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Abstract: Waterlogging is a serious environmental problem that limits agricultural production in
low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging
situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders
focused on traits providing adequate supply of oxygen to roots under waterlogging conditions,
such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen
concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an
excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this
trait has never been targeted in breeding programs and thus represents an untapped resource for
improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for
ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo
were screened for superoxide anion (O2

•−) and hydrogen peroxide (H2O2)—two major ROS species
accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be
a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL
on chromosome 2H was identified for both O2

•− (QSO.TxNn.2H) and H2O2 (QHP.TxNn.2H) contents.
This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance
reported in previous studies, explaining 23% and 24% of the phenotypic variation for O2

•− and
H2O2 contents, respectively. The analysis showed a causal association between ROS production and
both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors
affecting crop production around the globe and frequently occur together. The markers associated
with this QTL could potentially be used in future breeding programs to improve waterlogging and
salinity tolerance.
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1. Introduction

Waterlogging is a worldwide constraint that considerably affects growth, development, and the
distribution of plant species. In waterlogging (hypoxia, anoxia) conditions, the main factor constricting
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plant growth is a limited supply of oxygen to the submerged tissues; particularly in roots [1,2].
Waterlogging stress dramatically reduces available oxygen concentration to below critical levels in roots
due to low diffusion rate of gases in soil and respiration of microorganisms [3,4]. Soil waterlogging
gradually leads to hypoxia and with time may even result in a complete absence of oxygen (anoxia),
also prompting accumulation of carbon dioxide in the root zone [5]. Under these hypoxic and
anoxic conditions, oxygen deficiency limits the ability of plant roots to supply water and nutrients
to shoots [6,7] and leads to disrupted plant metabolism, reduced growth rates, and lower plant yield.
Salinity is the other important limiting factor in crop production and often occurs concurrently with
oxygen deficiency. More than 20% of irrigated land is affected by soil salinity; this amounts to over
800 million hectares across the globe. To address the challenge of feeding more than 9.6 billion people
by 2050, food production should increase by 70% [8,9]. This implies a need to improve the ability of
plants to better cope with diverse abiotic factors including salinity and waterlogging.

Under waterlogged conditions, plants experience multifaceted environmental perturbations
including restricted availability of oxygen and carbon dioxide, excessive accumulation of ethylene [10],
and toxic elements in soil [11–13]. As a result, cells and tissues may be exposed to oxidative stress.
Plant responses to oxygen-deprived conditions include increased generation of reactive oxygen species
(ROS), essentially as superoxide radicals (O2

•−), hydroxyl radicals (OH•), hydroperoxyl radicals (HO2
•),

and hydrogen peroxide (H2O2) [14,15]. These ROS can oxidize and trigger breakdown biological
molecules, such as lipids, proteins, carbohydrates, and nucleic acids, as well as enzymatic activity [16,17].
Under oxygen-limited conditions, ROS can initially be produced by multiple mechanisms in plant roots
such as plasma membrane (PM) NADPH, mitochondrial dysfunction, and after the accumulation of excess
amounts of metal ions [18–20]. Increased iron and copper activity in the ionic and catalytically-active
chelated forms (along with other transition metals) under O2 deprivation is widely considered as a major
reason for the ROS burst via the conversion of H2O2 to extremely dangerous HO• [20].

ROS produced under oxygen-deprived conditions also play significant roles as signalling
molecules in plants in a broad range of developmental and adaptive responses to waterlogging
stress. Considerable data accumulated over the years suggest that ROS production, by either PM
NADPH oxidase and/or mitochondria, controls the plant adaptive responses under oxygen-limited
conditions [14,21,22]. However, imbalanced production of ROS can damage cellular components
and cause their dysfunction. Plants use several enzymatic and non-enzymatic sources to counter
overproduced ROS. These sources include superoxide dismutase (SOD), peroxidase (POD), catalase
(CAT), and ascorbate peroxidases (APX). Thus, due to the above mentioned damaging role of ROS
overproduction in living tissues, the ability of the plant to produce antioxidant enzymes is generally
correlated with susceptibility to environmental stresses, including waterlogging [23–25].

