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Breast cancer detection largely relies on imaging characteristics and the ability of clinicians to easily and quickly identify potential
lesions. Magnetic resonance imaging (MRI) of breast tumors has recently shown great promise for enabling the automatic
identification of breast tumors. Nevertheless, state-of-the-art MRI-based algorithms utilizing deep learning techniques are still
limited in their ability to accurately separate tumor and healthy tissue. .erefore, in the current work, we propose an automatic
and accurate two-stage U-Net-based segmentation framework for breast tumor detection using dynamic contrast-enhanced MRI
(DCE-MRI). .is framework was evaluated using T2-weighted MRI data from 160 breast tumor cases, and its performance was
compared with that of the standard U-Net model. In the first stage of the proposed framework, a refined U-Net model was utilized
to automatically delineate a breast region of interest (ROI) from the surrounding healthy tissue. Importantly, this automatic
segmentation step reduced the impact of the background chest tissue on breast tumors’ identification. For the second stage, we
employed an improved U-Net model that combined a dense residual module based on dilated convolution with a recurrent
attention module. .is model was used to accurately and automatically segment the tumor tissue from healthy tissue in the breast
ROI derived in the previous step. Overall, compared to the U-Net model, the proposed technique exhibited increases in the Dice
similarity coefficient, Jaccard similarity, positive predictive value, sensitivity, and Hausdorff distance of 3%, 3%, 3%, 2%, and 16.2,
respectively. .e proposed model may in the future aid in the clinical diagnosis of breast cancer lesions and help guide in-
dividualized patient treatment.

1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a new functional imaging technique used to
assess the physiological properties of the microvascular system
in lesions and tissues..is technique is based on the acquisition
of baseline images before enhancement as well as consecutive
multiperiod high-temporal resolution images after intravenous
contrast agent injection. DCE-MRI relies on the calculation of
theMRI signal intensity over time and obtains semiquantitative
or quantitative parameters that reflect the dynamic enhance-
ment characteristics of the contrast agent in the tissue of

interest. In this sense, the perfusion of a lesion is directly
represented by the shape of the time-resolved signal intensity
curve that represents the dynamic enhancement pattern.
Semiquantitative parameters are those derived from the en-
hancement curve of the tissue for its visual analysis, such as
maximum slope, peak value, and area under the curve (AUC).
Quantitative parameters refer to contrast-related microcircu-
latory parameters computed using pharmacokinetic models.
Compared with conventional MRI methods, DCE-MRI can
not only obtain information about the morphological char-
acteristics of a lesion but also reflect physiological changes in
the lesioned tissue.
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Automatic tissue segmentation is paramount for the
accurate computer-aided clinical diagnosis of breast cancer
using MR-based imaging techniques. Historically, MRI has
proven advantageous in detecting breast cancer compared to
other imaging methods such as X-ray mammography, as
such images effectively provide detailed tissue characteristics
that include the invasive range, texture characteristics,
structural status, and voxel strength [1]. In particular, DCE-
MRI captures one the most detailed human tissue profiles of
all MRI-based approaches. With such detailed breast tissue
segmentation and characterization, radiologists can infer
important additional disease information such as clinical
stage and the scope of invasion and structural morphology.
.is allows clinicians to customize treatment or radiation
therapy plans for individual patients and to verify patho-
logical information after surgery. Breast tumors are mainly
distributed alongside the mammary glands and manifest as
two main subtypes in DCE-MRI images. .ese two subtypes
are generally known as mass type and nonmass type and are
shown in Figure 1..e former has clear margins and is fairly
straightforward to identify in the images. However, the
accurate segmentation of the latter is a challenging task due
to the irregular morphology, grayscale heterogeneity,
blurred regional boundaries, and low contrast of nonmass
tumors..erefore, the delineation of nonmass breast tumors
is in particular a lab-intensive job and requires professional
training and extensive clinical experience..is identification
is further complicated by the subjectivity of manual de-
marcation, as well as the psychological fluctuations and
physiological tiredness of the reader, which often results in
poor repeatability, missed detection, and misjudgment.

Effective breast tumor segmentation results have been
achieved using traditional machine learning methods, such
as fuzzy c-means (FCM) [2, 3], active contour models
(ACM) [4, 5], and Markov random field (MRF) [6, 7]. For
example, FCM has recently been utilized to segment 121
breast tumor cases [2]. As noted by Militello et al. [3], the
traditional FCM clustering algorithm does not consider any
spatial relationship between voxels, making it sensitive to
noise and other imaging artifacts. .ese authors, therefore,
used the spatial version of the FCM clustering algorithm for
segmentation. Nevertheless, this approach required the a
priori selection of an ROI and required the manual ad-
justment of FCM parameters to achieve the desired seg-
mentation. To reduce these forms of human intervention, a
nonlinear dimension reduction scheme termed spectral
embedding ACM was proposed [4]. .is dimension re-
duction process is performed on voxels at the same position
in different images of DCE-MRI sequences. However, this
approach is time intensive when calculating tensor gradients
and statistical information. Another study [6] has shown
that conditional independence allows loopy belief propa-
gation to condense the multichannel MRF into a single-
channel task for tumor segmentation. .e disadvantages of
this approach are the inability to automatically account for
topological changes and the need to manually adjust asso-
ciated parameters. Support vector machines (SVMs) and
independent component analysis (ICA) have also been used
to extract data-driven dynamic lesion features [7]. In

general, traditional machine learning methods require a
priori ROI definition or manual intervention for post-
processing. However, these techniques exhibit poor adaptive
generalization and cannot achieve the automatic segmen-
tation of breast tumors.

