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Recent advances in Bayesian phylogenetics offer substantial computational
savings to accommodate increased genomic sampling that challenges tra-
ditional inference methods. In this review, we begin with a brief summary
of the Bayesian phylogenetic framework, and then conceptualize a variety
of methods to improve posterior approximations via Markov chain Monte
Carlo (MCMC) sampling. Specifically, we discuss methods to improve the
speed of likelihood calculations, reduce MCMC burn-in, and generate
better MCMC proposals. We apply several of these techniques to study
the evolution of HIV virulence along a 1536-tip phylogeny and estimate
the internal node heights of a 1000-tip SARS-CoV-2 phylogenetic tree in
order to illustrate the speed-up of such analyses using current state-of-the-
art approaches. We conclude our review with a discussion of promising
alternatives to MCMC that approximate the phylogenetic posterior.

This article is part of a discussion meeting issue ‘Genomic population
structures of microbial pathogens’.
1. Introduction
Pathogen genomic data have become an invaluable resource to study microbial
evolution and infectious disease transmission. The widespread adoption of
whole-genome sequencing technologies ensures an ever-increasing scale at
which genomic data have become available. EnteroBase for example offers
over 300 000 assembled genomes for several bacterial genera and facilitates
the genotyping and characterisation of novel strains against all natural popu-
lations [1]. Rapidly expanding genome sequencing efforts are being
undertaken in response to every new viral epidemic. Over 1500 Ebolavirus
genomes were generated during the 2013–2016 West-African Ebola epidemic,
representing over 5% of the known cases [2]. At the time, this was considered
as a new scale in viral genomic monitoring, and the adoption of portable
genome sequencing also offered the perspective of providing it in close to
real time [3]. Global sequencing efforts during the COVID-19 pandemic have
again taken genomic epidemiology to new heights, with over 4 000 000
SARS-CoV-2 genomes available in GISAID at the time of writing [4].

The potential contribution of genomic epidemiology to the public health
response during outbreaks and epidemics hinges on the ability to provide
insights in short turnaround times. This has motivated the development of ana-
lytic and visualization tools such as Nextstrain for real-time tracking of pathogen
evolution and spread [5]. However, many of the phylodynamic models that rely
on phylogenies to unravel pathogen transmission dynamics have traditionally
been implemented in Bayesian inference frameworks. A Bayesian approach
accommodates phylogenetic uncertainty in the phylodynamic estimates and
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offers extensive modelling flexibility, but represents a compu-
tationally challenging endeavour as it requires averaging
over all plausible evolutionary histories. This becomes parti-
cularly problematic when confronting data encompassing
thousands of genomes. The COVID-19 genomic response
has therefore demonstrated the pressing need for more
scalable phylodynamic inference methodologies.

In this review, we present recent developments in Bayesian
phylogenetics that begin to answer this call for scalable
phylodynamic methods. In addition to offering a unified
and coherent framework to quantify uncertainty in phyloge-
netic parameters, the Bayesian approach allows one to learn
the joint distribution of all phylogenetic parameters simul-
taneously. This is particularly important when combining
the phylogenetic model with molecular clock models, tree
generative models and trait evolutionary models, which is
the focus of the BEAST Bayesian inference framework [6,7].
Here we briefly review this Bayesian phylogenetic framework
to guide further exposition. For an introductory review of
Bayesian phylogenetics, see Nascimento et al. [8].

Within the Bayesian phylogenetic setting, one chooses a
data generative model to describe the evolution of genetic
sequence data, phenotypic traits, the geographic displace-
ment of sampled taxa and more. This data generative
model is referred to as the likelihood. Subsequently, one
places a prior distribution on parameters of the likelihood
that describe a plausible range of values these parameters
may take. Next, one estimates the posterior distribution of par-
ameters of interest, typically via Markov chain Monte Carlo
(MCMC) integration, the main workhorse of Bayesian phylo-
genetic inference. To begin MCMC sampling, initialize the
Markov chain by setting a possible state for each unknown
model parameter. MCMC sampling proceeds by iterating
over two steps. First, propose a new state where one or
more parameters are updated and compare the posterior den-
sity of the new state with the old. Next, accept the new state if
the corresponding posterior is higher but occasionally accept
the new state if the posterior is lower. See Van Ravenzwaaij
et al. [9] for an introduction to MCMC. For the purpose of
this review, we classify the current limitations of inference
as follows:

1. every step in MCMC requires evaluating the posterior
ratio which in turn requires a potentially computationally
demanding likelihood calculation;

2. tree-space can be enormous, requiring many steps before
the MCMC algorithm is able to sample from the posterior
(the burn-in period);

3. standard MCMC proposals only allow one to make small
steps, limiting the efficiency by which samples from the
posterior can be obtained.

