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Abstract

Motivation: Alternative splicing is an important mechanism to generate transcriptomic and phenotypic diversity.
Existing methods have limited power to detect orthologous isoforms.

Results: We develop a new method, EGIO, to detect orthologous exons and orthologous isoforms from two species.
EGIO uses unique exonic regions to construct exon groups, in which process dynamic programming strategy is
used to do exon alignment. EGIO could cover all the coding exons within orthologous genes. A comparison between
EGIO and ExTraMapper shows that EGIO could detect more orthologous isoforms with conserved sequence and
exon structures. We apply EGIO to compare human and chimpanzee protein-coding isoforms expressed in the front-
al cortex and identify 6912 genes that express human unique isoforms. Unexpectedly, more human unique isoforms
are detected than those conserved between humans and chimpanzees.

Availability and implementation: Source code and test data of EGIO are available at https://github.com/wu-lab-egio/
EGIO.

Contact: zhuli@ibp.ac.cn or jane-wu@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative pre-mRNA splicing, the process in which multiple tran-
scripts are generated from a single genetic locus, is a robust mechan-
ism for the expansion of transcriptomes, thereby contributing to
functional and phenotypic diversity (Keren et al., 2010; Ule and
Blencowe, 2019). It is estimated that �95% of human protein-
coding genes undergo alternative splicing (Baralle and Giudice,
2017; Pan et al., 2008). Alternative splicing may result in the forma-
tion of protein products with distinct structures, a major mechanism
for evolutionarily adaptive changes (Long et al., 2013; O’Bleness
et al., 2012; Reyes et al., 2013). As a vigorous mechanism proposed
for phenotypic novelty (Bush et al., 2017; Kahles et al., 2018), alter-
native splicing plays an important role in regulating the expression
of genes essential for cell differentiation, lineage determination, and
organ development (Baralle and Giudice, 2017; Feng et al., 2021).

A number of studies have been published on genetic and genomic
features unique to the human lineage (Khrameeva et al., 2020;
O’Bleness et al., 2012; Xu et al., 2018). Although certain human
unique features associated with alternative splicing have been
reported, such as predominant splicing pattern and differential exon
usage (Reyes et al., 2013; Xiong et al., 2018), human unique

transcript isoforms have not been examined at a transcriptomic
level, because existing methods have limited powers to detect all the
orthologous isoforms, as reviewed in (Chakraborty et al., 2021).
ExTraMapper, a recently published method, could detect much
more orthologous exons and isoforms than previous methods, such
as OrthoExon and Exalign (Chakraborty et al., 2021). However,
ExTraMapper uses similarity to determine the isoform orthology,
which might detect more isoforms that are not in perfect match for
exon structures. Several terms have been proposed when studying
orthologous isoforms or alternative splicing isoforms, such as equal-
ly spliced variant (Takeda et al., 2008), splicing orthology (Zambelli
et al., 2010), splicing orthologous CDS (Jammali et al., 2019), all
emphasizing the conservation of both exon sequence and exon struc-
ture in defining orthologous isoforms.

Here, we describe exon group ideogram-based detection of
orthologous exons and orthologous isoforms (EGIO), which uses a
dynamic programming strategy to construct exon groups (EGs, a set
of corresponding exon mappings) and exon group ideogram (EGI, a
set of 50–30 arranged EGs). Orthologous isoforms can be detected
under the direction of EGI. Comparative studies showed that EGIO
was a robust method for detecting orthologous isoforms and could
cover all the coding exons of orthologous gene pairs. Compared to
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ExTraMapper, EGIO could detect more orthologous isoforms that
were perfect matches in both exon sequence and exon structures.
We applied EGIO to detect orthologous isoforms with newly
assembled transcriptomes of the frontal cortex between humans and
chimpanzees. Our results showed that human unique isoforms fre-
quently arose from novel combinations of existing exons and were
prevalent in the human frontal cortex.