Recently, the U-Net architecture [8] has been accepted as
the common baseline for designing new segmentation
models on small-scale datasets [9, 10]. Using the U-Net or
similar architectures, significant progress has been achieved
in breast tumor segmentation based on mammography,
ultrasound, X-ray, and histopathology images [11, 12]. For
example, Piantadosi et al. [13] proposed a 3D multiplanar
segmentation method with three different U-Net models.
Similarly, Wang et al. [14] adopted a mixed 2D and 3D
convolution network with multiscale context to compensate
for the loss of information when using only 2D networks. In
general, the need for such complicated machine learning
models stems from the fact that DCE-MRI breast tumor
images exhibit a complex and heterogeneous background,
which also accounts for only a small proportion of the image.
In this sense, the thoracic cavity, breast, muscle, and other
tissues occupy a large proportion of the image. .is im-
balance between the tissue of interest and background ac-
tivity is a classic problem in machine learning and makes the
segmentation task difficult. To address this limitation, a
research group at Duke University proposed a mask-guided
and hierarchical fully convolutional network (FCN)-based
segmentation framework [15–17]. .rough the cascaded
FCN that utilizes both coarse and fine segmentation models,
the breast ROI and detailed segmentation of breast tumors
were completed, and it achieved an average Dice similarity
coefficient (DSC) of 0.72. Another study [18] proposed an
intercascade generative adversarial network (GAN) that
contains both an adaptive attention cascade and a joint
discrimination network. .ese components judge whether
certain pixels are at the same position. While this approach
has its advantages, when compared with FCN, the process of
training a GAN is more difficult and its performance is more
likely to fluctuate.

.ere have also been many attempts to improve the
U-Net model [19]. .e residual U-Net [20] introduced a
residual mechanism that can obtain more contextual in-
formation and alleviate the degradation of deep networks.
Similarly, the dense U-Net [21], which introduced a dense
mechanism, extracts richer features without increasing the
number of parameters. Oktay et al. [22] also proposed the
space-based Attention Gates (AGs), which were integrated
with U-Net for pancreas segmentation and exceeded the
performance of using only the U-Net. In another study,
Rundo et al. [23] merged channel-based Squeeze-and-Ex-
citation (SE) blocks into the U-Net architecture to improve
its generalization through adaptive feature re-calibration.
Similarly, Guan et al. [24] introduced the SE module into
V-Net [25] and achieved excellent performance in a brain
tumor segmentation task. By dividing the input image into
patches, Chen et al. [26] proposed the TransUNet method by
introducing a self-attention mechanism used in natural
language processing to the U-Net. Although these attention
mechanisms have improved the segmentation performance
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of the original U-Net model, they all still only use semantic
input information. In this regard, we propose a dense re-
sidual module and recurrent attention mechanism, which
can further improve the segmentation performance of
U-Net-based approaches. In the past, multimodal infor-
mation fusion [27], multicenter [23], context [12], and at-
tention mechanisms have been commonly deployed in end-
to-end models to improve segmentation results. Inspired by
these previous works, T1-weighted and T2-weighted MR
images have also been fused using supervised cross-modal
learning. Context and multiscale information have also been
fully utilized to construct an automatic end-to-end FCN-
based segmentation model [12, 23]. Other research has
combined prior shape information obtained by deep
learning with ACM to accurately segment breast tumors.
However, ACM parameters are not fully trainable and
learnable and, in general, generalize poorly.

To address the various drawbacks and limitations of
current MR-based breast tumor segmentation techniques,
we propose in the current work a two-stage deep learning
segmentation framework. .is framework incorporates a
dense residual module based on dilated convolution [28, 29]

as well as a recurrent attention module [22, 30] for adaptive
feature map calibration. .ese components were integrated
into the baseline U-Net model to construct the proposed
segmentation network termed the Recurrent Attention
U-Net. .is model was trained and tested on clinical MRI
data and exhibited significantly better classification per-
formance compared to the traditional U-Net model. .is
work may in the future aid in the clinical diagnosis of breast
tumors and help guide individualized treatment plans.