In order to maximize the amount of information that can be
obtained about the posterior per unit of time, scalable
machinery largely focuses on directly improving MCMC by
speeding up likelihood calculation, reducing burn-in, or
developing more efficient proposals as well as indirectly
improving MCMC by constructing models amenable to
scalable MCMC techniques.

The first challenge, slow likelihood computation, is a
burden shared by various phylogenetic inference approaches
and this has motivated the development of libraries for opti-
mized likelihood evaluation [10,11]. The BEAST inference
framework relies on the BEAGLE high-performance gen-
eral-purpose library (https://github.com/beagle-dev/
beagle-lib) and we refer interested readers to Ayres et al.
[11] and Baele et al. [12] for further details. From a practical
perspective, it is important to note that BEAGLE implements
parallelism in the likelihood calculation offering significant
speed-ups on modern graphics processing units (GPUs) and
multicore central processing units (CPUs). In the remainder
of this paper, we turn our attention to inference machinery
that reduces burn-in and generates more efficient proposals,
and finally conclude with a discussion of novel methods
alternative to MCMC for posterior estimation.
2. Reducing burn-in via ‘online’ inference
Bayesian phylogenetic inference via MCMC often requires
days or weeks of runtime to obtain reasonable estimates of
parameters of interest. The addition of new observations
extends runtime further by requiring one to restart their
MCMC chain as new data become available. Additionally,
as the number of taxa in an analysis grows, so does the
dimension of parameter space one must explore. For
example, the number of possible evolutionary trees grows
exponentially with the number of taxa under study. As the
size of parameter space grows, it takes longer for the chain
to reach regions of high posterior density. This period of
searching for the posterior is called the ‘burn-in’ period of
the chain. The need to update analyses as new data accumu-
late is a scenario that now typically arises with real-time
genomic responses to viral outbreaks. Sequential analyses
associated with growing parameter spaces would therefore
benefit from initiating the chain from an informed starting
point. Gill et al. [13] developed a principled distance-based
procedure to add new taxa to an existing tree and install
previous MCMC chain samples into a new chain thus allow-
ing one to incorporate new data in an ‘online’ fashion. The
approach of Gill et al. [13] is publicly available in the
BEAST software package. Lemey et al. [14] employ this
online framework to study geographic spread of SARS-
CoV-2 in near real time, adding viral genomes as they
became available.

We illustrate the online procedure of Gill et al. [13] by
reconstructing the evolutionary history of 588 full SARS-
CoV-2 genomes (29 409 nt) collected from 30 January to 30
September 2020. We follow Lemey et al. [14] and use an
HKY85 model with among-site rate heterogeneity modelled
using a four-category discretised G distribution, and a
coalescent tree prior. In figure 1, we augment the most
recent MCMC sample of our 588-tip tree to include 132
new SARS-CoV-2 sequences sampled between 1 October
and 15 October 2020. This procedure takes seconds (less
than 1min) to complete. Notice that all added sequences
that belong to the B.1.177 variant, which rapidly spread
from Spain to many other European countries over the
summer [15], correctly form a monophyly before a single
MCMC step is taken with the new 720-tipped tree. As a
result, the new, online chain initializes with a log joint density
evaluation of −79 768. In comparison, across five runs from
five different naive starting trees with 720 tips, it took an
average of 6.4 h to sample a joint density evaluation at least
as favourable.

https://github.com/beagle-dev/beagle-lib
https://github.com/beagle-dev/beagle-lib
https://github.com/beagle-dev/beagle-lib
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Figure 1. The online addition of 132 SARS-CoV-2 sequences to a 588-tip time-measured tree drawn from the posterior. Appended branches are blue while original
branches are black. We omit timescale since this augmented tree is not sampled from the posterior.
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3. Constructing new chains via better Markov
chain Monte Carlo proposals

(a) Adaptive Markov chain Monte Carlo
As developments in sequencing technology increase both the
number and length of genetic sequences available to
researchers, it is standard and often appropriate practice to
partition long genetic sequences into smaller components
(perhaps into individual genes) and assume each partition
has its own, independent evolutionary model [16].
This partitioning of the data results in a more flexible and
realistic statistical model but dramatically expands the
number of parameters to be inferred, as it associates each
individual partition with its own set of parameters.

