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Abstract
The patterns of variation within a molecular sequence data set result from the interplay between population gen-
etic, molecular evolutionary and macroevolutionary processesçthe standard purview of evolutionary biologists.
Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions
and limitations of the algorithms used by bioinformatics softwareçthe domain of mathematicians and computer sci-
entists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping
expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this
problem among active bioinformaticians. However, science education researchers report that much of bioinfor-
matics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems
(e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative
phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of
tree enumeration, tree construction, split decomposition and sequence alignment.We also introduce off-line down-
loadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to inter-
pret and critically evaluate the results of standard bioinformatics analyses.

Keywords: bioinformatics education; discrete mathematics; quantitative reasoning; off-line downloadable free and open-source
software; evolutionary problem solving

NARRATIVE
Mathematics and evolutionary biology have contrib-

uted enormously to the understanding of biological

problems; in the past decade, a number of national

and international societies have called for a renewed

emphasis on mathematics within biology education

[1–3]. Nonetheless, the challenge is still enormous

even in interdisciplinary areas such as bioinformatics.

In particular, although biology curricula often in-

clude courses in probability, statistics and calculus,

few encompass topics such as discrete mathematics,

geometry and graph theory—some of the concepts

most useful in bioinformatics. Sandvik [4] sees an

analogous problem in terms of the importance of

evolutionary reasoning: ‘Tree thinking is an integral

part of modern evolutionary biology, and a necessary

precondition for phylogenetics and comparative ana-

lyses’. He reported that not one of the undergraduate

or graduate students in his class could correctly read

and interpret a phylogenetic tree. Although new in-

struments [5–9] have helped measure and improve

students’ phylogenetic skills, these authors report a

continued need for additional tools. Herein, we

introduce such tools and accompanying teaching
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strategies developed and piloted as part of the

Biological ESTEEM Collection (Excel Simulations

and Tools for Exploratory, Experiential

Mathematics) [10], an online suite of Excel-based

modules for open-ended investigations in introduc-

tory-level mathematical and computational biology.

The software tools and teaching strategies

described in this article have grown out of faculty

development workshops administered through the

BEDROCK program (Bioinformatics Education

Dissemination: Reaching Out, Connecting and

Knitting-together). These 4–10-day workshops pri-

marily attract faculty members who teach biology and

computer science courses in the first 2 years of the

undergraduate curriculum, and also involve a smaller

number of high school biology teachers, graduate

students interested in bioinformatics education and

research scientists seeking to master bioinformatics

concepts and tools to aid in their own investigations.

Since 1996, we have collaborated with BioQUEST

Consortium colleagues to facilitate >50 such work-

shops at venues across the United States and in

Thailand. At these workshops, we demonstrate a

pedagogical approach that combines evolutionary

problem solving, collaborative inquiry learning and

quantitative reasoning [11]. For example, rather

than framing a discussion of phylogenetic methods

as a lecture containing one or two short activities,

we simply give participants a set of nucleotide or

amino acid sequences and allow them to devise and

test their own tree-building strategies. The ‘Eureka’

moment, when participants work out some key prin-

ciple on their own, or even when they see how and

why a particular approach fails, helps build the con-

fidence needed to incorporate mathematical content

and/or active pedagogies into their own classes.

We also emphasize exploring each problem via

multiple complementary approaches: for example,

building a multiple sequence alignment and a cor-

responding phylogenetic tree, projecting the align-

ment onto a 3D protein structure to identify areas of

conservation and mapping individual structural

changes onto the tree to reconstruct a lineage’s evo-

lutionary history. This pedagogical technique mirrors

the ‘rule of four’ from the reform calculus move-

ment, which advocates a mixture of graphical, nu-

merical, algebraic and verbal approaches to the same

problem [12]. Similarly, we explore systems biology

problems by demonstrating how graph-theoretical

properties like connectedness and degree distribution

can help quantify key biological principles such as

co-expression, binding and spatial proximity. As

Hayes [13] notes: ‘When you look at a graph draw-

ing, it’s hard not to focus on the arrangement of the

dots and lines, but in graph theory all that matters is

the pattern of connections: the topology, not the

geometry’. Thus, translating a complex biological

data set into a formal mathematical abstraction can

help biologists find new ways to test hypotheses [14],

explore causal mechanisms [15] and infer evolution-

ary constraints [16].