Many QTL associated with various environmental stresses have been reported in previous
studies [26–31], including barley. Several QTL have been identified for waterlogging tolerance in this
species based on different physiological and agronomic traits including germination rate [32,33], total
root dry weight [34], chlorophyll damage index [35], grain yield [36], leaf chlorosis [27,37], survival
rate [38], plant biomass indices [37,39], and photosynthetic characteristics [40]. However, each of these
indices may be affected by various environmental constraints and are therefore not necessarily causally
related to waterlogging stress, thus limiting their practical use. In recent studies, traits more directly
related to waterlogging tolerance have been selected to identify QTL including root porosity [41],
adventitious root development [42], and aerenchyma formation [41,43]. However, to the best of our
knowledge, no QTL for traits associated with tissue-specific ROS productions under hypoxic conditions
have been reported for any plant species, despite the essential role of oxidative damage as a major
constraint imposed by waterlogging stress.

In this study, 187 barley double haploid (DH) lines from a cross between TX9425 and Naso
Nijo were screened for ROS production under hypoxia (waterlogging) stress. For the first time,
we report a major QTL for both O2

•− and H2O2. Waterlogging stress is often accompanied by salinity
and both stresses share some common mechanisms such as membrane potential maintenance and
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ROS detoxification. Analyses were conducted to identify the potential linkage between this trait
and waterlogging and salinity tolerances. This finding may open new avenues for future breeding
programs to develop more stress tolerant varieties.

2. Results

2.1. ROS (O2
•−, H2O2) Production in Barley Cultivars under Hypoxia Stress

Under oxygen-deprived conditions, ROS are produced in plant tissues [44,45]. To assess the
suitability of the staining methodology to quantify this ROS production, six barley cultivars differing
in waterlogging tolerance were used in preliminary experiments. Both O2

•− and H2O2 showed a
genotypic-specific accumulation after 48 h of hypoxia stress (Figures 1 and 2).
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Figure 1. (A) Histochemical detection of superoxide (O2
•−) in the elongation and mature zone in the

roots of six barley cultivars differing in waterlogging tolerance. (B) Relative quantification of the O2
•−

concentration in the elongation and (C) the mature root of barley. Image J software (NIH, Bethesda,
MD, USA) was used to calculate relative (O2

•−) concentration by targeting the fluorescence integrated
density. Data are the mean ± SE; n = 150–250; 20–30 cells analysed for at least 6–8 individual seedlings
(biological replicates). The scale bar = 1 mm. Different lowercase letters indicate the significant
difference at p ≤ 0.05 according to Duncan’s multiple range tests.
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The 48 h of hypoxia stress affected the accumulation of O2
•− radical in all cultivars, but to

different extents. A higher accumulation of O2
•− in both elongation and the mature zones was

observed in waterlogging sensitive cultivars Gairdner, Franklin, and Naso Nijo (Figure 1A). These
visual observations were then quantified by Image J software, revealing statistically significant (p < 0.05)
differences between sensitive and tolerant cultivars (Figure 1B,C). The production of O2

•− in both
elongation and mature zones was almost 1.5- to 2-fold higher in waterlogging sensitive cultivars than
in tolerant cultivars. For H2O2, the intensity of the brown color was greater in sensitive cultivars after
hypoxia, suggesting more H2O2 production compared with appropriate controls (Figure 2A). Similarly,
sensitive cultivars showed 2- to 2.5-fold higher accumulation of H2O2 compared with tolerant cultivars
in both elongation and mature zones (Figure 2B,C) when analysed with Image J software.
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Figure 2. (A) Histochemical detection of hydrogen peroxide (H2O2) in the elongation and mature zone
in the roots of six barley cultivars differing in waterlogging tolerance. (B) Relative quantification of
the (H2O2) concentration in the elongation and (C) the mature root of barley. Image J software was
used to calculate relative H2O2 concentration by targeting the fluorescence integrated density. Data
are the mean ± SE; n = 150–250; 20–30 cells analysed for at least 6–8 individual seedlings (biological
replicates). The scale bar = 1 mm. Different lowercase letters indicate the significant difference at
p ≤ 0.05 according to Duncan’s multiple range tests.
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2.2. ROS Production in DH Lines and Identification of QTL for ROS Tolerance

The double haploid (DH) lines derived from TX9425 and Naso Nijo were used to identify the
QTL for ROS tolerance under hypoxia stress. Both parent cultivars showed a considerable difference
in O2

