlling the miRNAs. 

Extraction of the cluster network. Using MCODE we extracted total 14 clusters according to the score 
computed along with nodes and edges, in which only six possesses Gene-TFs-miRNA interactions. In cluster 1 
with maximum score, there are mainly Gene–Gene-miRNA interactions. However, gene FOXQ1 is observed in 
the clusters which is also identified as TF in literature. Few clusters are found to have only gene–gene or gene-
miRNA interaction over Gene-TFs or Gene-TFs-miRNA interaction and is given in Supplementary Table S1.

From Fig. 4 in cluster 3 (Nodes-312, Edges-621, Score = 3.968), for example, TF JUND is associated with 
various genes as well as numerous miRNAs altogether. A similar type of network is observed for TFs RELA 
and PEBPB. In present study, considering the data with crystalline silica exposure of 0 and 800 µg/mL for 6 h 
exposure, 235 DEGs are enlisted on the basis of FDR set as the cut-off parameters to screen out 250 significant 
increases or decreases in gene expression levels. Previous study by Sellamatu et al.16 considered a set of exposure 
(0, 15, 30, 120, 240 µg/cm2 for 0–6 h) for their study and on the basis of potential pathway and gene ontology 
term identified significantly expressed 60 DEGs. Current study emphasise on identification and enlist of the 
biological pathway and process individually where identified DEGs are involved identifying potential regulating 
TFs and target miRNA according to the DEGs.

Figure 2.  Gene–miRNA interactions network; index red node (miRNA); grey node (gene).



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1265  | https://doi.org/10.1038/s41598-020-77636-4

www.nature.com/scientificreports/

Functional enrichments analysis. In present study, biological processes and pathways involoving the 
235 DEGs with silica exposure are evaluated and significant biological process with DEGs involved are given in 
Table 3. A maximum of 11 genes is responsible for Rab proteins signal transduction followed by 9 genes for DNA 
integrity checkpoint (Fig. 5a). Various researchers reported that overexpression of Rab GTPases have a striking 
relationship with carcinogenesis and dysregulation of Rab proteins can be linked to the progression of already 
existent tumors contributing to their  malignancy57,58.

For Cluster 1, the biological process identified and the genes involved are biological adhesion (TNS3, CD274, 
and CDH1), biological phase (TOP2A), biological regulation (TOP2A, CD274), cellular process (TN53, IDH1, 
TOP2A, UBAP1, CD274, and CDH1), immune system process (TN53, CD274), metabolic process (IDH1, and 
UBAP1) and response to a stimulus (CD274) (Fig. 5b). The biological pathways observed in the study is shown 
in Fig. 6a,b. Major pathways with higher involvement of genes (numbers given in parenthesis) are Cytokines 
and Inflammatory Response (6), Rheumatoid arthritis (11), Signaling by Nuclear Receptors (14), NF-kappa B 
signaling pathway (10), Cellular responses to stress (21), Interleukin-4 and Interleukin-13 signaling (10), Kaposi 
sarcoma-associated herpes virus infection (13), Interleukin-10 signaling (8), TNF signaling pathway (13), Spinal 
Cord Injury (13), Circadian rhythm related genes (15), Nuclear Receptors Meta-Pathway (19), IL-17 signal-
ing pathway (16), Cellular Senescence (20), Adipogenesis (11), ESR-mediated signaling (13), Photodynamic 
therapy-induced NF-kB survival signaling (9), Osteoclast differentiation (11), Senescence-Associated Secretory 
Phenotype (SASP) (13), and Estrogen-dependent gene expression (13).

Biological pathway analysis of the genes from the six clusters having Gene-TF-miRNA interactions and 
found the maximum genes are involved in Human T-cell leukemia virus 1 infection as well as Kaposi sarcoma-
associated herpesvirus infection (14 nos) followed by Hepatitis B (11 nos) [Supplementary Table (S2)].

Prediction Small molecule signatures. Table  4 displays the Rank (based on the synergy  score), the 
perturbed molecule (names of the chemical perturbations), Dose, Cell-line, time, the direction of regulation, 
and the GEO ID from which thesignature is extracted. We next sought to predict the drug combination with 
the  ranked small molecule drug signature list (Table 5). From L1000CDS2 search engine forgene-set search, 
for differentially expressed genes provided nearly fifty significant combinations. These help infinding reverse 

Figure 3.  Gene–TF-miRNA regulatory network for Silicosis disease.
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and mimic combinations of an input gene expression signature for controlling Silicosis. The maximum scoring 
small-molecule combinations are CGP-60774 (total 20 combinations) followed by alvocidib (total 15 combina-
tions) and with AZD-7762 (total 24 combinations) as can be seen from Table 5 with a few other drugs having a 
high probability of success. 