2. Materials and Methods

2.1. Data Acquisition. All breast DCE-MRI images were
acquired using a Siemens MAGNETO MESSENZA 1.5 T
scanner with a 4-channel phased-array surface breast coil.
All patients were in the prone position during image ac-
quisition. T1-weighted fat suppression was utilized to
quickly simulate gradient echo. All breast image volumes
were acquired in the transverse position with the following
parameters: repetition time� 4.6ms, echo time� 1.7ms,
turning angle� 7°, Field-of-view� 280× 340mm2, matrix
size� 280×340, slice thickness� 1.0mm, slice gap� 0mm,
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Figure 1: A mass and nonmass DCE-MRI breast tumor. (a) Mass breast tumor. (b) A partially enlarged view of the mass breast tumor.
(c) Nonmass breast tumor. (d) A partially enlarged view of the nonmass breast tumor.
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and total scan time� 75 s. .e contrast agent used was
gadopentetate, and the dose was 0.2ml.

A total of 160 breast tumors cases were included in our
clinical database, with 2960 2D T2-weighted slices of size 512
× 512. .e images in the axial direction of the transverse
plane were utilized for this study. .e average length of the
DCE-MRI sequences in the database was 112 slices. .e
number of slices containing breast tumors ranged from 20 to
82 for individual DCE-MRI sequences. .e 160 cases were
randomly divided into 128 cases for the training set and 32
cases for the test set. Before training, data enhancement
operations such as mirroring, scaling, and elastic defor-
mation were performed on the training set. .e training set
was expanded to 14112 images.

2.2. Manual Delineation of Breast ROI. .e ground truth
marking of the breast ROI region was performed manually
by clinicians with the help of the LabelMe software..e label
marking and 3D display of breast tumors was performed
using the 3D slice medical imaging software (Figure 2), and
the manual delineation of the breast ROI was drawn by
clinicians based on their own experience. All breast tumor
ROIs were agreed upon by two clinicians and included both
mass and nonmass breast tumors.

2.3. Breast Tumor Identification. In general, the breast
cancer lesion occupies only a small part of the total breast
area, which places breast tumor identification into a
category of difficult machine learning problems where the
classification is largely unbalanced. Hence, advanced and
complex segmentation frameworks, usually involving
multistage processes, are generally appropriate for this
application [15, 16, 30]. In this study, a two-stage deep
learning segmentation framework based on FCN was
proposed to identify breast cancer lesions from T2-
weighted MR images (Figure 3). In stage 1, the classic
U-Net architecture was used to complete the automatic
segmentation of a breast ROI. In stage 2, a joint dense
residual and recurrent attention DCE-MRI breast tumor
segmentation network utilizing classic U-Net innovations
was employed.

2.4. U-Net-Based Segmentation of the Breast ROI. .e breast
region ROI was first segmented from the rest of the image,
which is important for the later segmentation of tumors.
Sketching a rough ROI region of the breast has been shown
to effectively remove the influence of other background
tissues on the segmentation results [16, 30]. .erefore, we
retrained the parameters of the U-Net model based on the
breast area that was demarcated by clinicians. By doing so,
this model was able to identify a breast ROI that overlapped
with clinicians’ manual identification remarkably well
(Figure 4). In particular, the breast area was extended to both
sides of the chest to ensure that no breast tumor area could
bemissed. It should be noted that both small and large breast
sizes could be correctly segmented.

2.5. 6e Proposed Recurrent Attention U-Net Model. To ac-
curately segment breast tumors from the breast ROI, we
propose an end-to-end improved U-Net model, which
combines a dense residual module based on dilated con-
volution with a recurrent attention module. .e standard
U-Net model and the proposed recurrent attention U-Net
model are shown in Figures 5(a) and 5(b), respectively.

2.5.1. Basic Improvement Methods. In the proposed model,
we integrated various components to improve the perfor-
mance of the standard U-Net model. First, all ReLU acti-
vation functions were replaced with PReLU [31] activation
functions. While PReLU is based on ReLU, it adds learnable
parameters to adjust the activation of background noise and
irrelevant information. .is is in contrast to the ReLU,
which instead removes information to prevent the model
from learning from noisy inputs. Moreover, the use of the
PReLU can simultaneously increase segmentation accuracy
and model fitting with negligible extra parameter calculation
cost. .e second improvement was that all batch normali-
zation in the model was replaced with group normalization
(GN) [32]. .ird, before each pooling operation, a dense
residual module including a dilated convolution operation
was added to further expand the receptive field of the model
and extract more discriminable feature information. .is
module output was concatenated with the corresponding
input stage in the model decoder to compensate for the
feature information lost by downsampling and upsampling.
In the decoder, we used the proposed recurrent attention
module to replace all the original convolution blocks and
utilized a gated recurrent unit (GRU) [33] to combine
previous layer information and to extract attention weight
several times. .en, we used the attention weight to increase
the importance of features so that the model could more
accurately locate lesion areas. Other settings of the model
were in line with those of a standard U-Net model [8]. Since
the size of the breast image was 512× 512, we reduced the
number of output feature channels of all modules in the
model to half of that in a standard U-Net model to reduce
the computation and memory consumption of the model.