Finally, the diversity of venues in which we have

held workshops has led us to appreciate the depend-

ability and accessibility of downloadable off-line

tools. Whether due to lack of funds, unreliable in-

frastructure or cumbersome security protocols, indi-

vidual instructors cannot always guarantee that their

students will have access to well-maintained com-

puters and reliable internet connections. These class-

rooms can nonetheless use the software tools we

describe by simply downloading them in advance

(perhaps to a personal computer) and using them

to generate data sets for pencil-and-paper analysis.

In classrooms with dependable internet access and a

sufficient number of computers, the instructor can

combine such activities with direct student use of

the software tools themselves.

COMPUTATIONALCOMPLEXITY
Why should a biologist develop some intuitive sense

of computational complexity? Often in a workshop

with college and university faculty as well as with

students, we will hear that: ‘the supercomputer is

down because we haven’t gotten a result in several

minutes’. When you ask them how many sequences

they submitted in their batch job to build trees, a not

atypical response is: ‘Oh, about 300’. At this point,

we often go through an inductive proof of the com-

binatorial complexity of the number of trees for a

particular number of sequences. When we compute

that there are more than Avogadro’s number of dis-

tinct tree topologies (considering only strictly bifur-

cating, unrooted trees) for 23 sequences, they usually

do not request us to push the point home any fur-

ther. We also note that trees can in fact include hun-

dreds of different sequences, but that this relies on

methods that can efficiently exclude enormous

numbers of possible trees rather than exhaustively

computing each.

In workshops, we begin by noting that an un-

rooted tree containing n¼ 3 taxa has a unique topo-

logical solution (Figure 1A). We then ask where a
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fourth taxon could be added to this tree. If trees are

strictly bifurcating, participants easily see that the new

taxon can be added to any one of three existing

branches. Doing so adds a new branch to the

tree while also splitting an existing branch into two

segments, thereby increasing the total number of

branches by two. Thus, for n¼ 4 taxa, each of the

three possible unrooted tree topologies contains five

branches (Figure 1B). Next, we ask participants to

work in groups to count the possible topologies for

n¼ 5 taxa. Through a combination of brute-force

enumeration and induction from the previous case,

they soon arrive at the general conclusion that

3� 5� 7� 9� . . .� (2n� 5) topologies are possible

for an unrooted tree with n taxa. This formula

can be rewritten as ð2n� 5Þ! = ½2n�3ðn� 3Þ!�, or as

ð2n� 5Þ!!, where the double factorial notation indi-

cates multiplication of every other term.

We next turn to rooted trees, asking participants

to count the number of rooted topologies for n¼ 3

and for n¼ 4 taxa, and to explain their results. With

minimal prompting, they realize that rooting a tree at

a specific point is topologically equivalent to adding a

taxon at that same point. Therefore, the number of

rooted tree topologies for n taxa is equal to the

number of unrooted topologies for nþ 1 taxa and

can be written as ð2n� 3Þ! = ½2n�2ðn� 2Þ!� or

ð2n� 3Þ!!. We use these formulas to show that, for

both tree types, the number of possible topologies

increases rapidly with the number of taxa

(Figure 1C); determining all possible tree topologies

can thus be an onerous process even on a supercom-

puter. For users of bioinformatics software, we also

show that similar considerations apply for run times

versus the number of genomes [17].

This exploration also allows us to point out an

interesting paradox within evolutionary bioinfor-

matics: the pairwise distances simultaneously under-

determine the tree’s topology and overdetermine its

branchlengths. This is a simple consequence of the

fact that the number of branches increases linearly

with n, whereas the number of pairwise distances

(here defined as the number of nucleotide or

amino acid differences between sequences) increases

quadratically and the number of topologies increases

factorially. Therefore, we introduce best-fit methods

for estimating branchlengths in situations where

simple arithmetic approaches no longer hold.