2 Materials and methods

2.1 Overview of EGIO
Orthologous exons and isoforms were detected within orthologous
gene pairs. Orthologous exons were first detected by reciprocal
BlastN and then confirmed by the collinearity test: exons arranged
in corresponding orders. However, the BlastN-based method was
suitable for detecting large 1-to-1 exons but not for small exons or
non-1-to-1 exons. To overcome these problems, a dynamic pro-
gramming strategy was applied to do exon alignment, in which a set
of unique coding exon regions (defined as united exons in Fu and
Lin, 2012; to simplify the description, all the unique exon regions
were called united exons, though a unique exon region might only
map to only one exon) were first detected following local pairwise
alignment and application of identity-based score frame and identity
guided backtrace. The dynamic programming was operated with the
guidance of reciprocal BlastN because of the stringent characteristics
of reciprocal BlastN. After dynamic programming, EG was detected,
then followed by EGI construction. Orthologous isoforms were
transcripts containing exons in the same EGs, with the identity score
of each corresponding exon passing the identity threshold. We
named this pipeline EGIO (Exon Group Ideogram based detection
of Orthologous Exons and Orthologous Isoforms). An overview of
the EGIO pipeline is shown in Figure 1.

2.2 Detection of orthologous exons using reciprocal

BlastN
The percentage of exons with orthologs was significantly lower in
the UTRs than in the coding regions, and the percentage of ortholo-
gous exons with equal lengths was also lower in the UTRs than in
the coding regions (Fu and Lin, 2012). Thus, we only focused on
exons in the coding regions. If an exon contained both UTR and the

coding region, the coding region was extracted as an individual
exon. To detect orthologous exons, exon pairs should pass both the
homology test and the collinearity test (to avoid duplicated exons,
see Supplementary Fig. S1). We adopted published criteria (Fu and
Lin, 2012; Yu et al., 2004) to perform the homology test, and hom-
ologous exons should pass the following criteria: (i) Candidates with
a significant BlastN E-value (�1e-5); (ii) Having �80% residues in
both sequences included in the BlastN alignment; (iii) Candidates
were the best hits, might be more than one hits; (iv) Conditions (i),
(ii), and (iii) must be true reciprocally. BLASTþ (Altschul et al.,
1997) was used to do reciprocal BlastN. To be defined as ortholo-
gous exons, the homologous exons were further tested for exon col-
linearity. For isoforms not containing duplicated exons, if
homologous exons were all located in corresponding positions, these
homologous exons were considered orthologous exons. For isoforms
containing duplicated exons, the first best-matched homologous
exon(s) were defined as orthologous exon(s).

2.3 Building EGI using a dynamic programming

approach
Orthologous isoform detection is based on orthologous exonic
structures. However, orthologous exons are not exclusively in the
1–1 relationship between species, and 1�N and N�1 relationships
have been reported in OrthoExon and Exalign (Fu and Lin, 2012;
Pavesi et al., 2008). The BlastN-based method could detect large
1–1 orthologous exons but has limitations in detecting 1�N, N�1,
and small orthologous exons, as well as lacking the ability to detect
new exons. In addition, some exons overlap with others due to alter-
native splice site usage, contributing to redundant comparisons.
Therefore, we simplified the exon alignment into a sequence align-
ment question and used a dynamic programming strategy to do
exon alignment. First, a set of 50–30 arranged united exons were
detected. Then, the identity of any of the two united exons between
two species was calculated to construct a (jþ1)�(iþ1) identity
matrix, where j and i represented total united exon numbers in two
species, respectively. To detect 1�N and N�1 relationships, the
identity was kept if coverage of either of the two united exons was
no less than the coverage threshold (which was set as 80% in this
study); otherwise, the identity was set as 0 to avoid noisy results:

identity i; jð Þ ¼
identity i; jð Þ; if coveragei or j � 80%

0; if coveragei and j < 80%

(

Next, a scored frame was operated. Given an united exon pair i
and j, the score F(i, j) was determined by F(i�1, j), F(i, j�1), F(i�1,
j�1), identity(i, j) and gap penalty parameter d:

F i; jð Þ ¼ max

F i� 1; jð Þ þ score identity i; jð Þ
� �

þ d

F i; j� 1ð Þ þ score identity i; jð Þ
� �

þ d

F i� 1; j� 1ð Þ þ score identity i; jð Þ
� �

8><
>:

A match score was obtained if the identity score exceeded the
threshold; otherwise, a mismatch penalty would be given. With the
principle of diagonal first, the position mismatch was given a gap
penalty d. Finally, relationships of exon matches, including ortholo-
gous united exons, as well as new exon and exon loss, were detected
by finding the best pathway to get the best matches from the bottom
right to the top left of the scoring matrix (Eddy, 2004). However,
exon alignment was more complex if one united exon could occur
more than once in 1�N or N�1 relationships, so a matched exon re-
gion might be used more than once. There were two types of rela-
tionships in the non-diagonal pathway during the backtrace, true
matches and gaps. The relationship was determined by the identity:

type i; jð Þ ¼
map; if identity i; jð Þ � 80%

gap; if identity i; jð Þ < 80%

(

This dynamic programming strategy had linear constraints.
Therefore, this method was suitable for analyzing genes with or with-
out duplicated exons, as well as those with 1�N or N�1 orthologous

Fig. 1. A flow chart for the EGIO pipeline. Black and claret-red lines represent input

to and output from the programs or filters, respectively. Green boxes mark the out-

puts from the databases or criteria for operation
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exons. To integrate the collinearity test into the dynamic programming
process, the united exons were arranged in the 30–50 direction before
the analysis so that the first matches were confirmed first. After dy-

namic programming-based exon alignment, EGs were constructed
with all the exons within the same orthologous united exons classified

into the same EG. Exons with no orthologous exons were classified as
a single EG. Using a local rather than global strategy during alignment
may lead to a reduced detection stringency and an increase in the

false-positive rate. To minimize the false-positive rate, we used orthol-
ogous exons detected by BlastN as anchors. If there was a conflict in

exon mapping between results of dynamic programming and BlastN,
the BlastN result would be taken as the final match. EGI was built fol-
lowing EG construction (See the pipeline diagram in Fig. 2).

2.4 Confirming non-1-to-1 exon mappings
To confirm non-1-to-1 mappings, an extra mapping score (MapS)
frame was applied. A non-1-to-1 mapping was confirmed only if the

MapS of non-1-to-1 exon mapping was more than any single exon
mapping:

MapSnon�1�1 > MapSexon j ðj ¼ 1; 2; . . .Þ

where j belongs to non-1-1 mappings. The MapS was calculated

based on the sequence alignment of each nucleotide (nt):

MapS ¼
Xn

i¼1

scorent i

The score of each nucleotide was calculated as follows:

scorent ¼
10; if match

�10; if mismatch

�8� am�1; if gap

8><
>:

For continuous gaps, the first gap would be given a �8 penalty,
whereas the continuous gaps would be less punished by multiplying
the former gap penalty by a constant a (0<a<1, which was set as
0.8 in EGIO); m was the position of a gap in the continuous gaps.

2.5 Detection of orthologous isoforms using an

EGI-based strategy
Orthologous isoforms were detected following EGI construction.
Orthologous isoforms were defined as transcripts containing exons
belonging to the same EGs, with each corresponding exon pair no
less than the identity threshold (Supplementary Fig. S1). Briefly, iso-
forms of different species were arranged based on EGI
(Supplementary Fig. S2, FCRL5 was shown as an example), then a
comparison was operated between any two isoforms to confirm
their orthology. With EGI, the collinearity test was easy to operate.
Therefore, the orthology of isoforms would be guaranteed once the
corresponding exon sequence exceeded the identity threshold.