2.5.2. Dense Residual Module. Based on the residual unit
[28], to expand the local learning range of the model, we
constructed a new residual unit using dilated convolution to
replace the original standard convolution. .en, inspired by
the concept of dense connection [11], the output features of
the residual unit were passed to all subsequent units for
accumulation and summation..is step wasmeant to realize
implicit deep supervision and retain the useful information
that was learned. .e dense residual module structure is
shown in Figure 6. In a residual unit of the module, a
standard convolution with a kernel, k1

t , of size 1 × 1 was used
to halve the number of channels, N, of the input feature
matrix, xt ∈ RW×H×N. Importantly, this caused the width,
W, and height, H, to remain unchanged and generated a
feature set, x1

t ∈ R
W×H×N/2 (N/2 different 1× 1×N kernel),

where t � (1, 2, 3) is the residual unit number. .e purpose
of this process was to reduce the number of calculations that
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the model was required to perform. In addition, dilated
convolution with the kernel, k2

t , formed by 3 × 3 kernel size
and dilation rate of dt � (1, 2, 3) was used to enlarge the
model’s receptive field and to extract the output feature set,
x2

t ∈ R
W×H×N/2. Finally, the number of feature matrix

channels is restored to N by a standard convolution with a
kernel, k3

t , of size 1 × 1, and an output feature set,
x3

t ∈ R
W×H×N. Except for the last (third) convolutional layer

that was followed by a GN [32], the rest of the convolutional

layers in the residual unit were followed by a GN and a
PReLU [31]. .is concept is described as follows:

x
c
t �

PReLU GN 􏽘
N

n�1
k

cn
t ∗x

c−1n
t

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ if c≠ 3,

GN 􏽘
N

n�1
k

cn
t ∗ x

c−1n
t

⎛⎝ ⎞⎠ if c � 3,

⎧⎪⎪⎪⎪⎪⎪⎨
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(1)

U-Net

Tumor
Mask

Rough
Segmentation

Breast
Mask
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Dense Residual Block

Recurrent Attention Block 
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Max Pooling

Skip Connection

Up-Conv

Stage 1 Stage 2

Figure 3: Proposed two-stage breast tumor segmentation framework.

(a) (b)

(c) (d)

Figure 2: Illustration of DCE-MRI breast ROI and breast tumor. (a) Breast ROI and breast tumor, (b) enlarged breast ROI and breast tumor,
(c) 3D reconstruction of breast ROI and breast tumor, and (d) enlarged 3D breast ROI and breast tumor reconstruction. Green and yellow
represent breast ROI and breast tumor, respectively.

Computational Intelligence and Neuroscience 5



where ∗ denotes the convolution operation, c � (1, 2, 3), and
x0

t � xt. For simplicity, we omitted the bias term. To obtain
the final output of the current residual unit, we summed the
current residual unit input, xt, and output, x3

t , as well as all
previous unit inputs, (x1, . . . , xt−1). After a PReLU activa-
tion function, the final feature map, xt+1 ∈ RW×H×N, was
then obtained, as described by

xt+1 � PReLU x1 + · · · + xt−1 + xt + x
3
t􏼐 􏼑. (2)

In our self-built breast dataset, there were various cases
where the lesion areas were very similar to the background.
In such cases, automated segmentation can be very difficult.
.is problem can be alleviated by enhancing the receptive
field of the model to obtain richer global context infor-
mation. .ere are many ways to enhance the receptive field

of a U-Net network. For example, a larger kernel size for
convolution or pooling can be used to ensure that the model
receives information from a larger receptive field at each
pixel and extracts more discriminable features. However, a
larger convolution kernel will also greatly increase the
computational complexity of the model. Furthermore, the
encoding and decoding paths constructed in the standard
U-Net are not strictly symmetrical. Although the skip
connection and concatenation operations are introduced to
ensure that the encoding and decoding processes are con-
sistent in size, the information cannot be guaranteed to be
completely reversible. In complex edges and blurred border
areas, image information loss is therefore unavoidable.
Dilated convolution can alleviate these difficulties to a
certain extent and can refine the segmentation results. Di-
lated convolution can obtain a larger receptive field without

(a)

(b)

(c)

Figure 4: Illustration of breast ROI extraction. .e rows represent the original image (a), ground-truth clinician-drawn mask (b), and U-
Net-based segmentation results (c).
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Figure 5: Comparison of the standard U-Net and the proposed recurrent attention U-Net architecture. (a).e standard U-Net consists of a
left-right symmetrical encoder and decoder. In the encoder, feature maps are continuously downsampled by max-pooling to extract high-
level semantic information. In the decoder, the feature map resolution is gradually recovered by transposed convolution. .e rich low-level
semantic information of the encoder is concatenated through a skip structure, which compensates for the information loss caused by the
downsampling and upsampling process. (b).e proposed recurrent attention U-Net. A dense residual module was added at the end of each
stage (except stage 1) of the U-Net encoder, and the output of the module was used for skip connections. Furthermore, our proposed
recurrent attention module replaced the convolution blocks at each stage of the U-Net decoder. Note that each rectangle in the picture
represents a feature matrix. .e number above each rectangle represents the number of feature matrix channels and the number on the
lower left represents the resolution of the feature map.
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changing the size of the convolution kernel and keep feature
size unchanged compared to traditional convolution.