The seemingly simple and abstract task of enumer-

ating phylogenetic trees thus motivates active explor-

ation of key topics such as combinatorial explosions,

unrooted versus. rooted trees, recursion formulas

and approximation methods. These concepts, along

with a clearer appreciation of the overwhelming

size of tree and sequence space [18], form the foun-

dation for subsequent exploration of more concrete

problems, such as the construction of phylogenetic

trees.

Figure 1: (A) The only unrooted tree topology for three sequences. (B) Adding a fourth sequence (equivalent to
adding a vertex and edge to any of the three edges in the previous tree) increases the number of distinct unrooted
topologies to three. (C) Extending this process to N taxa yields inductive formulas for the number of rooted and un-
rooted tree topologies. For a data set of just 25 sequences, the number of possible topologies greatly exceeds
Avogadro’s number (6.02�1023). Table reproduced from EvolSeq, an interactive spreadsheet in the Biological
ESTEEM Project’s online collection.
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TREE CONSTRUCTION
Many modern software packages for constructing

phylogenetic trees include a bewildering array of

different procedures: neighbor joining, maximum

parsimony, maximum likelihood and Bayesian algo-

rithms are just some of the more widely used tech-

niques. However, we have found that two older

methods—UPGMA and Fitch–Margoliash—intro-

duce core phylogenetic principles in a way that lear-

ners can extend to more complex procedures.

During faculty workshops, we begin with a simple

matrix of pairwise distances between nucleotide se-

quences (Figure 2A) and ask participant groups to use

these data to infer a phylogenetic tree (Figure 2B).

Individual groups typically experiment with a variety

of intuitive approaches: joining sequences to the tree

in order of increasing or decreasing similarity; repre-

senting branches as straight, slanted or curved lines;

and solving the tree’s topology and branchlengths

simultaneously or sequentially. As participants discuss

their trees, they unpack and collectively examine

their evolutionary assumptions and mathematical

methods.

At this point, we elicit and formalize participants’

intuitive notions regarding genetic distance. In par-

ticular, we note that any measurement of distance

must be non-negative and symmetric (i.e. the dis-

tance from A to B is equal to the distance from B

to A), and must satisfy the triangle inequality

dAC� dABþ dBC for any set of three sequences.

Moreover, if the sequences are evolving via a strict

molecular clock, the distance matrix will also satisfy

the three-point condition [19]: for any three se-

quences, the two largest pairwise distances will be

equal. Trees satisfying this condition are described

as ultrametric. In such trees, the distance between

any two sister taxa can be divided equally between

their two branches, making tree construction much

simpler.

In practice, sequence evolution often deviates from

a strict molecular clock: substitution rates may vary

over time or among sequences (perhaps because of

changes in selective pressure or effective population

size). Phylogenetic trees of such sequences will no

longer be ultrametric, but may instead satisfy the

weaker condition of additivity. In an additive tree,

the genetic distance between any two points can be

found by adding together the lengths of all branches

since those sequences’ most recent common ancestor

[Figure 3]. Reconstruction of additive trees is compli-

cated by the fact that, unlike in an ultrametric tree,

sister taxa need not be equidistant from their most

recent common ancestor. Instead, branchlengths must

be inferred by solving a system of simultaneous linear

equations. For a three-taxa tree, these equations have a

single exact solution [20]: if dAB, dAC and dBC are

the three pairwise distances between sequences,

the distances from their central vertex V are

given by dAV¼�(dABþ dAC� dBC), dBV¼�

(dABþ dBC� dAC) and dCV¼�(dBCþ dAC� dAB).

Larger trees can be handled by solving for three se-

quences at a time, collapsing the two closest sequences

into their common vertex, calculating the average dis-

tance from that vertex to each remaining sequence in

the distance matrix, adding the next sequence to the

remaining two and solving again.