3 Results

3.1 EGIO is a robust method to detect orthologous

isoforms
EGIO involves several essential parameters, including sequence/
exon identity, coverage of local pairwise alignment, score frame of
dynamic programming, and size of microexon, defined as exon with
3–15 nt (Irimia et al., 2014), or 3–27 nt (Gonatopoulos-Pournatzis
and Blencowe, 2020). To optimize the parameters, we detected
orthologous exons and isoforms of humans and monkeys. The
thresholds for sequence identity and coverage were set to 80% as
previously described (Fu and Lin, 2012; Yu et al., 2004).

We generated a set of reference orthologous isoforms by se-
quence alignment and exonic arrangement (Fig. 3A). EGIO used
local alignment so that a microexon might be aligned to more than
one exon; thus microexons should be isolated for additional analysis
to confirm the orthology. However, we found EGIO was insensitive
to microexon size, even larger microexon thresholds would decrease
its sensitivity (Fig. 3B). We also evaluated the effects of different
score frames of dynamic programming on the results. As shown in
Figure 3C, the sensitivity was relatively stable if the mismatch pen-
alty was no less than the gap penalty. This was because the exon
structures of orthologous genes were not always in a perfect 1–1
match, and a lower gap penalty allowed easily opening a gap than
generating a mismatch. To be noted, the precision of EGIO was in-
deed stable under different microexon size thresholds and dynamic
programming score frames.

3.2 EGIO detects orthologous isoforms with perfect

exon mappings
To evaluate the performance of EGIO, we compared EGIO results
with that from ExTraMapper (Chakraborty et al., 2021). In com-
parison with previous methods, i.e. InParanoid and OrthoExon for
exons and Exalign for isoforms, ExTraMapper detected more
orthologous exons and isoforms (Chakraborty et al., 2021).
Compared with ExTraMapper, EGIO used united exons, rather
than individual exons, to detect orthologous exons, thereby reducing
redundant mappings (Fig. 4A). EGIO detected nearly the same
orthologous exon mappings as ExTraMapper (Fig. 4B, 0.6% versus
1.6% pipeline-unique results). We then chose orthologous isoforms
with a coding similarity score of 0.8, 0.9, and 1.0 detected by
ExTraMapper as the reference to calculate the sensitivity and preci-
sion of EGIO. As shown in Figure 4C, EGIO was sensitive to coding
sequence conserved isoforms. However, with the increasing coding
similarity score of the reference, the precision of EGIO decreased
due to the detection of more orthologous isoform mappings. On theFig. 2. A flow chart for building an EGI using a dynamic programming strategy
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other hand, ExTraMapper detected orthologous isoforms with less
stringent exon structure constraints. For example, human
ENST00000371584 and monkey ENSMMUT00000003921 of gene
DPM1 were counted as orthologous isoforms by ExTraMapper,
whereas these transcripts were not defined as an orthologous iso-
form pair in EGIO analysis (Fig. 4D). Taken together, our compari-
son showed that EGIO had higher accuracy and stringency, and it
could detect more orthologous exon mappings and identify ortholo-
gous isoform that was conserved in both sequences and exon
structures.

Comparison of human versus mouse showed similar results with
that of human versus monkey (Supplementary Fig. S3), in which
EGIO detected nearly the same exonic region mappings as
ExTraMapper but more orthologous isoforms than ExTraMapper.
In addition, EGIO detected more orthologous exon regions than
OrthoExon and InParanoid (Supplementary Fig. S3A). Exalign was
designed to align exonic structures based on exon length (Pavesi
et al., 2008). Compared with Exalign, EGIO also detected more
orthologous isoforms (Supplementary Fig. S3B, see orthologous iso-
form detection by Exalign in Supplementary Methods). When using
different EGIO orthologous isoform sets with various coding

similarities as queries, EGIO showed similar performance
(Supplementary Fig. S3C and Fig. 4C), because orthologous iso-
forms detected by EGIO had more considerable coding similarities,
and changes in coding similarity thresholds would not significantly
affect query sample volume.

Fig. 3. Sensitivity and precision of the EGIO pipeline using different parameters.

