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Preoperative 5-fluorouracil- (5-FU-) based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer
(CRC). However, the effect of 5-FU-based chemoradiotherapy on CRC is limited due to the development of chemoradiation
resistance (CRR), and the molecular mechanisms underlying this resistance are yet to be investigated. Recently, circular RNAs
(circRNAs), which can function as microRNA sponges, were found to be involved in the development of several cancers. In this
study, we focused on clarifying the modulation of the expression profiles of circRNAs in CRR. Microarray analysis identified
71 circRNAs differentially expressed in chemoradiation-resistant CRC cells. Among them, 47 were upregulated and 24 were
downregulated by more than twofold. Furthermore, expression modulation of five representative circRNAs was validated by
quantitative reverse transcription PCR (qRT-PCR). Moreover, these modulated circRNAs were predicted to interact with 355
miRNAs. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most modulated
circRNAs regulate several cancers and cancer-related pathways, and the possible mechanism underlying CRRwas discussed.This is
the first report revealing the circRNAmodulations in 5-FU chemoradiation-resistant CRC cells by microarray. The study provided
a useful database for further understanding CRR and presents potential targets to overcome CRR in CRC.

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers
worldwide, with nearly one million new cases diagnosed
every year. CRC is a highly treatable and often curable
disease when localized to the bowel [1]. However, even in this
situation, there were more than fifty thousand deaths from
CRC in the United States in 2015 [2]. Chemoradiotherapy
is regarded as a standard treatment for locally advanced
CRC, especially, middle and distal rectal cancers [3–5].
For several years, 5-fluorouracil (5-FU) has been the first-
choice chemotherapy drug for CRC. However, advances
in 5-FU-based chemoradiotherapy of CRC are limited by

the development of chemoradiation resistance (CRR) [6].
Hence, clarifying the molecular characteristics is essential to
overcome CRR in CRC.

Recently, a novel class of noncoding (nc) RNA, called
circular RNA (circRNA), was identified. It is characterized by
the presence of a covalent bond linking the 3󸀠 and 5󸀠 ends,
which are generated by back splicing [7, 8]. circRNA expres-
sion is often cell type-, tissue-, and developmental stage-
specific, and several circRNAs are known to be conserved
across species [7]. circRNAs can function as protein decoys
[9] and as transcriptional regulators, such as EIciRNA, which
was shown to enhance transcription of its parent gene [10].
More recently, ciRS-7was found to act as the inhibitor/sponge
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of miR-7 [11]. ciRS-7 expression efficiently affects the activity
of miR-7, resulting in upregulation of miR-7-targeted tran-
scripts [11, 12]. However, research on circRNAs in CRC [12],
especially, CRR in CRC, is limited.

To address the roles of circRNAs in development of CRR
in CRC, we performed microarray analysis of 5-FU-resistant
cells, CRR-HCT116, along with their parental control cells.

2. Materials and Methods

2.1. Cell Lines, Cell Culture, and Reagents. The human CRC
cell line, HCT116, purchased from China Centre for Type
Culture Collection, Chinese Academy of Sciences, was main-
tained as described previously [6]. The cells were cultured
in RPMI medium supplemented with 10% heat-inactivated
fetal bovine serum (FBS) and 1% penicillin/streptomycin in
a humidified incubator at 37∘C with 5% CO

2
atmosphere (all

cell culture reagents were obtained from Thermo Fisher). 5-
FU was purchased from Sigma-Aldrich.

2.2. Establishment of 5-FU-Based In Vitro CRR Model. 5-
FU-based in vitro CRR model was established as described
previously [6]. HCT116 cells were seeded in 6-well plates at a
density of 1 × 106 cells/well and were treated with 10𝜇mol/L
5-FU and exposed to a single dose of 4Gy 6Mv X-ray at
room temperature.The cells were incubated for an additional
24 h in the presence of 5-Fu and then incubated in a drug-
free culturemedium.After 2-3 days, numerous apoptotic cells
were observed to be floating in the culture medium. Next,
the remaining attached tumor cells were harvested and
transferred to the fresh culturemedium for recovery andwere
again subjected to 5-FU and X-ray treatments. Further, this
procedure was repeated nine times. Finally, the remaining
tumor cells were subcultured to construct the 5-FU-based
CRR cell model.