Thus far, we have measured genetic distance as the

number of nucleotide or amino acid differences be-

tween sequences. However, this simple metric does

not consider that multiple substitutions may have

occurred at the same position, and thus tends

to underestimate actual amount of divergence.

Therefore, the next logical refinement is the

Figure 2: (A) Genetic distance matrix for nucleic acid sequences generated by EvolSeq; (B) Corresponding phylo-
genetic tree illustrating the ultrametric condition.
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Jukes–Cantor distance metric, which includes a cor-

rection for this phenomenon. Subsequently, we

introduce more sophisticated distance metrics that

incorporate transition–transversion bias (Kimura

2-parameter model), unequal base frequency

(HKY85) and variation in substitution rate across

positions (HKYþ�þ I). We also discuss distance

metrics used to analyze amino acid sequences, such

as the BLOSUM80 matrix for closely related se-

quences and the PAM250 matrix for more distant

relationships.

To produce distance matrices for ultrametric and

additive trees, we use the ESTEEM package

EvolSeq, an Excel workbook that simulates the mo-

lecular evolution of DNA sequences. The workbook

begins with a single random sequence, and then fol-

lows that sequence through time as it reproduces and

mutates. Eventually, up to 20 related sequences are

generated. EvolSeq then calculates the (ultrametric)

genetic distances between each pair of DNA se-

quences and also the (additive) distances between

the associated amino acid sequences. Although

EvolSeq’s evolutionary model is extremely simplistic,

it is useful as a tool for rapidly generating trees for

classroom pencil-and-paper exercises. The central

lesson for students is that simple algebraic methods

can yield substantial insight into phylogenetic meth-

ods, and that additional refinements based on the

evolutionary models appropriate to a particular bio-

logical system can improve those methods still

further.

TREE HYPOTHESIS TESTING
As described earlier in the text, genetic distance

matrices for groups of four or more taxa can

seldom be fitted exactly to a phylogenetic tree. In

cases where this mismatch is not the focus of study,

best-fit approaches may be used to infer an approxi-

mate tree. However, substantial deviation from

purely tree-like structure may itself contain valuable

biological information, such as episodes of conver-

gent evolution or violation of the evolutionary

model used to infer the tree. Therefore, split decom-

position may be used to resolve and display the full

set of taxonomic groupings supported by the data,

rather than only those groupings inferred to result

from shared ancestry [21].

Split decomposition begins by dividing the set of

taxa into two partitions J and K such that each par-

tition contains at least two taxa. We can then sample

taxa i and j from J, and taxa k and l from K, to

calculate o(ij)(kl)¼max(dikþ djl, dilþ djk)� (dijþ dkl).
(This statistic simply measures the strength of the

inequality described by the four-point condition.)

If o> 0 for every possible quartet of taxa sampled

in this way, then the dichotomy (J, K) is defined as a

split with isolation index a¼�min(o(ij)(kl)). For ex-

ample, in the distance matrix in Figure 4A, consider

the partition (AB)(CD). For this partition,

o(AB)(CD)¼max(80, 83)� 58¼ 25 is the only com-

patible quartet; therefore, it is a split with isolation

index a¼ 12.5. (See Figure 4B for a graphical depic-

tion of this formula.) Similar calculations reveal that

the partition (AC)(BD) is a split with index a¼ 1.5,

whereas the partition (AD)(BC) yields o< 0, and

therefore not a split. Split decomposition eliminates

the system’s overdeterminacy: the six branchlengths

represent the exact solution to the system of equa-

tions that describe the six pairwise distances.

SplitDecomp is an Excel workbook from the

ESTEEM Collection that performs split decompos-

ition on a set of four DNA sequences and their asso-

ciated amino acid sequences (Figure 5). The user can

type in the sequences or paste them in from a text

file. The program then translates the DNA sequences

Figure 3: (A) Genetic distance matrix for amino acid sequences generated by EvolSeq; (B) Corresponding
phylogenetic tree illustrating the additive criterion.
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into amino acid sequences and calculates the isolation

index a for each of the three possible unrooted phy-

logenies (Figure 6). The user can use these indices to

sassess the data’s support for each of these topologies.