The EGIO pipeline involves four important parameters, including identity and

coverage during local pairwise alignment, microexon size, and the score frame of

dynamic programming. The identity and coverage are all set to 80%. (A) A diagram

of the exon-sequence-based method to generate reference data of orthologous iso-

forms. Any two isoform combinations in an orthologous gene pair are compared,

and they are orthologous isoform candidates only if the two isoforms are composed

of the same number of exons and each corresponding exon passes the homologous

test (identity �80%). Although isoforms with a split exon or a fusion exon are

excluded and isoforms containing duplicated exons may be included, these isoforms

represent only a small fraction of the total isoforms. In addition, this reference data-

set may also contain false orthologous isoforms that fail the collinearity test, as

shown in Supplementary Figure S1 Mechanism 4. hsa, homo sapiens; mml, macaca

mulatta. (B) Sensitivity and precision with different threshold settings of microexon

size (score frame: match score: 2, mismatch penalty: �2, gap penalty: �1). (C)

Sensitivity and precision with different score frames (microexon size: 2). To achieve

higher sensitivity, the mismatch score should be no less than the gap penalty, indi-

cated by the dashed line. Sensitivity ¼ TP/(TPþFN); Precision ¼ TP/(TPþFP). TP,

true positives, defined as isoforms detected by both EGIO and exon-sequence based

methods; FN, false negatives, defined as isoforms are detected only by

exon-sequence based methods; FP, false positives, defined as isoforms that are

detected only by EGIO
Fig. 4. Comparison between EGIO and ExtraMapper. ExTraMapper provides proc-

essed results of humans versus monkeys using Ensembl reference transcriptomes (release

version 102). The same transcriptomes were used to detect orthologous exons and iso-

forms with EGIO. (A) Box plots of orthologous exon entry number per orthologous

gene pair. EGIO uses united exons to detect orthologous exons, which eliminates re-

dundant results. (B) Comparison of orthologous exons detected by EGIO and

ExTraMapper. Because of the reason described in (A), orthologous exons might not be

the perfect match. If an orthologous exon pair of one method overlaps with that of an-

other, this orthologous exon pair is confirmed. (C) Performance of EGIO. Orthologous

isoforms with coding similarity scores over 0.8, 0.9, and 1.0 detected by ExTraMapper

are used as the reference. The left panel shows the Venn diagram, and the right panel

shows the performance of EGIO. (D) An example to illustrate that ExTraMapper uses

a less stringent definition of orthologous isoforms. Sensitivity ¼ TP/(TPþFN); Precision

¼ TP/(TPþFP). TP, true positives; FN, false negatives; FP, false positives. TP, isoforms

detected by both EGIO and ExTraMapper; FN, isoforms detected only by

ExTraMapper; FP, isoforms detected only by EGIO. Parameters for human versus

monkey using EGIO: identity: 80%, coverage: 80%, microexon size: 2, match score: 2,

mismatch penalty:�2, gap penalty:�1
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3.3 Construction of human and chimpanzee

transcriptomes using frontal cortex samples
Since chimpanzees are the closest relatives to humans, we compare
orthologous exons and isoforms between chimpanzees and humans.
We focus on datasets from the frontal cortex because the following
reasons: alternative splicing is more prevalent in the mammalian
nervous system (Raj and Blencowe, 2015); the frontal cortex plays a
critical role in cognitive function. Nine datasets (GSE100796,
GSE124439, GSE135036, GSE47966, GSE49379, GSE58604,
GSE59288, GSE68719, and GSE80655) in GEO were included,
containing 111 human and 57 chimpanzee frontal cortex samples
(Supplementary Table S1). Over 90% of reads were retained after
read-trimming for GSE124439, GSE135036, GSE47966,
GSE49379, GSE58604, GSE59288, GSE68719, and over 80% of
reads were retained for GSE100796 and GSE80655 (Supplementary
Fig. S4A). RNA-seq read alignment was performed using STAR
(Dobin et al., 2013) and HISAT2 (Kim et al., 2015) on adapter-
trimmed reads to the reference genome (Ensembl release version
102). The unique alignment rate was over 75% for all the samples
using HISAT2 and STAR (Supplementary Fig. S4B).