Conclusions
Our study targets to provide detailed guidance for future fundamental researches along with some key genes, 
TFs and miRNAs, which are potential biomarkers for silicosis. The approach used in the manuscript allows us 
to incorporate various data sources into an integrated network, analysis of network parameters in order to find 
key network elements. Using various data sources, we found the relationships between different molecular com-
ponents to support our comprehension of how silicosis progresses. In this study, 235 differentially expressed 
genes (150 down-expressed and 85 up-expressed) are identified as affected by exposure to crystalline silica. These 
genes are regulated by 24 TFs and 1100 very high target miRNAs. The network between DEGs, TFs and miRNAs 
are constructed using the various plug-in of Bioconductor, Cytoscape and MCODE to find the associateship 
of their various aspects. Total of 14 clusters of the network is achieved where only six clusters there is Gene-
TFs-miRNA interaction and other eight clusters posess DEGs–miRNAs interactions or DEGs–DEGs–miRNAs 
interactions The most targeted genes and TFs as well as miRNAs are observed in cluster 3 to cluster 5 in the 

Table 3.  GO: biological process of Gene of all the clusters.

GOID GOTerm Term P value Nr. genes Associated genes

GO:0032482 Rab protein signal transduction 9.73404E−12 11 [RAB12, RAB13, RAB2B, RAB31, RAB40A, RAB40AL, RAB40C, 
RAB7A, RAB8B, RAB9B, RNASE4]

GO:0031570 DNA integrity checkpoint 2.18109E−05 9 [AURKA, BTG2, CCND1, CDC5L, CDH1, CDKN1A, EP300, 
TOP2A, TP53]

GO:0030968 Endoplasmic reticulum unfolded protein response 1.3072E−05 8 [ATF3, BIRC3, CCND1, CXCL8, DDIT3, EP300, PPP1R15A, 
STC2]

GO:0034620 Cellular response to unfolded protein 3.59987E−05 8 [ATF3, BIRC3, CCND1, CXCL8, DDIT3, EP300, PPP1R15A, 
STC2]

GO:0042770 Signal transduction in response to DNA damage 4.69977E−05 8 [AURKA, BTG2, CDC5L, CDH1, CDKN1A, EP300, FOXM1, 
TP53]

GO:0071156 Regulation of cell cycle arrest 1.24845E−05 8 [AURKA, BIRC3, BTG2, CCND1, CDKN1A, EP300, FOXM1, 
TP53]

GO:0042107 Cytokine metabolic process 5.50804E−05 7 [EGR1, ERRFI1, LTB, STAT3, TICAM1, TNF, ZFP36]

GO:0042089 Cytokine biosynthetic process 5.26779E−05 7 [EGR1, ERRFI1, LTB, STAT3, TICAM1, TNF, ZFP36]

GO:0042035 Regulation of cytokine biosynthetic process 2.84863E−05 7 [EGR1, ERRFI1, LTB, STAT3, TICAM1, TNF, ZFP36]

GO:0043618 Regulation of transcription from RNA polymerase II promoter in 
response to stress 9.16051E−05 7 [ATF3, CITED2, CREBBP, DDIT3, EGR1, EP300, TP53]

GO:0072395 Signal transduction involved in cell cycle checkpoint 7.42013E−06 7 [AURKA, BTG2, CDC5L, CDH1, CDKN1A, EP300, TP53]

GO:0044774 Mitotic DNA integrity checkpoint 6.56057E−05 7 [AURKA, BTG2, CCND1, CDKN1A, EP300, TOP2A, TP53]

GO:0072401 Signal transduction involved in DNA integrity checkpoint 6.96437E−06 7 [AURKA, BTG2, CDC5L, CDH1, CDKN1A, EP300, TP53]

GO:0072422 Signal transduction involved in DNA damage checkpoint 6.96437E−06 7 [AURKA, BTG2, CDC5L, CDH1, CDKN1A, EP300, TP53]

GO:0006970 Response to osmotic stress 0.000105185 6 [ERRFI1, MAP2K7, RELB, TNF, TSC22D3, TSC22D4]

GO:0048708 Astrocyte differentiation 0.000105185 6 [CLCF1, PTHLH, SMOX, SOX9, STAT3, TNF]

GO:0044783 G1 DNA damage checkpoint 3.63554E−05 6 [AURKA, BTG2, CCND1, CDKN1A, EP300, TP53]

GO:0044819 Mitotic G1/S transition checkpoint 3.41466E−05 6 [AURKA, BTG2, CCND1, CDKN1A, EP300, TP53]

GO:0031571 Mitotic G1 DNA damage checkpoint 3.41466E−05 6 [AURKA, BTG2, CCND1, CDKN1A, EP300, TP53]

GO:0045747 Positive regulation of Notch signaling pathway 0.000106301 5 [CREBBP, ELF3, EP300, SLC35C2, STAT3]

GO:0061614 Pri-miRNA transcription by RNA polymerase II 3.54965E−05 5 [ETS1, PPARG, SOX9, STAT3, TP53]