For greater numbers of taxa, a split decomposition

network [22] can be used to simultaneously depict

multiple phylogenetic hypotheses, with each split’s

length corresponding approximately to its support

from the data. For example, the split separating

tobacco and rice from the remaining taxa

(weight¼ 0.0104) is 13 times stronger than that

separating tobacco and liverworts from the others

(0.0008), consistent with the hypothesis that the

vascular plants represent a monophyletic group

(Figure 5A). By contrast, there is nearly as much

evidence for a Euglena-heterokont clade (0.0087) as

for a Euglena-green algae grouping (0.0142), which

leads us to infer the presence of conflicting signals

within this data set (Figure 5B).

SplitDecomp can be used to address a number of

overarching issues in phylogenetics. For example,

students can explore the relationship between bran-

chlength and phylogenetic confidence by generating

random DNA sequences of given length and using

Figure 4: (A) Split decomposition results as produced by SplitDecomp. The isolation index values suggest strong
support for the partition (AB)(CD), much weaker support for (AC)(BD) and no significant support for (AD)(BC).
(B) A graphical interpretation of an isolation index. Addition and subtracting appropriate pairwise distances allows
estimation of the internal branchlength, which is equivalent to determining which tree topology best separates
one pair of sequences from the other pair.

Figure 5: Split decomposition results as produced by SplitsTree [22]. Data set modified from [23], with taxon
names updated.
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split indices to determine the length of the inferred

central branch. Because the sequences are random,

there is no central branch, but phylogenetic methods

will still infer one based on chance resemblances

among sequences. (This can be shown using

Biology Workbench [25], EvolSeq, or any of the

numerous other phylogenetic tools available

online.) This exercise can reinforce the concept of

phylogenetic trees as hypotheses to be tested. A simi-

lar approach can illuminate other important topics

such as long-branch attraction (see Figure 6) and

recombination.

SplitDecomp can also be used to explore and ana-

lyze a specific phylogenetic question. For example, a

1992 study [26] examined whether an HIV-infected

dentist had inadvertently transmitted the virus to sev-

eral of his patients during invasive dental surgery.

This case had enormous implications for health

care practice and received international attention.

The study focused on sequence data from the viruses

infecting the dentist, the HIV-positive patients and a

number of HIV-positive local controls with no

known epidemiological link to the dentist.

Curricular materials already exist [27] for introducing

students to phylogenetic concepts and methods using

the data from this study. Students can then further

analyze their findings using SplitDecomp to estimate

the lengths of individual branches and determine

whether they are well supported by the data

(Figure 7).

SEQUENCE ALIGNMENT:
SCORING, SUBSTITUTIONS,
GAP PENALTIES
Phylogenetic inferences rely on the assumption that

the characters under study are homologous, repre-

senting descent from a shared ancestor rather than

convergent evolution from different starting points.

For example, when analyzing morphological data,

the presence of eyespots on the wings of two differ-

ent butterflies (of the same or different species) may

result from those butterflies both having inherited

the relevant genetic signals from the same ancestor

[28]. Similarly, if two individuals have a thymine

residue at the same position in the same gene, this

may also reflect common ancestry. However, an

indel mutation can shift a residue’s position in one

sequence relative to another, whereas the small

number of possible states (4 for nucleic acid se-

quences, 20 for amino acids) can produce spurious

matches between residues derived from different

positions (Figure 8). The process of posing hypoth-

eses about which residues in one sequence are hom-

ologous to specific residues in another is called

sequence alignment.

Most alignment procedures use dynamic program-

ming, a computational approach that recursively

breaks a large problem into smaller sub-problems,

the solutions of which are then plugged back into

the overall problem. When aligning a pair of se-

quences, the problem can be represented by an

alignment matrix (Figure 9A). Beginning at the

upper left corner, we may take any one of three

possible steps: (i) move right one cell, thereby

adding a gap in sequence #1, (ii) move down one

cell, thereby adding a gap in sequence #2 or (iii)

move diagonally down to the right one cell, thereby

Figure 7: Phylogeny of HIV sequences from the den-
tist, three patients and two local controls. How would
you interpret this phylogeny? Can split decomposition
be used to quantify the statistical support for your con-
clusions? Modified from [27].