2.3. RNA Extraction and RNA Quantity. Total RNA was
extracted from snap-frozen HCT116 and CRR-HCT116 cells
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. The amount
and quality of RNA were determined by absorbance ratios,
A260/A280 and A260/A230, using NanoDrop ND-1000.
RNA integrity was determined by standard agarose gel
electrophoresis.

2.4. RNA Labeling and Microarray Hybridization. Total RNA
from each sample was quantified using the NanoDrop ND-
1000. Sample preparation and microarray hybridization were
performed according to the standard protocols of Arraystar.
Briefly, total RNAwas digestedwith RNase R (Epicentre, Inc.)
to remove linear RNAs and enrich circular RNAs. The
enriched circular RNAs were then amplified and transcribed
into fluorescent cRNA using a random priming method
(Arraystar Super RNA Labeling Kit; Arraystar). The RNeasy
Mini Kit (Qiagen) was used to purify the labeled cRNAs and
the NanoDropND-1000 was used to detect the concentration
and specific activity of the labeled cRNAs. Five microliter
10x blocking agent and 1 𝜇L 25x fragmentation buffer were

added to 1 𝜇L cRNA, and the mixture was incubated at 60∘C
for 30min to fragment the labeled cRNA. Besides, 25 𝜇L 2x
hybridization buffer was added to dilute the labeled cRNA.
Lastly, Arraystar Human circRNA Array (8 × 15K, Arraystar)
was used to hybridize the labeled cRNAs. After washing the
slides, Agilent Scanner G2505C was used to scan the arrays.

2.5. Bioinformatics Analysis. Acquired array images were
analyzed using Agilent Feature Extraction software (v
11.0.1.1). Then R software package was used to perform
quantile normalization and subsequent data processing. Dif-
ferentially expressed circRNAs were identified by volcano
plot filtering. Distinguishable expression patterns of circR-
NAs among samples were shown in hierarchical clustering.
Besides, differentially expressed circRNAs between two
groups were identified using the cut-off of absolute fold
change > 2, and 𝑝 < 0.05.

2.6. Validation of Differentially Expressed circRNAs by Quan-
titative Reverse Transcription PCR. Total RNA was extracted
from the frozen cells in triplicate using TRIzol reagent (Invit-
rogen Life Technologies) and then reverse transcribed using
a SuperScriptTM III Reverse Transcriptase Kit (Invitrogen)
according to the manufacturer’s instructions. Quantitative
reverse transcription PCR (qRT-PCR) was performed in
the ViiATM 7 Real-Time PCR System (Applied Biosystems)
instrument using SYBR Green Real-Time PCR Master Mix
(TOYOBO, number QPK-201). Each group was studied in
triplicate and the primers used for PCR analysis are listed in
Table 1.GAPDH was used as internal control and fold changes
in expression were calculated using ΔΔCT method.

2.7. Detecting Putative miRNA Binding Sites. The mature
miRNAsonlywere considered for seed sequence analysis, and
FASTA files of miRNAs were obtained from miRBase release
20.0 (http://www.mirbase.org/), and then the miRNAs were
alignedwith circRNAs. A putative target site of anmiRNA is a
6-nucleotide-long sequence in the genome that represents the
reverse complement of nucleotides 2–7 of thematuremiRNA
sequence.

2.8. miRNA Target Prediction and Kyoto Encyclopedia of
Genes and Genomes Pathway Analysis. ThemicroRNA target
prediction and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were performed on the website:
http://mirsystem.cgm.ntu.edu.tw/index.php [13]. miRsystem
is a database that integrates seven well-known miRNA target
gene prediction programs: DIANA, miRanda, miRBridge,
PicTar, PITA, rna22, and TargetScan. The circRNA-miRNA-
gene network was generated using Cytoscape311.

3. Results

3.1. Expression Profiles of circRNAs. After quantile normal-
ization of the raw data, expression profiles of 3731 circRNAs
were obtained from CRR-HCT116 and the parental control
cells. Differentially expressed circRNAs between the two
groups were identified by the cut-off fold change > 2 and
𝑝 < 0.05. Finally, 71 circRNAs were identified, of which 47
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Table 1: The list of primers used in the study.