StringTie (Pertea et al., 2015) and TACO (Niknafs et al., 2017)
were used to detect transcripts and merge individual transcriptomes
after genome-wide alignment. To reduce potential false-positive
results, we used two pipelines, STAR/StringTie/TACO (SST) and
HISAT2/StringTie/TACO (HST), to assemble transcriptomes from
RNA-seq datasets. Next, Gffcompare (Pertea and Pertea, 2020) was
used to compare the newly assembled transcriptomes, which gener-
ated 59 331 and 38 418 overlapping transcripts (class code: =) in
humans and chimpanzees (Supplementary Fig. S5A). Possible noisy
transcripts were then filtered as described in the Supplementary
Methods section based on a previous study (Pertea et al., 2018).
Finally, a total of 26 188 and 17 101 filtered transcripts for human
and chimpanzee samples were obtained, respectively
(Supplementary Fig. S5A). We compared the filtered transcripts
with Ensembl reference transcriptomes using Gffcompare. As shown
in Supplementary Figure S5B, 78.9% and 42.9% of transcripts
showed exact matches to Ensembl annotations (class code: =) in
humans and chimpanzees; whereas the remaining transcripts in
classes c, i, j, k, o, u, x, y were newly identified transcripts. Finally,
5523 novel transcripts in humans and 9759 novel transcripts in
chimpanzees were detected. The protein-coding potential of these
novel transcripts was then detected using CPC2 (Kang et al., 2017)
and CPAT (Wang et al., 2013).

To build more complete transcriptomes, we merged our newly
identified transcripts and Ensembl reference transcriptomes as the
final new reference transcriptomes (The newly assembled transcrip-
tomes can be downloaded at https://github.com/wu-lab-egio/EGIO_
example_source, see the whole workflow for transcriptome con-
struction in Supplementary Fig. S6). We focused on protein-coding
genes and protein-coding transcripts (which were referred to as ‘iso-
forms’ in this study), including those annotated to be nonsense-
mediated decay (NMD) in Ensembl. In the new reference transcrip-
tomes, 20 094 and 24 140 protein-coding genes were identified for
humans and chimpanzees, respectively, of which 121 in humans and
838 in chimpanzees were newly assembled genes that have not been
annotated in Ensembl. As shown in Supplementary Figure S5C,
human protein-coding genes have more annotated protein-coding
isoforms than chimpanzees, with the average transcript numbers per
gene being 5.3 (106 764/20 094) and 2.4 (57 982/24 140) in human
and chimpanzee, respectively.

3.4 Human unique splicing isoforms are prevalent in the

frontal cortex
EGIO requires pre-defined orthologous gene pairs as guidance. Using
InParanoid and BlastP analyses (Supplementary Methods), 18 762
orthologous gene pairs between humans and chimpanzees were
detected, of which 16 582 orthologous gene pairs were recorded by
InParanoid and the rest 2180 pairs were detected by reciprocal BlastP
(Supplementary Data 1). All of these orthologous gene pairs corres-
pond to 89.3% (17 939/20 094) of human protein-coding genes in the

above reference transcriptomes. Inparanoid used non-redundant
UniProt ID to detect orthologous genes; there were 1�N or N�1
orthologous genes after transforming UniProt ID into Ensembl Gene
ID; thus numbers of genes with orthologous relatives were less than
18 762.