Figure 6: Long-branch attraction.The left-hand figure
shows the actual phylogeny for four sequences; the
right-hand figure shows the phylogeny reconstructed
using ClustalW in Biology Workbench. Sequences B
and C, at the end of the two longest branches, have
been mistakenly clustered together. Long-branch at-
traction is a well-known problem for several phylogen-
etic methods, notably parsimony [24].
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adding no gap to either sequence. We then continue

taking steps in any of these directions until the lower

right corner is reached. Each possible path through

the alignment matrix represents a potential alignment

for the two sequences (Figure 9B).

Next, each cell is assigned a score that reflects the

evolutionary likelihood of the best partial alignment

leading up to that cell. For example, a step that

matches a nucleotide with an identical nucleotide

represents evolutionary conservation and thus re-

ceives a positive match bonus. By contrast, steps

that represent evolutionary change receive either a

mismatch penalty (for nucleotide changes) or a gap

penalty (for insertions or deletions). Gap penalties are

usually assumed to be larger than mismatch penalties,

reflecting the relative likelihood of these two types of

mutation.

The cell in the upper left corner receives a score of

zero; other cell scores are calculated along the differ-

ent paths leading to each cell. Cells along the top-

most row, which can be reached only by repeatedly

adding gaps in sequence #1, thus receive scores that

are simple multiples of the gap penalty. The same

also holds for cells in the left column. By contrast, all

other cells have three possible scores representing the

three different directions from which they can be

reached (steps i, ii and iii, earlier in text). Each cell

receives the largest of those three scores, representing

the best partial alignment up to that point. The final

score (in the bottom right cell) is then the score of

the best possible alignment between the two se-

quences; that alignment itself is given by the path

or paths that yield that score (Figure 9C).

The aforementioned procedure is known as the

Needleman–Wunsch algorithm [29] and is appropri-

ate for global alignments (i.e. when both sequences

are to be aligned in their entirety, such as when

comparing two complete genes: see Figure 10A).

Other applications of sequence alignment require

different algorithms. In particular, semi-global align-

ments attempt to infer homology between an entire

short sequence (the query sequence) and some

portion of a much longer sequence (the subject

sequence). This question may arise when aligning a

single gene within an entire genome, or a single

sequencing fragment to a larger assembly. In such

cases, gaps before and after the query sequence

simply represent regions where sequence data were

not collected rather than true evolutionary events, so

these gaps are not penalized within the scoring

matrix (Figure 10B). Similarly, local alignments are

appropriate when searching for local regions of hom-

ology between two larger sequences (e.g. to find a

shared motif). This situation requires the Smith–

Waterman algorithm [30], in which cell scores are

restricted to non-negative values and the final align-

ment terminates at the maximum value occurring

anywhere within the alignment matrix (Figure 10C).

Figure 9: (A) Initial alignment matrix for two nucleic acid sequences. (B) One possible path through this matrix,
showing locations of putative gaps (horizontal and vertical arrows) and matches or mismatches (diagonal arrows).
(C) Scoring matrix produced by dynamic programming, with arrows indicating optimal alignment. Each cell’s score
represents the degree of evolutionary conservation in the best partial alignment up to that point in the overall
matrix.

Figure 8: An example of sequence alignment. In the
alignment at left, the boldfaced Ts in the first two
sequences are hypothesized to be homologous to
the italicized T in sequence 3. However, if the same
sequences are aligned as shown at right, the underlined
T is the homologous one. This alignment maximizes
sequence conservation and would, therefore, be pre-
ferred by most alignment procedures.
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The ESTEEM tool, PairwiseAlignment, presents

