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Learning transport processes 
with machine intelligence
Francesco Miniati* & Gianluca Gregori

Transport processes ruled by complex micro-physics and impractical to theoretical investigation 
may exhibit emergent behavior describable by mathematical expressions. Such information, while 
implicitly contained in the results of microscopic-scale numerical simulations close to first principles 
or experiments is not in a form suitable for macroscopic modelling. Here we present a machine 
learning approach that leverages such information to deploy micro-physics informed transport 
flux representations applicable to a continuum mechanics description. One issue with deep neural 
networks, arguably providing the most generic of such representations, is their noisiness which is 
shown to break the performance of numerical schemes. The matter is addressed and a methodology 
suitable for schemes characterised by second order convergence rate is presented. The capability 
of the methodology is demonstrated through an idealized study of the long standing problem of 
heat flux suppression relevant to fusion and cosmic plasmas. Symbolic representations, although 
potentially less generic, are straightforward to use in numerical schemes and theoretical analysis, and 
can be even more accurate as shown by the application to the same problem of an advanced symbolic 
regression tool. These results are a promising initial step to filling the gap between micro and macro in 
this important area of modeling.

Conservation laws are fundamental laws of physics reflecting underlying symmetries of nature1. In continuum 
mechanics they apply in a Lorentz invariant local form and are formulated mathematically as the continuity 
equation

where u, is the volume density of the conserved variable and q(u) the corresponding current or flux density. 
Equation (1) states that the rate of change of a conserved variable within a volume V is due to its flux across the 
volume’s surface, ∂V :

The continuity equation, typically in the form of a system of coupled partial differential equations (PDEs) for 
a state vector of conserved variables, u, appears virtually in all fields of modern science and engineering where 
it is employed particularly for the description of fundamental phenomena related to fluids, plasmas, and solids. 
The ability to obtain high fidelity models based on its accurate solution is therefore of great interest. Given its 
nonlinear character, the use of advanced numerical integration techniques for hyperbolic systems is usually 
required, which has given rise to a now well established and mature field of applied mathematics2–4.

However, the accurate knowledge of the transport term, q , entering the continuity equation is generally miss-
ing, particularly for diffusive processes which depend on complex physics mechanisms operating at microscopic 
scales. This applies to many fundamental and industrial applications, including fusion5–9 and cosmic plasmas10–12, 
liquid metals13,14, hypersonic flows during spacecraft re-entry15, semiconductor devices16,17, phononic trans-
port in solids18,19. One outstanding example is the case of heat transport. For classical ideal fluids and gases it 
is well established that the heat flux is proportional to the temperature gradient as collisions between nearby 
particles enforce a local energy flow from hotter to colder regions. Thus Spitzer–Härm theory20 gives Fick’s law, 
q = −κ∇T , where κ is the coefficient of thermal conduction and T the temperature. However, it has long been 
realised that the ideal gas approximation breaks down when the electron mean free path approaches or exceeds 
the temperature gradient scale-length, LT , a condition common in thermonuclear fusion plasmas5,7. Modified 
versions of Fick’s law have been proposed in the literature but are often very poor and fail to generalize6,7.

(1)
∂u

∂t
= −∇ · q,

(2)
d

dt

∫

V
u dV =

∫

∂V
q · ds.
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While such processes can in principle be modeled by integrating sets of microscopic (e.g. kinetic) equa-
tions progressively closer to first principles (which are, however, impractical to model macroscopic systems), 
this capability has unfortunately not yet translated into the formulation of transport terms, q , employable in a 
continuum mechanics description, suitable for modeling macroscopic systems. In addition, there are physical 
conditions under which even current kinetic or ab initio codes do not provide consistent results21. In this case it 
would be desirable to have the ability to learn about such transport terms directly from actual experimental data.

In this paper we describe a machine learning (ML) based approach designed to improve our modeling 
capability and theoretical understanding of generic transport processes by learning directly from data provided 
either by microscopic-scale numerical simulations or even experiments. In particular, we apply deep learning 
techniques to obtain a representation of the transport process as a function of the state vector.