Following EGIO analysis, we compared the isoforms of ortholo-
gous genes in the human frontal cortex samples with those in chim-
panzees (see Supplementary Data 2 for EGs and Supplementary
Data 3 for a complete list of protein-coding isoforms). A total of
100 467 human isoforms were included in our analysis, and 96 655
of them were annotated in Ensembl (Fig. 5A, left panel), whereas
the remaining 3812 (�3.8%) were previously unannotated tran-
scripts in our newly assembled human transcriptome (Fig. 5A, right
panel). An analysis using the newly assembled chimpanzee transcrip-
tome led to the identification of a total of 1900 additional ortholo-
gous isoforms in humans, including 1349 from annotated isoforms

and 551 from unannotated isoforms, respectively (Fig. 5A). Finally,
a total of 42 011 orthologous isoforms and 58 456 human unique
isoforms were identified. Surprisingly, more human unique isoforms
were detected than orthologous isoforms, although there are only
<2% sequence differences between human and chimpanzee over the
entire genomes (Hacia, 2001). Detection of these human unique iso-
forms suggests that alternative splicing may play an even more

Fig. 5. A summary of human unique isoforms expressed in the frontal cortex. (A)

Bar graphs of different types of human transcript isoforms. Annotated isoforms are

those in the Ensembl reference transcriptomes, and unannotated isoforms are those

newly assembled transcripts. (B) Box plots of mRNA levels of human protein-cod-

ing isoforms. Outliers are not included. (C) Bar plots of gene numbers of different

gene groups. Protein coding isoforms with expression levels at TPM �1 are included

in the analysis. Their corresponding genes are classified into three different groups:

genes that express isoforms which are all orthologous (AllOrthIsoGen), genes that

express both orthologous isoforms and human unique isoforms (ParUniIsoGen);

genes that express all isoforms as human unique isoforms (AllUniIsoGen). In brack-

ets are the numbers of human unique isoform numbers j the total number of

expressed isoforms in different gene groups. (D) Different mechanisms to generate

human unique isoforms. Exon skipping is the most frequent type. When an isoform

contains exon(s) not in the orthologous exon group, it is classified into the new exon

group. The NMD type is defined by the same criteria as in Ensembl, including intron

events that lead to premature stop codons. If a human unique isoform passes the col-

linearity test (all the corresponding exons in the same EGs) but fails the homologous

test (i.e. with sequence identity <80%), it will be classified into the group of alterna-

tive splice site selection (ASSs)
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important role than previously anticipated in the origin of human
unique higher nervous activity.

Using the newly assembled reference transcriptome, we quantified
mRNA expression levels using Salmon (Patro et al., 2017). As shown
in Figure 5B, a significant fraction of human unique isoforms had
lower expression levels than orthologous isoforms. Some isoforms with
very low expression levels may be noises. Therefore, we used mean
transcripts per million (TPM) �1 as the cut-off to define expressed
human unique isoforms. After this expression filtering, 34 582
expressed isoforms encoded by 12 544 genes were obtained. Among
these 12 544 genes, 5632 genes contained all expressed isoforms as
orthologous isoforms, 5491 genes showed a part of expressed isoforms
as orthologous isoforms, whereas 1421 genes expressed all splicing iso-
forms as human unique isoforms (Fig. 5C; and see RTN4R in
Supplementary Fig. S2C as an example for genes expressing all
isoforms as human unique isoforms; see Supplementary Data 4 for
gene list of different groups).

Expressed isoforms were then analyzed and classified according
to different splicing mechanisms, including exon skipping, the inclu-
sion of new exon, NMD-related, and alternative splice site selection.
Exon skipping generates 51.9% of human unique isoforms and the
inclusion of new exons contributes to 18.2% of human unique iso-
forms, respectively (Fig. 5D). NMD contributes to 18.1% of human
unique isoforms. At last, about 11.8% of human unique isoforms
are generated by usage of alternative splice sites, as in 1�N and
N�1 exons (Supplementary Fig. S2).