•− and H2O2 production when measured after 48 h of hypoxia in roots (Table 1). Under hypoxia
stress, the waterlogging sensitive parent Naso Nijo showed a significantly higher accumulation of
O2
•− in the elongation (197) and mature (278) zones compared with the tolerant parent (149 and 189,

respectively) (Table 1). Similarly, Naso Nijo showed a higher H2O2 accumulation in both elongation
(515) and mature (691) zones than TX9425 (Table 1). Figure 3 shows the frequency distribution of ROS
tolerance based on O2

•− and H2O2 accumulation. A continuous distribution was found for O2
•− and

H2O2 accumulation in both elongation and mature zones (Figure 3). A major QTL was identified on
chromosome 2H for both O2

•− in mature zone and H2O2 in elongation zone (Figure 4). The QTL
were designated as (QSO.TxNn.2H) for O2

•− and (QHP.TxNn.2H) for H2O2. The closest marker was
3271162D2 for QSO.TxNn.2H and 3999753D2 for QHP.TxNn.2H, both at position 13.6 cM, explaining
23.7% and 24.1% of the phenotypic variation, respectively (Table 2). No significant QTL was identified
for O2

•− in the elongation zone and H2O2 in the mature zone under hypoxia, although both showed
significant difference among DH lines.

Table 1. Reactive oxygen species (ROS) production in the elongation and mature zones of parents
and DH lines under hypoxia (0.2% agar) stress. ROS concentrations was measured in relative units
(see Section 4). Data are mean values ± SE. Data labelled with different low-case letters is significant at
p < 0.05.

Cultivar O2
•− Elongation Zone O2

•− Mature Zone H2O2 Elongation Zone H2O2 Mature Zone

TX9425 149 ± 7b 189 ± 7b 290 ± 14c 400 ± 17b
Naso Nijo 197 ± 10a 278 ± 16a 515 ± 19a 691 ± 18a
DH lines 194 ± 14a 212 ± 28b 416 ± 42b 576 ± 73a

DH lines range 137–232 135–287 287–561 358–777
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Table 2. QTL on 2HS for superoxide radical (O2
•−), hydrogen peroxide (H2O2), salt, and waterlogging

tolerance detected in a DH population of TX9425 × Naso Nijo. LOD = logarithm of the odds.

Trait Linkage
Group Nearest Marker Position

(cM) LOD R2 (%) Co-Variate

O2
•− mature zone 2H 3271162D2 13.6 8.7 23.7

No QTL identified waterlogging
No QTL identified salt

H2O2 elongation zone 2H 3999753D2 13.6 8.9 24.1
No QTL identified waterlogging
No QTL identified salt

Waterlogging tolerance 2H 3264866S2 9.2 7.6 21
2H 3264866S2 9.2 5.6 14.8 O2
2H 3264866S2 9.2 5.4 14.3 H2O2

Salt tolerance 2H 3257177S2 7.8 32.7 63.7
2H 3257177S2 7.8 26.7 39.4 O2
2H 3257177S2 7.8 26.6 41.3 H2O2
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For the clarity, only parts of chromosome regions are shown.

2.3. Contribution of ROS (O2
•−, H2O2) to Waterlogging and Salinity Tolerance

The QTL identified for O2
•− and H2O2 in the current study were further used to examine their

contribution to waterlogging and salinity tolerance by incorporating data published by Xu et al. [46].
The position of the identified QTL in the current study was the same as that for waterlogging and
salinity tolerance on chromosome 2H [46]. Both O2

•− and H2O2 showed a significant (p < 0.05)
correlation with the overall waterlogging tolerance (Figure 5A,B). This was further confirmed by
QTL analysis for waterlogging tolerance using O2

•− and H2O2 as covariates (Figure 6). As shown in
Figure 6B, the LOD value of the QTL on 2H for waterlogging tolerance showed a slight reduction when
O2
•− and H2O2 were used as covariates. The percentage of the phenotypic variation (R2) determined

by the QTL reduced from 21% to 14% when O2
•− was used as a covariate, and from 21% to 14.3 when

H2O2 was used as a covariate (Table 2). A close and significant correlation (p < 0.001) with the salt
tolerance was also found for both O2

•− and H2O2 (Figure 5C,D). When O2
•− and H2O2 were used

as covariates, the R2 of the QTL for salt tolerance reduced from 63 to 39 when O2
•− was used as a

covariate, and 63 to 41 when H2O2 was used as a covariate (Table 2).
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2.4. Effects of Using Waterlogging and Salt Tolerance As Covariates on QTL for ROS (O2
•−, H2O2)