these calculations in the familiar setting of an Excel

workbook. The user enters a pair of nucleic acid

sequences and chooses an alignment type; the

spreadsheet then computes cell scores and displays a

trackback of the optimal alignment. This tool can be

used to help demonstrate dynamic programming by

having students work one or two simple examples by

hand. Once students understand this process,

PairwiseAlignment can be used to explore more real-

istic scenarios that illustrate deeper conceptual

questions in sequence alignment. For example,

next-generation DNA sequencing methods rely on

assembling enormous numbers of short (35–500 bp)

reads into a single contig [31]. Pairs of such reads may

be locally aligned, and then the highest-scoring pair

combined and the process repeated. Alternatively,

individual reads may be mapped onto a reference

genome via semi-global alignment. However, this

alignment procedure may be influenced by the rela-

tive frequency of different types of sequencing error

(e.g. substitutions versus indels) and is further com-

plicated by the presence of repetitive elements

within the region of interest. These issues can be

introduced, and potential solutions assessed, through

an investigation in which students assemble a contig

from a set of 8–15 reads. As students find problems

within the data set, such as frequent A!T miscalls,

they can be asked to appropriately modify the

PairwiseAlignment program (e.g. by reducing the

mismatch penalty for such mutations). Thus, under-

standing the mathematics of sequence alignment

provides a conceptual framework for diagnosing

and solving many of the challenges that arise when

analyzing real data.

OTHER BASICMATHEMATICS IN
BIOINFORMATICS EDUCATION
We have previously published [32] on introducing

mathematical modeling to students via engaging

them in (i) depicting a system by using box and

arrow diagrams; (ii) writing ‘word’ equations that

qualitatively describe the system’s behavior; (iii)

translating ‘word’ equations into mathematical sym-

bols; (iv) implementing equations in modeling soft-

ware (often a spreadsheet like Excel by entering

formulas and drawing graphs); and (v) applying

Figure 10: A comparison of (A) global, (B) semiglobal and (C) local alignments, as produced by PairwiseAlignment.
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their model to specific cases where actual data are

available.

Through the NUMB3R5 COUNT workshop

series [33], Neuhauser has introduced students into

exploring microarray gene expression data with prin-

cipal component analysis, single nucleotide poly-

morphism data with exploratory data analysis and

re-sampling statistics, sub-sampling larger popula-

tions with special reference to drug testing and

cancer genetics with dynamic programming and

backtracking. These represent just a few of the

opportunities to use simple off-line tools to inter-

actively engage students in developing comprehen-

sion of the power of mathematics in making sense of

complex data while making only a few simple

assumptions.

CONCLUSION
The Mathematics Association of America held a

number of conferences to identify appropriate math-

ematics for the first 2 years [34] for different areas of

science and social science. In the volume on

‘Mathematics for the Emerging Technologies’, the

authors emphasized that to prepare students for

twenty-first century challenges, student not only

‘need to be able to understand and use mathematics

with formulas, graphs and tables . . . they need to

communicate this understanding’. Bioinformatics

students incapable of meeting these criteria might

have click interactivity with current software pack-

ages, but they will lack the conceptual depth to

adjust to new tools without a better mathematical

foundation [35–37]. We believe that by introducing

the mathematics visually, with simple spreadsheet

calculations where they can follow the calculations

by checking a formula bar associated with a cell, and

using multiple actual data sets associated with con-

temporary interesting problems, most students/

faculty will move beyond either mystification or es-

trangement to some conceptual appreciation. We

have found that classroom use in regions of the

world without good access to the internet or without

powerful computer hardware has appreciated work-

shops that use tools that run on their machines and

that the mathematics is explained and accessible.

Achieving true quantitative literacy—the ability to

translate among different representations of the

same system, or to adapt strategies from one biolo-

gical system to another—requires multiple

approaches [12]. The ESTEEM tools we have

described provide one viable set of tools to support

this learning outcome.

Key points

� Understanding core mathematical and computational concepts
enhances biology students’ and biologists’ ability to interpret
and critically evaluate the results of bioinformatics analyses.

� Open-ended explorations can help biology students master and
apply bioinformatics principles to research-like questions and
data sets.

� Simple, but flexible, software tools are available to support
these teaching strategies and learning goals.
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