Name Primer sequence

GAPDH(HUMAN) F: 5󸀠-GGGAAACTGTGGCGTGAT-3󸀠

R: 5󸀠-GAGTGGGTGTCGCTGTTGA-3󸀠

hsa_circ_0007031 F: 5󸀠-ACATCACATTTGAGGTGCTTG-3󸀠

R: 5󸀠-AAAAGGACCTTCCTAGACTGATC-3󸀠

hsa_circ_0007006 F: 5󸀠-TGTCGGCACAGTTTCGTTCTC-3󸀠

R: 5󸀠-TTGATCTGGAAGGCATGTGGA-3󸀠

hsa_circ_0074930 F: 5󸀠-GGAAAGGGCTTGATGGAGATT-3󸀠

R: 5󸀠-TCGCAGTACAGGTGGTTGGA-3󸀠

hsa_circ_0000504 F: 5󸀠-GCAAAGCTCCTGAGAAACAT-3󸀠

R: 5󸀠-AAAAGGACCTTCCTAGACTGAT-3󸀠

hsa_circ_0048232 F: 5󸀠-TCGGAGTGGTCACGGAGGTA-3󸀠

R: 5󸀠-CGAGACTGGTTGGTGGTTTTATC-3󸀠

hsa_circ_0006174 F: 5󸀠-CATCCATCACTCCAGCATCAG-3󸀠

R: 5󸀠-GGTCACCATAACCACCACAAAG-3󸀠

hsa_circ_0008509 F: 5󸀠-CACCATTCATTTACAGGGCACA-3󸀠

R: 5󸀠-CGCTTGTGGCCTGATTTTG-3󸀠

hsa_circ_0084021 F: 5󸀠-CAGCAAGATCACCGTGAGCATA-3󸀠

R: 5󸀠-CAGGGCATTGATAACAAAGCAA-3󸀠

were upregulated and 24 were downregulated. A clustered
heatmap (Figure 1) showed upregulation or downregulation
of circRNAs.The top 10 upregulated and top 5 downregulated
circRNAs are shown in Table 2. These data indicated that
themajority of modulated circRNAs were upregulated. Addi-
tionally, it should be noted that 3 circRNAs were upregulated
more than 10-fold, and the top 2 circRNAs were upregulated
by 116- and 74-fold, respectively.

To understand the correlation between the chromosome
distribution of CRR and circRNAs, a statistical analysis was
performed. According to data in Figure 2, every chromosome
has circRNA locations, but chromosomes 1, 8, and 9 have
much more circRNA locations than other chromosomes do,
and the percentage of circRNAs located on these chromo-
somes was 11%, 10%, and 10%, respectively. However, only
3% circRNAs, including both of the top two upregulated
circRNAs, has_circ_0007031 and has_circ_0000504, were
located on chromosome 13 and were spliced from the same
parental gene, TUBGCP3. This data suggested that chromo-
somes 1, 8, and 9 have a stronger correlation with CRR than
other chromosomes have. However, the top two upregulated
circRNAs located on chromosome 13 might be the most
important circRNAs in CRR.

3.2. Validation of the Microarray Data Using qRT-PCR. To
validate the microarray data, four upregulated and four
downregulated circRNAs were selected as representatives for
further validation by qRT-PCR using primers mentioned in
Table 1. According to the data in Figure 3, five of the eight
tested circRNAs yielded results quite similar to those of
microarray; these well-validated circRNAs included three
upregulated circRNAs, hsa_circ_0007031, hsa_circ_0000504,
and hsa_circ_0007006. Although the other three circRNAs
were not well repeated, the direction of change was similar

to that noted in microarray data. This result suggested that
most of the circRNAs identified by microarray were reliable
and worth being further investigated.

3.3. Prediction ofmiRNAsThat Bind to circRNAs. Since circR-
NAs can function as sponges or inhibitors of their interacting
miRNAs, circRNAs interacting withmiRNAs were predicted.
A total of 355 mature miRNAs were predicted to have
docking sites in the identified circRNAs, and therefore, they
could interact with these circRNAs. The circRNA-miRNA
interacting network of the top three upregulated circRNAs
was established and shown in Figure 4. It should be noted
that different circRNAs can bind to the same miRNAs, which
suggested that regulation of miRNAs by circRNAs was com-
plicated. Therefore, it was supposed that different circRNAs
can synergistically regulate the activity of specific miRNAs
and exert biological roles by indirectly regulating the miRNA
target genes.