Dilated convolution with a dilation rate of d and con-
volution kernel of k × k was expanded to kd × kd by inserting
d − 1 zeros between each parameter of the convolution
kernel. .us, kd � k + (k − 1) × (d − 1).

However, dilated convolution also has some disadvan-
tages, which are elaborately described in [34]. For a dilated
convolution with kernel of size kd × kd, the effective value
used for calculation is only k × k. When the set dilation rate
increases, the proportion of the effective features will de-
crease. Moreover, the feature information captured by the
model will be sparser. To alleviate this issue, we set up three
dilated convolutions with dilation rates of
(d1, d2, d3) � (1, 2, 3) within the block. Increasing the di-
lation rate cascade can fully cover the receptive field, avoid
dilation or missing edges in the receptive field, and can solve
the problem of information continuity loss.

2.5.3. Recurrent Attention Module. In the model decoder,
each transposed convolution layer is followed by a recurrent
attention module, which consists of multiple alternately
connected GRUs [33] and convolution blocks (Figure 7),
where the convolution block consists of a 3×3 kernel size
convolution, a GN, and a PReLU. In each stage of the de-
coder, the previous stage output is upsampled to the same
size as the skip-connected feature map. .ese two feature
maps are then concatenated as the module input. In the
module, the first convolution block then halves the number
of input feature matrix channels, N, to aggregate features.
.is procedure is the same as what occurs in the U-Net
model, but the subsequent convolution blocks do not change
the channel number. A global max-pooling (GMP) is then
performed on the output feature map, x ∈ RW×H×N, of the
convolution block, to compress its resolution from H × W to
1 × 1, and extract global information. .e output,
x′∈ R

1×1×N , of a GMP process is fed into the GRU together
with the hidden state, h ∈ RN/2, which is initialized as a zero
vector, and a new hidden state, h′∈ R

N/2, is extracted
according to

hl
′ � GRU GMP xl

′( 􏼁, hl( 􏼁, (3)

where l � (1, 2, . . ., L) and L is the number of GRU. By raising
the dimension of h′ to be the same as x′, we obtained the
attention weight, α ∈ R1×1×N/2. .en, we channel-wise
multiplied x with α and added the importance to the feature
map, which is an output of the convolution block. In ad-
dition, we introduced the residual structure [28], the result
of which was followed by a PReLU, according to

yl � PReLU xl + xl × αl( 􏼁( 􏼁, (4)

where yl ∈ RN×H×N is the input of the next convolution
block.

In Section 2.5.2, we described the addition of the dense
residual module to the encoder path, which improved the
segmentation accuracy by enlarging the model receptive
field. Here, we introduce a recurrent attention mechanism
to improve the accuracy of localizing objects and further
enhance the segmentation capacity of the model. .e
general FCN can only learn in a local region with a specific
convolution kernel size at any given time to establish
implicit and local channel relations for the feature map.
.erefore, contextual information outside the local range
cannot be recruited. Our proposed recurrent attention
module compresses the feature map that is fused with low-
level rich semantic information of the dense residual
module to a 1×1 resolution by GMP. .is realizes the full
utilization of all feature information regardless of the size
of the convolution kernel. .e GRU is the key to gaining
attention and exploits the global context of the feature
map to extract the attention weights in the channel space.
By multiplying the attention weights channel-wise, the
explicit channel relationships are constructed for the
feature maps, which can guide subsequent convolution
layers to learn more efficient representations. Further-
more, attention can improve the sensitivity of the model
to the lesion area and enrich the positional information of
features from a global perspective. By passing the hidden
output state of the GRU, the attention weights are con-
tinuously optimized and the feature maps are further
calibrated. Altogether, recurrent attention modules can
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Figure 6: Dense residual module based on dilated convolution. .e “Conv1× 1” represents a convolution block composed of a 1× 1 kernel
size convolution, GN, and PReLU. .e “Conv3× 3” represents a similar block but utilizes a 3× 3 kernel dilated convolution. .e “d”
represents the dilation rate. It should be noted that the “Conv1× 1’ after “Conv3× 3” does not contain a PReLU. To simplify the diagram, this
has also been named “Conv1× 1”.
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accurately locate breast tumors and better distinguish
them from background areas to improve segmentation
accuracy.

3. Results and Discussion

3.1. Training and Evaluation of the Proposed Model. .is
study was performed on the following platforms: computer
server configuration–Intel(R) Core (TM) i9-9900K CPU @
3.60GHz× 16, Nvidia GeForce RTX 2080Ti, Linux OS
Ubuntu18.04, Programming language–Python3.6 and
Pytorch1.3 open-source. .e initial learning rate was set to
0.001 to train the model. In addition, the standardized
initialization function for PReLU presented in [31] was used
as the model initializer. Adam was employed with default
parameters enhanced by Lookahead [35] as an optimizer to
update model parameters to improve convergence speed and
the segmentation effect. For all experiments, only one RTX
2080TI graphics card was used to train 200 epochs for each
model. In the proposed model, the maximum batch size was
set to 4. .e calculation results of commonly used batch
normalization depend on current batch data. When the
batch size is small, the mean and variance of the batch data
are poorly represented and thus show a higher error rate.
.erefore, the batch normalization originally used by all
models was replaced with GN to avoid the influence of small
batch sizes on training. Before training, the data were
normalized by Z-scores for standard processing to eliminate
the influence of different initial gradients on convergence
speed.