To illustrate the potential role of human-unique isoforms, we took
MBP as an example (Supplementary Fig. S7). MBP encodes myelin
basic protein and is mainly expressed in the nervous system
(Supplementary Fig. S7A). Compared with the chimpanzee, ortholo-
gous isoforms ENST00000578193 and ENST00000359645 are down-
regulated in human, whereas human unique isoform ENST000
00397865 is upregulated, which makes it the second highest expressed
isoform (Supplementary Fig. S7B). Compared with the most abundant
isoform ENST00000397866 in human and ENSPTRT00000092864
in chimpanzee, ENST00000397865 lacks the exon in EG 11
(Supplementary Fig. S7B). Based on protein domain annotation, the
skipped exon 11 encodes a domain associated with experimental auto-
immune encephalomyelitis (EAE). Two EAE domains exist in
ENST00000397866. Skipping of the second EAE domain encoded by
exon 11 might contribute to the adaption in human, leading to high ex-
pression of ENST00000397865. However, the hypothesis needs fur-
ther experimental validation.

4 Discussion

The concept of clusters of orthologous groups has been used at the
gene level (Tatusov et al., 1997). Extending from orthologous
groups, we propose to use the concept of EGs to study alternative
splicing isoforms. EG refers to a group of exons of the same origin
based on their positions and sequences. The first step of EGIO is to
transform isoform comparison to sequence alignment (Fig. 2). To
our knowledge, it is the first study in which dynamic programming
is applied to systematic analyses in exon alignment and detection of
orthologous exon mappings based on exon sequence. This dynamic
programming strategy enables us to detect all kinds of orthologous
exons (even microexon as small as only one nucleotide). In addition,
the linear constraint of dynamic programming enhances the detec-
tion of orthologous isoforms. With a BlastN-guided model, EGIO
takes advantage of the dynamic programming strategy and the strin-
gent criteria for the reciprocal BlastN method. In this study, we only
include protein-coding genes. With proper adjustment of parame-
ters, the EGIO pipeline can also be used for studying non-protein-
coding genes.

It has been suggested that alternative splicing should be consid-
ered when defining orthologous genes at the transcript level (Jia
et al., 2010; Zambelli et al., 2010). In addition to gene sequences,
conservation of exon/intron structures should be included when
defining orthologous genes. Compared with ExTraMapper, EGIO
utilizes more stringent constraints of exon structure conservation,
which enables the detection of more orthologous isoforms with

perfect alignment, both in sequence and in exon structure. Using
more stringent criteria, EGIO still detects more orthologous iso-
forms than ExTraMapper (Fig. 4C). The current pipeline of EGIO
also detects more N–N orthologous isoforms, whereas
ExTraMapper could detect more orthologous isoforms with a 1–1
relationship. One limitation of the current EGIO pipeline is that
those transcript isoforms that are distinct only in the UTR regions
are missing in our data output because the UTR regions are excluded
from our analyses.

Although orthologous genes have been studied in primates,
much less is known about global gene expression at the isoform
level. This is critical because functionally distinct or even antagonis-
tic isoforms can be generated from the same genetic locus (Ule and
Blencowe, 2019; Wu et al., 2003). Therefore, orthologous gene pairs
may not be directly translated into functional equivalency when
species-distinct or unique alternative splicing exists. We systematic-
ally apply EGIO to compare human and chimpanzee transcriptomes
in the frontal cortex. Our study has revealed that 1421 orthologous
genes express all isoforms as human unique isoforms. Recently, a
nanopore-based single-molecule peptide detection has been reported
for detecting individual proteins at the single amino acid resolution
(Brinkerhoff et al., 2021). Such tools, when combined with tran-
script isoform analyses, will enable us to detect different protein iso-
forms from individual genes.

A variety of methods have been developed to detect differential
alternative splicing, local splicing variation, and quantify isoform
expression, including rMATs, LeafCutter, LSVs, and sleuth (Li
et al., 2018; Pimentel et al., 2017; Shen et al., 2014; Vaquero-Garcia
et al., 2016). EGIO can provide information on orthologous exons
and isoforms, and it can be used in combination with these quantita-
tive methods to compare differentially alternative splicing events
and differentially expressed isoforms among different species. Such
comparative studies at global transcript isoform levels between
humans and other species will advance our understanding of human
unique gene expression and regulation.
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