3.4. Prediction of Signaling Pathways and Networks Regulated
by circRNAs. The functional roles of most circRNAs have
not yet been defined, but prediction of signaling pathways
involving circRNAs by a bioinformatics approach would be
beneficial.Therefore, KEGGpathway analysis of the top three
upregulated circRNAs was performed by entering informa-
tion about their interactingmiRNAs intomiRsystem.The top
15 predicted pathways are shown in Figure 5. Among these
pathways, some are directly linked to cancer pathogenesis,
such as the prostate cancer pathway and small cell lung cancer
signaling. Interestingly, although other pathways, such as
actin-cytoskeleton pathway [14] and focal adhesion signaling
[15, 16], seem to be not directly linked to CRC, they were also
found associated with cancer development.
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Figure 1: circRNA expression in CRR-HCT116 and parental HCT116 cells. Heat plots of circRNA in CRR-HCT116 and parental HCT116 cells.
Each column represents the expression profile of a cell sample, and each row corresponds to a circRNA. “Red” indicates higher expression
level, and “green” indicates lower expression level.
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Table 2: Top modulated circRNAs in chemoradiation-resistant colorectal cancer.

circRNA Gene symbol Chrom Regulation p value FC (abs)
hsa_circ_0007031 TUBGCP3 chr13 Up 2.29𝐸 − 04 116.6
hsa_circ_0000504 TUBGCP3 chr13 Up 6.96𝐸 − 04 74.4
hsa_circ_0007006 DYM chr18 Up 7.58𝐸 − 05 13
hsa_circ_0000237 HNRNPF chr10 Up 2.26𝐸 − 04 8.7
hsa_circ_0074930 SLIT3 chr5 Up 8.33𝐸 − 05 7.6
hsa_circ_0084353 PRKDC chr8 Up 3.61𝐸 − 03 6.8
hsa_circ_0022080 NUP160 chr11 Up 6.79𝐸 − 05 6.2
hsa_circ_0008494 ARID1A chr1 Up 1.82𝐸 − 04 6.2
hsa_circ_0005949 ZNF608 chr5 Up 2.73𝐸 − 04 5.6
hsa_circ_0074806 CLINT1 chr5 Up 5.74𝐸 − 03 4.5
hsa_circ_0048232 DAZAP1 chr19 Down 1.76𝐸 − 05 3.3
hsa_circ_0006174 RAD23B chr9 Down 5.28𝐸 − 04 2.7
hsa_circ_0008509 NAV3 chr12 Down 2.84𝐸 − 05 2.6
hsa_circ_0084021 PLEKHA2 chr8 Down 3.80𝐸 − 04 2.6
hsa_circ_0087862 RAD23B chr9 Down 1.49𝐸 − 03 2.6
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Figure 2: Chromosomal locations of variably expressed circRNA.
The 𝑥-axis represents the ordinal of the chromosome, and the 𝑦-
axis represents the percentage of circRNAs that were expressed
differently between CRR-HCT116 and parental HCT116 cells (fold
change > 2).

Since the cancer signaling pathway was the most sig-
nificant in the predicted results, miRNAs that are directly
involved in cancer signaling were analyzed, and brief results
are shown in Table S1 (see Supplementary Material available
online at https://doi.org/10.1155/2017/8421614). Results sug-
gested that some miRNAs, such as hsa-miR-9a-3p, hsa-miR-
103a-3p, and hsa-miR-300, might play more important roles
than others since they have more target genes in the cancer
pathways (detailed data not shown).

Taken together, in this study, the above results indicated
that newly identified circRNAs in CRRwere involved in CRC
development.

4. Discussion

5-FU-based concurrent chemoradiation is recommended as
the standard treatment for CRC, but CRR development
limited the effect of this treatment. Moreover, the molecular
mechanisms underlying 5-FU-based CRR in CRC cells are
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Figure 3:Validation ofmicroarray data by qRT-PCR. Eight differen-
tially expressed circRNAs were validated by qRT-PCR. The heights
of the columns in the chart represent the mean expression value of
log
2
fold changes (CRR HCT116/parental HCT116).