.e number of lesion voxels in our breast dataset was
significantly lower than that of nonlesion voxels, which is
very common in the field of medical image segmentation.
Note that the breast lesion area is generally significantly
smaller than the whole breast area. .erefore, the influence
of training a model with such an imbalanced dataset on
segmentation accuracy is unknown. .e loss function of
Tversky et al. [36] was used to limit the influence of the
imbalanced dataset. Tversky loss is a generalized loss
function based on the Tversky index, which can control a
better trade-off between precision and recall rate. .e for-
mula for this index is represented as

T(α, β) �
􏽐

N
i�1 p0ig0i

􏽐
N
i�1 p0ig0i + α􏽐

N
i�1 p0ig1i + β􏽐

N
i�1 p1ig0i

, (5)

where p and g are the network output predictions and
corresponding ground truth, respectively. .e network
output predictions were obtained by mapping the output
pixels to probabilities using a soft-max function. Further-
more, p0i is the probability that voxel at position i is a lesion,
and p1i is the probability that voxel at position i is a
nonlesion. Similarly, g0i indicates whether the voxel at
position i is a lesion and g1i indicates whether the voxel at
position i is a nonlesion. .e values of α and β control the
punishment depth FPs and FNs, respectively. We were able
to control the weight between false positives and false
negatives by adjusting the hyperparameters α and β. In the
model, we set the values to α� 0.3 and β� 0.7.

We used segmentation criteria that are standard metrics
in the field of medical image segmentation, including area-
based Jaccard similarity (Jaccard), dice similarity coefficient
(DSC), sensitivity (SEN), specificity (SPE), and positive
predictive values (PPV), as well as Hausdorff distance (HD),
which can be computed according to equation (6)–(11):

Jaccard �
TP

TP + FN + FP
, (6)

DSC �
2TP

2TP + FP + FN
, (7)

SEN �
TP

TP + FN
, (8)

SPE �
TN

FP + TN
, (9)

PPV �
TP

TP + FP
, (10)

HD � max max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)􏼨 􏼩, (11)

Acc �
TP + TN

TP + TN + FN + FP
, (12)
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GMP

Conv 3 × 3

PReLU

Conv 3 × 3

1 × 1 × N 1 × 1 × N

GMP

PReLU

H

GRU GRUh0 h1 h2

H

N

N W

W

H

N W
H

N
W

Figure 7: Recurrent attention module. ‘Conv 3×3’ represents a convolution block composed of a 3×3 kernel size convolution, GN, and
PReLU. ‘GRU’ denotes a gated recurrent unit. ‘h0’ is the initial hidden state, and ‘h1’ and ‘h2’ are the output hidden states of GRU. ‘GMP’
indicates global max-pooling. See Section 2.5.3 in Section 2.5 of the main text for further explanation.
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where TP is the true positive rate, FP is the false positive rate,
TN is the true negative rate, and FN is the false negative rate.
X and Y represent the pixel set of the input image and
ground truth.

3.2.Results. In the first stage of the proposed model, we used
the retrained U-Net model to segment the breast region ROI
from the rest of the image (see Figure 4). .e experimental
results show that the DSC value reached 0.9198 and the ACC
0.9807 (Table 1), indicating that the model was able to
achieve accurate breast ROI segmentation.

To evaluate the performance of the present model, we
compared the segmentation results with those of the original
U-Net model as well as other high-performing medical
image segmentation models such as Residual U-Net [8],
Dense U-Net [21], Attention U-Net [22], and V-Net [25] on
the test set. All compared models were reproduced
according to their optimal implementation and utilized the
same training and testing protocol with the same experi-
mental dataset. Figure 8 shows representative segmentation
results of four test cases using the aforementioned models. A
3D reconstruction of these segmentation results is shown in
Figure 9.

As can be seen in Figure 8, the images in the first and third
rows show tumors that are particularly difficult to detect from
the surrounding background, often accompanied by an in-
distinct tumor boundary. When comparing the segmentation
results of the comparison models with the ground truth, each
model had varying degrees of accuracy in its tumor segmen-
tation results. Nevertheless, the proposed model exhibits a
smaller segmentation error than all the comparisonmodels and
the segmentation results fit the ground truth boundary better.
In contrast, the images in the second and fourth rows show
tumors that are extremely similar to the background areas,
which are inevitably mis-segmented by the contrast models.
However, our model did not only perfectly avoid mislabeling
these similar areas, but it also exhibited a more accurate
segmentation of the lesion area compared to other models.
.erefore, these results suggest that, compared to standard
techniques, the recurrent attention U-Net produces more
accurate segmentation results and exhibits advantages in lesion
edge recognition for tumors of varying sizes and background
noise. Figure 9 shows 3D reconstructions of the segmentation
of three tumors by the different algorithms. .e proposed
model segmented these tumors noticeably better than the
standard models in terms of surface detail, granularity, hollow
processing in the middle, and the edge of the lesion area.
Although the recurrent attention U-Net was better in terms of
overall error segmentation and missing segmentation perfor-
mance, there is still a lot of room for improvement compared to
the ground truth.