Classical MCMC update procedures, such as univariable
Metropolis–Hastings (uMH) update individual parameters
sequentially (rather than simultaneously). Univariable sam-
plers are poorly suited for this high-dimensional scenario,
as the number of potentially costly likelihood evaluations
required to update all parameters scales with the total
number of parameters. Similarly, simultaneously updating
all parameters (or large blocks of parameters) independently
in a single MCMC step typically has extremely low accep-
tance probability since many parameters have strong and
complex posterior relationships that such independent
proposals ignore.

Adaptive MCMC (e.g. [17]) addresses this issue by
updating all parameters (or large blocks of parameters) simul-
taneously in a way that accounts for their posterior
correlations. Specifically, adaptive MCMC uses the history of
the Markov chain itself to approximate posterior covariance
between relevant parameters and uses that covariance to pro-
pose correlated, rather than independent, parameter updates.
Owing to this feature, the adaptive kernel is not Markovian
but the resulting chain is still valid [18,19]. As the chain
progresses forward, the adaptive MCMC procedure can con-
tinuously re-evaluate the posterior covariance and tune
relevant hyper-parameters to maximize sampling efficiency.

Baele et al. [20] adapt this procedure to Bayesian phylo-
genetics in the BEAST framework and demonstrate an
order of magnitude increase in sampling efficiency for parti-
tioned datasets. While the adaptive procedure is not limited
to partition parameters, Baele et al. [20] exploit the synergistic
interaction between adaptive MCMC and parallel compu-
tation in partitioned models. In multi-processor computing
environments, each model partition is typically assigned to
a single processor. When performing uMH to update a par-
ameter in a partitioned model, only the processor assigned
to that partition recomputes the likelihood while the others
remain idle. However, when all parameters are updated sim-
ultaneously, all processors are simultaneously engaged. As
such, while a single proposal in adaptive MCMC requires
likelihood calculations over numerous partitions, these calcu-
lations require considerably less time than the same number
of calculations performed sequentially.

(b) Hamiltonian Monte Carlo
Like adaptive MCMC, Hamiltonian Monte Carlo (HMC; [21])
can propose updates to many parameters simultaneously
with high acceptance probabilities. The key difference is
that adaptive MCMC learns about the properties of the pos-
terior empirically (i.e. it relies only on the past history of the
Markov chain), while HMC uses the analytic properties of the
posterior distribution.

Conceptually, HMC treats the state of model parameters
as the position of a particle in a landscape informed by the
posterior. At each step in the Markov chain this ‘particle’
(the parameters) is kicked in a random direction and allowed
to traverse this posterior-informed landscape according to
Hamiltonian dynamics (imagine a hockey puck moving
around an uneven, frictionless surface). The position of this
particle after a pre-defined amount of time is the parameter
proposal.

If the trajectory through the posterior landscape is calcu-
lated exactly, then the parameter proposal is accepted with
100% probability. However, this continuous, nonlinear trajec-
tory cannot typically be calculated analytically and must be
approximated by a series of discrete, linear steps through
the parameter space [22]. In general, taking many small
steps results in a better approximation (and therefore higher
acceptance probability) than fewer, larger steps. However,
each of these discrete steps requires evaluating the derivative
or gradient of the log-posterior with respect to the parameters
of interest, which is typically computationally rate-limiting.
As such, efficiently exploring the posterior via HMC requires
balancing the computational cost of the gradient calculations
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Figure 2. (a) Joint trajectory of two branch-specific clock rates γ1 and γ2 over their joint density in a three taxa tree with simulated sequence data. Trajectories
display 600 posterior samples from the uMH chain and 100 posterior samples from the HMC chain since uMH takes six times as many steps when controlling for
runtime. The strong posterior correlation between γ1 and γ2 results in very poor mixing with uMH while HMC easily accommodates. (b) Effective sample size (ESS)
per second of BEAST runtime under both HMC and uMH MCMC samplers of branch-specific rates of phenotypic evolution over a 1536-tip HIV-1 tree. HMC results in a
median speed-up of ×1000. (c) Trace plot of B.1.177 clade age with node heights sampled under both uMH MCMC and HMC.
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with the size of the discrete steps. Fortunately, methods such
as the no-U-turn sampler [23] automatically tune these hyper-
parameters and have found success in Bayesian phylogenetic
applications, such as for inference of high-dimensional trait
correlation [24].