These correlation results of O2
•− and H2O2 with waterlogging and salinity stress were further

confirmed by reverse QTL analysis, i.e., analysis of QTL for O2
•− and H2O2 by using either

waterlogging or salt tolerance as covariates (Figure 7; Table 2). When such analysis was conducted
using waterlogging tolerance as a covariate, the significance of the QTL was reduced for O2

•− and
H2O2 (Figure 7; Table 2). Similarly, the QTL for both O2

•− and H2O2 became insignificant when salt
tolerance scores were used as covariates (Figure 7; Table 2).
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Figure 7. QTL associated with (A) superoxide (O2
•−) in the mature zone and (B) hydrogen peroxide

(H2O2) in elongation zone tolerance (LOD values) on 2HS. Black line: LOD value of original QTL;
green line: LOD value of QTL when salinity tolerance was used as a covariate; yellow line: LOD value
of QTL when waterlogging was used as a covariate.

3. Discussion

Waterlogging stress is one of the major abiotic factors limiting agricultural production around
the globe. Hence, introducing waterlogging tolerance in field crops is crucial for sustainable
food production. Waterlogging tolerance is a complex trait and can be easily affected by various
environmental factors including soil properties, the extent of stress, duration of stress, and plant
development stage when waterlogging occurs [47,48]. Due to these confounding factors and low
efficiency of adopted direct selection methods, various indirect criteria have been used to select for
waterlogging tolerance in plants.

Many QTL have been identified for waterlogging tolerance based on different agronomic,
physiological, and anatomical traits. In barley, QTL analysis for waterlogging tolerance was performed
based on plant height [49], grain yield [36], plant survival [50], leaf chlorosis [27,37], and plant
biomass [51] under waterlogging stress. These QTL were identified on all seven chromosomes, limiting
their practical use. Also, most of these studies were based on quantitative traits, which can vary
between different environments, e.g., a QTL detected in one environment could not necessarily be
detected in another environment [52–54]. Although these traits are convenient for high throughput
screening, they may not be directly related to the mechanisms conferring the tolerance. As several
QTL are responsible for a trait, fine mapping of these QTL to provide reliable markers to breeders
is challenging.

Recently, a more promising approach was introduced for use when specific QTL are linked directly
with the appropriate mechanisms. As most of the mechanisms are expected to be controlled by just one
or two QTL enables finely mapping these mechanisms. A good example of this success is the major
QTL for waterlogging tolerance on 4H in barley [37,47,55], which is due to the formation of aerenchyma
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under stress [43,56,57]. The gene has been fine mapped to a < 2 cM region. The closely linked molecular
markers of this gene are available for breeders to use in developing waterlogging tolerance in breeding
programs. In the natural environment, oxygen deficiency is not the only limitation under waterlogging
stress. In future breeding programs, we need to pyramid genes related to other traits including
ROS tolerance.

Cellular ROS balance can be disturbed under stress conditions due to either enhanced production
of ROS or reduced antioxidants activity in plants [15,58]. Under moderate stress conditions, ROS
generation primarily acts as a regulatory and adaptive mechanism [44]. For example, ROS signaling
plays an essential role in anatomical adaptations under low oxygen stress by triggering the process of
aerenchyma formation [18,59]. A study showed the requirement of elevated ROS for the programmed
cell death (PCD) during the development of adventitious roots in seedlings of rice [60]. However,
when stress is severe, excessive generation of ROS damages cellular components and causes their
dysfunction. Similarly, H2O2 contributes to activating a range of cation-permeable non-selective cation
channels [61–63], thus affecting intracellular K+ and Ca2+ homeostasis [64], which may initiate PCD.
In addition, by interacting with transition metals, H2O2 may form hydroxyl radicals that directly
contribute to the activation of outward-rectifying K+ efflux (GORK) channels [65–67]. In the current
experiment, hypoxia-treated roots showed a significantly higher accumulation of ROS compared
with control conditions (Figures 1 and 2). The accumulation of both O2

•− and H2O2 was higher in
waterlogging sensitive cultivars than in tolerant ones (Figures 1 and 2; Table 1). The DH population
showed a wide range of segregation (Figure 3); the accumulation of O2

•− and H2O2 was correlated with
both waterlogging and salinity tolerances. Major QTL were identified for both O2

•− (QSO.TxNn.2H)
and H2O2 (QHP.TxNn.2H) (Figure 4). The QTL is located at the same position on the short arm of
chromosome 2H.