To further evaluate the prediction results of the recurrent
attention U-Net for single-patient sequence data, we
extracted the boundary of segmentation and fused it with the
ground truth image in a 3D reconstruction (Figure 10). .e
model and ground truth 3D reconstructions exhibited ob-
vious overlap, even at the spatial scale of small tissue
branches and fuzzy boundaries (Figure 10(a)). .is high

performance is likely a result of how the dense residual
model improves the model receptive field and how the
recurrent attention module makes full use of global context
information. .e lesion area predicted by the model for a
single patient image is shown in Figures 10(b) and 10(c)
along with the corresponding ground truth. .e difference
between the ground truth and the predicted segmentation
results is further shown in Figure 10(d). Although from a 2D
perspective, the lesion area predicted by the model is highly
consistent with the ground truth area, it can be seen from a
3D perspective that there is still room for improvement in
terms of pixel-level segmentation accuracy.

In addition to visual inspection, we also quantitatively
evaluated the performance of all models on the test set using
standard segmentation-based metrics (Table 2). For 32 test
samples, we utilized the average values for comparison. Since
the breast DCE-MRI clinical dataset used in this study
contained noise and suffered from an imbalance in size/pixel
number between the background and tumor area, it is ex-
pected that any model would exhibit a relatively low SEN
and high SPE. Nevertheless, for all evaluation indicators, the
performance of the proposed recurrent attention U-Net
model surpasses the original U-net. In particular, the pro-
posedmodel outperformed the standard U-Netmodel with a
2.7% increase in DSC, a 2.40% increase in PPV, a 3.01%
increase in the Jaccard similarity, and an increase in the HD
of 16.2. .e DSC and Jaccard index is generally the most
important metrics for evaluating image segmentation as
these two values consider the false-negative rate and false
detection rate of pixels in the lesion areas, respectively.
.erefore, these metrics best explain the segmentation ac-
curacy of the model comprehensively. Aside from the U-Net
model, the proposed model outperformed all other models
in all quantitative metrics with the sole exception of SEN,
where the Dense U-Net performed slightly better.

To compare the generalization of each model more
graphically, we plotted the DSC index for each model in
Figure 11. Notably, compared to other methods, the pro-
posed recurrent attention U-net exhibited the most stable
effect. Our model not only outperformed other models in
terms of overall performance but also exhibited better
performance on target tumors with poorer segmentation
effects of other models. .is implies that recurrent attention
calibration is helpful for U-Net-based segmentation models
to locate the lesion area in a complex environment and
transfer the focus of the model to the target area.

We also investigated the detected features at various stages
of the proposed model to gain insight into how this model
identified tumor tissue..e output features of each stage of the
proposedmodel were also extracted, as depicted in Figure 12. It
can be seen from Figure 12(d)–12(g) that the model encoder
started with shallow features such as fine textures and edges
and gradually learned more complex semantic information to
maintain focus on the breast tumor area.

Table 1: Segmentation performance of breast ROI identification.

Method DSC Jaccard SEN SPE PPV ACC
U-Net [8] 0.9198 0.8534 0.9289 0.9878 0.9124 0.9807
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With a continuous fusion of deep semantic information,
themodel decoder gradually refined the features of the lesion
area. To explain the effectiveness of the proposed module,
the weight distribution of the key convolutional layers of the
proposed model is visualized and explained, see
Figures S1–S3 in the Supplementary Material.

.rough the Grad-CAM [37] algorithm, we extracted
attention images that have been positioned and calibrated by
the recurrent attention module from each layer of the model

decoder for visualization. Figure 13 shows the visualization
of two test cases. After the recurrent attention block
extracting and applying the attention weights twice, the
model located the approximate location of the lesion area
and gradually refined the edge to exclude more similar
background areas and make the segmentation result more
accurate. .erefore, the recurrent attention module helped
the model to realize localization and edge refinement of the
lesion area, as well as focus attention on the lesion area.

(a) (c) (d) (e) (f)(b) (g) (h)

Figure 8: Qualitative analysis of 2D DCE-MRI breast segmentation using both standard and the proposed models. (a) Input image. (b)
Ground truth mask. (c) U-Net. (d) Attention U-Net. (e) Residual U-Net. (f ) Dense U-Net. (g) V-Net. (h) Present model.

(a) Ground truth (b) U-Net (c) AttentionU-Net (d) Res U-Net (e) DenseU-Net (f) V-Net (g) Presentmodel

Figure 9: 3D reconstruction of the segmentation results for three test cases by the different algorithms.
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(a)

(b)

(c)

(d)

Figure 10: Qualitative analysis of predictive segmentation results of single patient DCE-MRI sequences. (a) A sequence of single patient
images with predicted boundaries (red line) and actual areas (white). (b) 3D segmentation result. (c) 3D ground truth. (d) Difference
between the ground truth and the predicted segmentation results.