yet unclear. Thus, understanding the mechanism underlying
CRR development is very crucial and essential to overcome
the problem. circRNAs were recently identified as novel
functional ncRNAs involved in several cancers [7], including
CRC. hsa_circ_001569 was reported to act as a positive
regulator of proliferation and invasion of CRC cells; it
functions as a sponge of miR-145, and therefore, targets
upregulated miR-145, such as E2F5, BAG4, and FMNL2 [17].
However, large-scale identification of circRNA expression in
chemoradiation-resistant CRC cells was not yet reported.
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Figure 4: circRNA-miRNA-target gene network of top three upregulated circRNAs in cancer signaling pathways. Interactions between
circRNAs and miRNAs and those between miRNAs and target genes in cancer signaling were shown in the map.
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Previously, we established 5-FU-based chemoradiation-
resistant CRC model and identified novel long ncRNAs and
mRNAs associated with CRR. These genes were found to be
involved in the Jak-STAT, PI3 K-Akt, and NF-𝜅B signaling
pathways [6].These findings provided an advantage to further

study the role of circRNAs in CRR development. Here, we
first reported microarray analysis of circRNA expression
modulations in chemoradiation-resistant CRC cells.

In this study, we found that 47 circRNAswere upregulated
and 24 circRNAs were downregulated by more than twofold.
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The top three upregulated circRNAs were upregulated by
more than 10-fold, and the most upregulated circRNA,
hsa_circ_0007031, was upregulated by 116-fold, which was
a huge modulation. Furthermore, selected representative
modulation in circRNAs was validated to be consistent with
microarray data by qRT-PCR analysis, suggesting that the
array data was reliable. KEGG pathway analysis revealed that
modulated circRNAs in 5-FU chemoradiation-resistant CRC
cells were involved in a cancer signaling pathway or cancer-
related signaling pathways, such as the actin-cytoskeleton
pathway [14], focal adhesion signaling [15, 16], andWNT sig-
naling pathway, all of which are associatedwithCRCdevelop-
ment. WNT signaling was known to be associated with CRC
for a long time; Wnt2 was expressed at low levels in the nor-
mal colon. It was overexpressed in all the tumor tissue sam-
ples at the different Dukes’ stages of CRC progression [18].
Since the above circRNAs were identified from 5-FU
chemoradiation-resistant CRC cells, we supposed that these
pathways play important roles in the development of CRR.

The expression profiles of miR-885-3p could significantly
(𝑝 = 0.012) distinguish plasma samples collected prior
to treatment from those collected after two days of chemora-
diotherapy, suggesting that miR-885-3p is involved in the
development of CRR [19]. Because miR-885-3p targets
hsa_circ_0007031, which was found highly upregulated in
this study, we inferred that hsa_circ_0007031 might play a
crucial role in the development of CRR. Meanwhile, it was
known that STAT3 [20] plays an important role in the devel-
opment of CRR, and silencing STAT3 resulted in significantly
decreased clonogenic survival following exposure to 5-FU
and irradiation. Interestingly, STAT3was a target gene of hsa-
miR-485-5p, which could interact with hsa_circ_0000504,
and the latter one was found to be highly upregulated
in this study. Thus, we supposed that upregulation of
hsa_circ_0000504 could reduce the suppression of hsa-miR-
485-5p on STAT3 and accelerate the development of CRR.We
speculated that downregulation of hsa_circ_0000504 would
be a possible option to overcome 5-FU resistance in CRC.

AKT signaling was reported to be associated with
chemoradiotherapy treatment response [21]. In this study, all
the top 3 upregulated circRNAs were predicted to be capable
of regulating AKT3 by interacting with AKT3 regulatory
miRNAs; thus, AKT signaling may be stabilized by these cir-
cRNAs. Furthermore, BCL2 protein family [22] was reported
to be associated with rectal tumors in patients unresponsive
towards chemoradiotherapy. Coincidentally, BCL2 was also
predicted to be regulated by both of the top two upregulated
circRNAs—hsa_circ_0007031 and hsa_circ_0000504.

Among the downregulated circRNAs, it was found that
hsa_circ_0048234 has four miR-671-5p-binding sites and
was modulated in chemoradiation-exposed rectal cancer
cells.ThemiR-671-5p-EGFR signaling pathwaywas identified
previously [23]; thus, it was possible that downregulation of
hsa_circ_0048234 could, therefore, increase EGFR signaling
and promote CRR.

In summary, we first reported the role of differentially
expressed circRNAs in 5-FU chemoradiation-resistant CRC
cell line. The study provided a useful database for further
understanding CRR and presents potential targets to over-
come CRR in CRC.
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