GO:0070231 T cell apoptotic process 8.59147E−05 5 [CD274, CLCF1, EFNA1, TP53, TSC22D3]

GO:0006984 ER-nucleus signaling pathway 4.22636E−05 5 [ATF3, CXCL8, DDIT3, PPP1R15A, TP53]

GO:0045662 Negative regulation of myoblast differentiation 5.55529E−05 4 [DDIT3, ID3, SOX9, TNF]

GO:0036499 PERK-mediated unfolded protein response 3.16435E−05 4 [ATF3, CXCL8, DDIT3, PPP1R15A]

GO:1990440 Positive regulation of transcription from RNA polymerase II 
promoter in response to endoplasmic reticulum stress 8.34712E−05 3 [ATF3, DDIT3, TP53]
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Figure 4.  Cluster 3 for Gene–TFs-miRNA regulatory network in Silicosis disease.
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Figure 5.  (a) GO: Biological process of Gene involved in Silicosis disease. (b) GO: Biological process of Gene of 
all the clusters involved in Silicosis disease.
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Figure 6.  (a) GO: Biological pathways of Gene involved in Silicosis disease. (b) GO: Biological pathways of 
Gene from six clusters involved in Silicosis disease.
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Figure 6.  (continued)
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network analysis that may help in providing a detailed diagnosis of the disease for its cure. Maximum interacted 
DEGs with miRNA in terms of category are CDK19 (up-regulated) and ARID5B (down-regulated). Maximum 
interacted DEGs with DEGs and TFs are CEBPG, RELA, BACH1, FOXF1 and CHD1 wheras maximum inter-
acted TFs are NR4A2, CDKN1A, ATF3, ERRFI1, FOSB and EGR1. Functional analysis of the DEGs given that 
the highest number (11) genes are responsible for Rab proteins signal transduction (Biological Process). Also, 
Cellular Senescence (20), IL-17 signaling pathway (16) and Signalling by Nuclear Receptors (14) is the domi-
nant Biological Pathway among others. Maximum scoring small-molecule combinations are CGP-60774 (total 
20 combinations) followed by alvocidib (total 15 combinations) and with AZD-7762 (total 24 combinations) is 
found with few other drugs having a high probability of success.

Table 4.  Drug signature predicted at each time point.

Time Cell-line Rank Score Perturbation Dose (um) Time (j) Cell-line Rank Score Perturbation Dose (um)

3 h

HME1

1 0.236 CGP-60474 0.12

3 HS578T

10 0.1798 CGP-60474 0.37

2 0.2303 Alvocidib 3.33 13 0.1798 BMS-387032 1.11

3 0.2135 CGP-60474 0.04 16 0.1742 CGP-60474 3.33

4 0.1966 A443654 1.11 25 0.1685 Alvocidib 10

5 0.1966 Alvocidib 1.11 29 0.1629 PF-431396 10

6 0.1966 Alvocidib 0.37 31 0.1629 BMS-387032 3.33

8 0.191 Alvocidib 0.12 25 0.1685 Alvocidib 10

9 0.1854 PF-562271 10 29 0.1629 PF-431396 10

11 0.1798 CGP-60474 3.33 44 0.1517 WZ-3105 10

12 0.1798 CGP-60474 1.11 31 0.1629 BMS-387032 3.33

17 0.1742 BMS-387032 1.11 34 0.1573 CGP-60474 1.11

18 0.1742 CGP-60474 0.37 37 0.1573 A443654 3.33

21 0.1685 AZD-5438 10 44 0.1517 WZ-3105 10

22 0.1685 BMS-387032 0.37

3 MCF10A

7 0.1966 BMS-387032 3.33

23 0.1685 BMS-387032 3.33 14 0.1798 Alvocidib 0.37

24 0.1685 AT-7519 1.11 19 0.1742 CGP-60474 3.33

30 0.1629 Linifanib 10 26 0.1685 CGP-60474 0.37

35 0.1573 AZD-7762 3.33 38 0.1573 CGP-60474 0.12

36 0.1573 Dasatinib 3.33 39 0.1573 CGP-60474 10

45 0.1517 AT-7519 3.33 46 0.1517 AZD-5438 10

MDAMB231

15 0.1798 Alvocidib 0.12

6.0 PC3

32 0.1573 Daunorubicin hydrochloride 10.0

27 0.1685 AT-7519 1.11 33 0.1573 16-HYDROXYTRIPTOLIDE 0.08

28 0.1685 CGP-60474 0.12 43 0.1517 Triptolide 10.0

40 0.1573 BMS-387032 1.11 24.0 HA1E 20 0.1685 Geldanamycin 10.0

41 0.1573 CGP-60474 3.33 6.0 HCC515 50 0.1461 ER 27319 maleate 10.0

42 0.1573 CGP-60474 1.11

47 0.1517 AT-7519 3.33

48 0.1517 CGP-60474 10

49 0.1517 Alvocidib 3.33
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