12 Computational Intelligence and Neuroscience



Table 2: Comparison of experimental results of the different prediction models on the test set. All values in this table are averages from 32
test cases.

Method Jaccard DSC SEN SPE PPV HD
U-net [8] 0.6348 0.7557 0.8018 0.9989 0.7688 33.2948
Attention U-Net [22] 0.6386 0.7594 0.8013 0.9990 0.7787 19.5235
Residual U-Net [20] 0.6322 0.7555 0.8220 0.9988 0.7526 25.1890
Dense U-Net [21] 0.6529 0.7667 0.8031 0.9991 0.7781 20.9375
V-net [25] 0.6360 0.7587 0.8184 0.9989 0.7559 43.3051
Present model 0.6649 0.7827 0.8296 0.9990 0.7928 17.0818
.e best results for the segmentation metrics in the comparison experiment are shown in bold.

1.0

D
ic

e 
sc

or
e

U-Net V-Net Res U-Net Dense
U-Net

Attention
U-Net

Present
model

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Methods

Median

Average

Figure 11: Comparison of experimental results of different models in terms of DSC.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 12: Continued.
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4. Conclusion

Automatic segmentation of breast tumors is the key to the
fast and early integration of this approach in clinical
practice. Due to the segmentation challenges presented by
the complex image background of DCE-MRI breast tumors,
we proposed in this work a two-stage segmentation
framework. In stage 1, FCN was deployed to conduct an
automatic delineation of a breast ROI from the background
image comprised of the chest and other tissues. In stage 2, we
constructed a dense residual module based on the standard
U-Net model with a recursive attention module and dilated
convolution. For breast tumors of different sizes and shapes
in images without postprocessing, a higher segmentation
accuracy was achieved by the proposed model compared to
other standard U-Net-based models. .erefore, our results
showed that the segmentation result of our proposed model
improved the DSC by 3%, the Jaccard similarity by 3%, the
PPV by 3%, the SEN by 2%, and the Hausdorff distance by
16.2 compared to the standard U-Net model.

Despite these enhancements, there are still some
limitations of the current study that should be noted.
Although the segmentation accuracy was markedly im-
proved, the values achieved by the proposed models may

still not be sufficient for clinical application. .e proposed
model was only evaluated on a single-source, single-se-
quence DCE-MRI breast dataset. For multisequence or
multicenter studies, its effectiveness has yet to be verified.
Furthermore, if the breast area was small or the position of
the breast tumor was near the chest cavity, the segmen-
tation may have exhibited additional errors. In addition,
this framework is not strictly end-to-end, and in future
studies, an in-depth study of the 3D segmentation of
breast tumors is needed.

Nevertheless, this study showed that the proposed model
can intuitively assist clinicians with observing the position
and volume of breast tumors. .is work may in the future
help clinicians to quantitatively analyze the segmentation
results from a 3D perspective and establish a prediction
model to improve the diagnosis, radiotherapy, and prog-
nosis of breast tumors [38, 39].

Data Availability

.e DCE-MRI breast tumor data used to support the
findings of this study have not been made available because
of the patients’ privacy. .e database can be obtained from
the corresponding author upon request.

(i) (j) (k) (l)

Figure 12: Feature map after fusion of each stage of the proposed model. (a) Input image. (b) Ground truth. (c) Output result. (d) Encoder
stage 1. (e) Encoder stage 2. (f ) Encoder stage 3. (g) Encoder stage 4. (h) Center stage. (i) Decoder stage 1. (j) Decoder stage 2. (k) Encoder
stage 3. (l) Decoder stage 4.

Figure 13: Heat map of each recurrent attention block.
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Supplementary Materials

Figure S1(a) illustrates the weight distribution of the model’s
first convolutional layer. .is layer mainly learned rough
shallow features, as supported by the widely distributed
weights. To make predictions regarding each pixel, the last
convolutional layer of the model similarly exhibited a wide
but sparse weight distribution, as depicted in Figure S1(b).
Similarly, Figure S2 depicts the weight distribution of the
convolutional layer before each dense residual block and the
weight distribution of the last convolutional layer in each
dense residual block. Since the model captured more fea-
tures under a larger receptive field, each of the distributions
shown in Figure S2(b), (d), (f ), and (h) are wider than those
of Figure S2(a), (c), (e), and (g). Figure S3(b), (d), (f ), and (h)
show the weight distribution of the convolutional layer after
extracting and attaching the attention weights (once) in each
recurrent attention block. Compared with the weight dis-
tribution before feature calibration shown in Figure S3(a),
(c), (e), and (g), feature calibration concentrated the weights.
.erefore, these results suggest that recurrent attention
mechanisms can help the model to better locate breast tumor
areas and capture more effective features. (Supplementary
Materials)
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