Several QTL were reported at this position for different abiotic stress tolerances, which include
waterlogging [46,47,68], salinity [46], and drought [69] with some being identified from the same DH
population used in this study. Importantly, all these stresses are known to promote the generation
and accumulation of excessive ROS in plant tissues [70–72]. Therefore, some common mechanisms
may contribute to a close relationship between these different stress tolerances. In the current
experiment, both O2

•− and H2O2 showed significant correlations with waterlogging and salinity
tolerance (Figure 5). QTL analysis was conducted using other related traits as covariates that have
been proven to be effective in confirming the relationship between different traits [69]. When O2

•− and
H2O2 were used as covariates, the QTL for both waterlogging and salt tolerance showed a reduction
in both LOD values and R2 (Figure 6, Table 2). The QTL for both O2

•− and H2O2 became insignificant
after using waterlogging or salt tolerance as covariates (Figure 7; Table 2). QTL became insignificant
after using waterlogging or salt as covariates, indicating a close relationship between ROS production
under stress and plants’ waterlogging/salinity tolerance. The fact that QTL were detected for several
abiotic stresses at this position of chromosome 2H indicates a specific mechanism for different stress
tolerances, including waterlogging and salinity tolerance.

Potassium (K+) is the most abundant inorganic cation in plant cells and plays a significant role
in numerous physiological and metabolic processes [73,74]. K+ also plays a role in activating and
regulating nearly 70 different metabolic enzymes in plants [75,76]. K+ is considered a key determinant
of cell fate by acting as a trigger of the PCD under hostile conditions [77,78]. A strong correlation exists
between the ability of plant tissue to retain K+ and waterlogging stress tolerance [79,80]. Under hypoxic
conditions, K+ is generally leaked through GORK channels. These channels open due to membrane
depolarization and ROS accumulation [64,79]. In our previous study, a major QTL (QMP.TxNn.2H)
was identified for membrane potential with a 22% phenotypic variation [68]. The position of the
QTL was the same as for the QTL in this experiment on 2H. The consistent identification of the same
region on chromosome 2H in both experiments points to the presence of a specific common tolerance
responsive gene.
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To the best of our knowledge, this study represents the first report on the QTL mapping of
waterlogging tolerance based on ROS accumulation. A major QTL was identified on chromosome 2H
for both O2

•− and H2O2 accumulation under waterlogging stress. The position of QTL for ROS was
the same as that for waterlogging and salinity tolerance. The one single QTL being identified facilitates
the fine mapping of the gene responsible for waterlogging and salinity tolerance using this trait as a
physiological marker. The molecular markers associated with this QTL may provide valuable evidence
for marker-assisted selection (MAS) and to further breeding programs for waterlogging tolerance.

4. Materials and Methods

4.1. Plant Material

Six barley (Hordeum vulgare L.) cultivars contrasting in waterlogging tolerance were used in the
initial part of this study. Among these cultivars, CM72, TX9425, and Yerong are tolerant; Gairdner
Franklin and Naso Nijo are sensitive to waterlogging [47,81]. Seeds were acquired either from China
or the Australian Winter Cereal Collection Centre (Horsham, Australia) and reproduced in the field
using Tasmanian Institute of Agriculture (TIA) facilities in Launceston (Australia). For QTL analysis,
data were collected from 187 DH lines originated from a cross between TX9425 and Naso Nijo.
As mentioned earlier, TX9425 is a Chinese, two-rowed barley variety that is tolerant to waterlogging
and salinity [81,82] and shows a few exceptional agronomic characteristics. Naso Nijo is a Japanese
malting barley variety with good agronomic characteristics but is sensitive to waterlogging and
salinity [55,81].

Seeds of DH population were grown for 3 days in 9 × 12 × 6 cm (length × width × height)
containers with basic salt media (BSM) solution (0.5 mM KCl + 0.1 mM CaCl2, pH 5.6) at room
temperature (25 ± 1 ◦C). Before planting, seeds were surface sterilized with 10% commercial bleach
(NaClO 42 g·L−1; Pental Products, Shepparton, Australia) and then thoroughly washed with tap
water for about 30 min. Two treatments were used in this experiment: (1) control (BSM, aerated)
and (2) hypoxia (BSM solution made with 0.2% agar and bubbled with N2 gas). To prepare stagnant
solution for hypoxia treatment, agar (Cat. No. LP0011, Oxoid, Hampshire, UK) at a ratio of 0.2% (w/v)
was added to BSM and boiled until became transparent. The solution was then cooled down overnight
at room temperature with an operational magnetic stirring to avoid lump formation. The agar solution
for hypoxia treatment was pre-bubbled with high purity N2 (Cat. No. 032G, BOC Gases, Hobart,
Australia) for at least 1 h before being used in the measurements.