We showcase the computational efficiency of HMC
against the standard uMH in figure 2. Figure 2a displays
the trajectory of two clock rate parameters γ1 and γ2 over
their joint posterior using both HMC and uMH for equivalent
amounts of BEAST runtime. For this demonstration, we
simulate 12 000 nt of sequence data on a fixed tree with
three tips and two different local clocks, γ1 = 0.003 and γ2 =
0.006. We choose a three-tip tree since it is the smallest
example with identifiable clock structure. We estimate the
branch-specific clock rates under a relaxed clock model
using the HMC machinery developed and described by Ji
et al. [25]. In figure 2b, we demonstrate the relative efficiency
of HMC over uMH in inferring branch-specific rates of phe-
notypic evolution on a large, fixed, 1536-tip HIV-1 tree. We
report effective sample size (ESS) per second of BEAST run-
time as a measure of efficiency since the ESS of a parameter
is the number of effectively independent posterior samples
in a given chain. We use HMC to investigate covariance
between two traits associated with HIV virulence, the ‘gold
standard viral load’ (GSVL) and CD4 cell count slope decline
as they evolve on the fixed topology presented by Blanquart
et al. [26]. Previous analyses of these data study trait covaria-
tion while assuming a time homogeneous, strict Brownian
diffusion process guides trait evolution [27]. HMC makes it
possible to learn about trait covariation under the more
general relaxed random walk (RRW) model [28]. Fisher
et al. [29] develop HMC machinery to make inference under
the RRW. We find that the posterior mean estimate of covari-
ance between GSVL and CD4 cell count slope decline is
−0.163 with 95% highest posterior density (HPD) interval
(−0.21, −0.11) and −0.151 (−0.20,−0.10) under the strict
Brownian diffusion and RRW, respectively. Similarly, 95%
HPD intervals of individual variance estimates contain sig-
nificant overlap between models as well. Overall, possible
rate heterogeneity in the diffusion process does not influence
the estimated covariation between GSVL and CD4 cell count
slope decline. We, however, would not have known this
without the availability of HMC to fit the richer model.

We additionally report the computational speed-up of
estimating an internal node age using HMC versus uMH
for the topologically fixed SARS-CoV-2 tree with 1000 full
genome sequences (29 409 nt) of Lemey et al. [14]. We
follow the model specifications of Lemey et al. [14] and
model nucleotide evolution with an HKY85 with four cat-
egory discrete-G site rate model and a coalescent tree prior
for its induced prior on the node heights. We compare the
accumulation of ESS per second of BEAST runtime using
both traditional uMH BEAST default proposals as suggested
by the BEAST graphical user interface, BEAUti, and recent
HMC inference machinery developed by Ji et al. [30]. We esti-
mate the age of the B.1.177 clade to be 0.45 years with 95%
HPD interval (0.40, 0.50) and we obtain this estimate within
a couple of hours, accumulating 63 ESS 1000 s−1 using the
HMC machinery. Alternatively, under uMH, we do not
obtain reliable estimates as quickly and only accumulate



royalsoc

5
ESS at a rate of 4.0 ESS 1000 s−1. In this particular case, using
HMC is approximately 15 times faster and can save up to
93% of runtime. We depict the trace plots of the node age
under both samplers in figure 2c.
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4. Alternatives and complements to Markov
chain Monte Carlo

(a) Sequential Monte Carlo methods
One alternative to approximating the posterior via MCMC is
to use sequential Monte Carlo (SMC) methods, sometimes
referred to as particle filters. Here, a particle represents a set
of parameters of the model that characterize the evolutionary
process and the tree topology. SMC methods start with a
population of particles drawn from some easy-to-explore
and tractable distribution (e.g. the prior distribution) and use
importance sampling techniques to iteratively transform the
distribution of particles towards the target posterior distri-
bution. Therefore, SMC methods generate a collection of
iterative distributions that transform to the posterior distri-
bution in their last iteration. There are two major directions
of development for SMC-based Bayesian phylogenetic
methods. The first allows the dimensions of the parameter
space to vary between iterations [31,32]. As introduced in §2,
this direction is particularly useful when data arrive in an
online fashion such that the dimensions of the state space
grow with increasing number of taxa on the phylogeny. The
other direction keeps the dimensions of the parameter space
constant [33]. Wang et al. [33] generate a series of posteriors
of equal dimension that gradually anneal towards the target
posterior allowing for early escape from basins of attraction.
This direction sets up a framework for SMC-based methods
to employ the proposals developed in MCMC-based Bayesian
phylogenetic machinery. This latter flavour of SMC fits within
the broader category of particle Markov chain Monte Carlo
(pMCMC) methods that combine SMC with MCMC [34].
Combinatorial sequential Monte Carlo is one such pMCMC
algorithm and combines SMC tree samples with MCMC
parameter estimates [35,36]. See Bouchard-Côté et al. [37]
for further discussion of SMC as both an alternative to and
complement to MCMC. Although pMCMC may ease the
implementation of such methods into existing popular Baye-
sian phylogenetic software, only custom phylogenetic SMC
methods are currently available (e.g. [33,36]).