4.2. Evaluation of the DH Lines for Waterlogging and Salinity Tolerance

The protocols describing the procedure and evaluation criteria for waterlogging and salt tolerance
quantification were provided in previous publications from our laboratory [46]. In brief, a combined
visual scoring system was used, with scoring index 0 representing no damage and index 10 specified
for fully dead plants. The plants with scores 0–5 displayed the various range of chlorosis and those
with scores 6 or above had a significant proportion of necrotic leaves.

4.3. Determination of Hydrogen Peroxide and Superoxide Radical for QTL

Prior to measurement, 3-day old seedlings of barley DH lines were treated with hypoxia solution
(0.2% agar) in a container. The container was filled with hypoxia solution with coleoptile above the
surface of the solution. Roots were kept under stagnant conditions for 48 h. The seedlings were
then removed from hypoxia solution and ROS species accumulation was analyzed by following the
given staining procedure. Hydrogen peroxide (H2O2) accumulation in barley roots of DH lines was
detected after the staining with 3,3′-diaminobenzidine (DAB) according to Xu et al. [83] and Lehotai
et al. [84]. In brief, fresh root apices (~0.5 cm) were incubated in 1 mg/mL DAB-HCl solution for 5 h
and washed once with 2-N-morpholino-ethanesulfonic acid/potassium chloride (Mes/KCl) buffer
(3−10 M, pH 6.15). The accumulation of superoxide anion (O2

•−) was achieved using the nitro blue
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tetrazolium (NBT) staining procedure [84]. In this method, root segments (~0.5 cm) were dyed for
2 h with 0.1 mg/mL NBT in 0.2 M phosphate buffer, pH 7.6, in the dark and then washed once
with a phosphate buffer. After staining, the roots were washed with distilled water for 3 to 5 times.
All stained roots were observed using a Leica Fluorescence Stereomicroscope (Model MZ16 FA, Leica
Microsystems, Heerbrugg, Switzerland) under visible light and photographed with a charge-coupled
device (CCD) imaging system attached to the microscope. Then, images were analysed with Image J
software (NIH, Bethesda, MD, USA) based on the integrated density. The background intensity of the
signal was measured from an empty region with a similar size and subtracted from the whole-cell
intensity to obtain relative total cell fluorescence values [85]. For each DH line and ROS species, roots
segments of at least 6–8 individual seedlings were used for staining after 48 h of treatment; for each
of them, between 20 and 30 cell’s (technical replicates) intensity values were averaged. For reporting
purposes, relative total cell O2

•− and H2O2 concentration data shown in Figures 1 and 2 were divided
by 1000.

4.4. Genetic Map Construction and QTL Analysis

Leaf tissues of four-week-old seedlings of the DH population were used to extract genomic DNA.
A total of 28047 DArT and 8928 SNP markers were used for genotyping. We selected 4788 markers for
map construction after removing the markers with larger distortion and missing information. A new
genetic map of the DH population was created using the JoinMap 4.0 software package [86]. Another
software package, MapQTL 6.0, was used to perform QTL analysis [87]. In the first stage, a major
QTL was detected by interval mapping (IM). The nearest marker to the major QTL was selected as a
cofactor in the multiple QTL model (MQM). The logarithm of the odds (LOD) threshold values were
applied to affirm the occurrence of a QTL were assessed by conducting the genome-wide permutation
tests implemented in MapQTL version 6.0 using at least 1000 permutations of the original data set
for each trait, resulting in a 95% LOD threshold around 3.0. QTL detected for both waterlogging and
salinity tolerance were re-analysed by using different physiological traits as covariates to evaluate the
effects of physiological traits on waterlogging and salinity tolerance. Finally, MAPCHART software
was used to generate maps which are showing the QTL position and LOD values [88].

4.5. Statistical Analysis

Significant differences between means were assessed using the Duncan’s multiple range test
by using the IBM SPSS Statistics 21 statistical package (IBM, New York, NY, USA). All data in the
tables and figures are shown as means ± SE. Significant differences between different cultivars and/or
treatments at p < 0.05 are represented by different lower-case letters.
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