(b) Optimization to approximate the posterior
Variational inference is also an alternative method to MCMC
for approximating the posterior distribution. While MCMC
approximates via sampling from the posterior, variational
inference approximates by optimizing over a user-chosen
family of densities. The task is to find the density within
the specified family of densities that minimizes the distance
(more specifically, the Kullback–Leibler (KL) divergence) to
the posterior [38]. Direct implementation of this approach is
infeasible since computing the KL divergence requires calcu-
lating the typically intractable phylogenetic marginal
likelihood. In practice, instead of minimizing the KL diver-
gence, one maximizes the evidence lower bound (ELBO).
Maximizing the ELBO is equivalent to finding the density
that maximizes the expected value of the log-likelihood
while minimizing the KL divergence with the prior [38].
Bayesian phylogenetic applications of variational infer-
ence employ a parametric family of distributions. Under this
paradigm, one assumes parameters of interest, e.g. branch
lengths in a phylogeny, are the parameters of the parametric
family. Zhang & Matsen IV [39] develop a general variational
phylogenetic framework to guide exploration in tree space
while Dang & Kishino [40] offer a framework to make infer-
ence on the CAT model of amino acid evolution [41]. While
these examples of phylogenetic variational inference show
promising speed-up over someMCMCmethods in their appli-
cations, current variational assumptions restrictively assume
independence across variational parameters and examples of
performance with more than a modest number of taxa (more
than 100) remain open for exploration. It also remains an unex-
plored question, to what extent Bayesian phylogenetic
variational inference may complement existing phylogenetic
MCMC machinery. One possible direction of future explora-
tion may employ fast variational approximation to set more
informed starting points for MCMC analyses.
5. Discussion
Scalable Bayesian phylogenetics is growing to accommodate
the challenge of analysing increasingly large datasets under
complex models. Some methods, e.g. adaptive MCMC,
HMC, parallelized computing, and SMC are new additions
to the Bayesian phylogenetic toolkit, yet these are not at all
new tools. Bayesian phylogenetics has been late to adopt
modern inference approaches. One might be inclined to ask
‘why?’ One probable reason is that under many phylogenetic
models, model parameters grow faster than the observed
data. For example, when one observation is added to the
tree, the number of branches, and thus the number of
branch lengths to estimate, increases by two. Compound
this with the difficulty of integrating over uncertainty in the
combinatorially complex phylogenetic tree space and the
result is that many methods may work for small toy examples
but fail when scaled to larger analyses.

While the techniques presented here may alleviate compu-
tational burden in a variety of analyses, we have not provided
an exhaustive overview of all scalable Bayesian phylogenetic
approaches and their implementations. For example, Altekar
et al. [42] develop an alternative adaptive MCMC approach
within a Bayesian framework that runs multiple MCMC
chains in parallel. Each chain is run at a different ‘tempera-
ture’. This effectively flattens the posterior so that more
proposals are accepted and local extrema are avoided.
Müller & Bouckaert [43] provide an implementation in
BEAST. Another approach that handles multi-modality is the
nested samplingmethod of Russel et al. [44]. Nested sampling,
in away conceptually similar to tempering, beginswith awide
prior that grows successively more constrained as the sampler
proceeds. Here the aim is model selection by marginal likeli-
hood comparison and multi-modal inference is a by-
product. Additionally, there are many recent developments
aimed to improve tree sampling. We encourage readers inter-
ested in learning about efficient tree proposals to see Rannala
& Yang [45] for inference under the multispecies coalescent,
and Höhna & Drummond [46] for a comparison of the trade-
offs between computationally expensive guided tree
proposals and naive fast proposals.
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