In the past decade artificial intelligence has emerged as a powerful technology22 and there has been great 
interests in its use for scientific applications in general23–28. In the context of computational fluid dynamics 
machine learning has been leveraged as an accelerator, i.e., in order to enhance the performance of numeri-
cal solvers. In particular, we have seen the development of powerful emulators, i.e. machines capable of fully 
representing PDE solvers in order to reproduce the results of conventional numerical simulation codes but at a 
significantly lower computational cost and/or higher accuracy29–35. Alternatively, researchers have focused on 
augmenting the modeling capability of numerical methods. Here one typically employs a learnable function to 
assist or replace altogether modular components of the numerical scheme, particularly those most affected by 
finite resolution effects, so as to enhance the overall performance of the method36–41. In the context of phononic 
thermal transport ML techniques have been applied to generate accurate effective (force field) potentials from 
high-fidelity density functional theory simulations19,42. In the spirit of the augmented methods discussed above, 
these effective potentials are then used in ab initio molecular dynamics simulations to predict heat conduction in 
new materials19,43,44. Note that pure ML emulators are not formulated on the basis of numerical analysis. While 
as a result these solvers may be more flexible and powerful as they are not subject to mathematical constrains as 
numerical methods for hyperbolic systems (e.g., the Courant–Friedrichs–Lewy condition), they usually come 
short of the stability, generalisation and robustness characterising full fledged numerical methods2–4. These 
properties tend to be better preserved in the augmented methods.

Our aim here is aligned with the development of augmented methods in that we employ deep learning 
techniques to ultimately improve the accuracy of numerical simulation models. At the same time our scope is 
different in that our target is not a representation of the optimal numerical scheme, rather a representation of the 
unknown underlying transport physics, somewaht similar to the above phononic application. Proper modeling 
of the latter usually requires a microscopic description based on a different (and much more expensive) compu-
tational approach or, at times, even experiments. Our method therefore can also be seen as an accelerator in that 
it deploys a micro-physics informed transport term usable in a conventional fluid approach without incurring 
the cost of a full microscopic description. As will be shown in the next section, however, a latent representation 
of a transport process provided by a deep neural network has limited smoothness properties, which breaks the 
performance of a numerical scheme. For second order accurate schemes the issue can be addressed by using 
latent representations of the flux gradient instead of the flux function itself. This approach can be extended for 
higher order schemes but at the cost of higher complexity. In any case, data regularization becomes now neces-
sary to ensure a reliable estimate of the gradients from the generally noisy data.

On an even more ambitious scale, one can attempt to obtain symbolic representation of the transport process 
through a symbolic regression analysis of the data. A mathematical expression is of great theoretical importance 
and allows for the potential discovery of new physical relational laws45,46. In addition, it is straightforward to use 
in a numerical scheme. So would it be the ultimate solution to the problem. Unfortunately, however, in general 
this task is significantly more difficult and potentially strongly affected by the quality of the data46.

In the remainder of this paper we first present in detail our proposed method to learn representations of trans-
port processes, addressing the numerical issues, the the data regularization procedure and the employed deep 
learning methods. In the second part we demonstrate the viability of the method in a scenario of real scientific 
interest, the case of heat transport in a high temperature plasma previously discussed, including the application 
of an advanced symbolic regression tool.

Methodology
Preliminaries.  Building a ML model of a transport process requires a set of data representing the solution to 
the associated Eq. (1). The data can be obtained either through direct measurements (experiments), numerical 
simulations with sufficient modeling capability, or both. In the former case the data most likely represents time 
variations of the conserved quantity and in the latter case values of the flux density itself. Obviously the data 
should only contain information about the transport process of interest. For example, in studying diffusion the 
effects of advection must be subtracted out. More precisely, our data is laid out on a discrete grid, Ŵ ∈ Z , defined 
in a one-dimensional spacial domain [0, L] ∈ R . This simple setting is not restrictive in terms of information 
scope and conveniently keeps the data complexity to a minimum. Given the mesh spacing, h, we define a set 
of control volumes i ∈ Ŵ corresponding to region of space [i h, (i + 1) h] with boundaries belonging to a face-
centered discretisation space based on those control volumes: {Ŵe = i + 1/2 : i ∈ Ŵ} . It is convenient to relate 
the time variation of the conserved quantity and the fluxes by integrating Eq. (1) in a space-time slab ( h, δt)47

(3)q̄i+ 1
2
− q̄i− 1

2
= − h

δt
δūi ,
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where q̄ is the time averaged flux over δt , and δūi is the space averaged time variation of u inside the i-th control 
volume during δt . Note that Eq. (3) at this stage is exact. Then knowing the value of the flux q at one of the 
boundaries, b = 0, L , one can write:

where we use the upper sign and set (m, n, b) = (0, k, 0)  if the flux value is known at the domain’s origin and use 
the lower sign and set  (m,m,b)=(k, L, L) if the flux value is known at the domain’s  end. Equation (4) is useful 
when the value of the flux, q̄i+1/2’s, is not directly measurable, in which case it can still be inferred from the δūi’s. 
It also makes it clear that the fluxes and time variations we deal with are actually time and volume averages not 
instantaneous or point-wise values. Similarly, although we use a one-dimensional model, experimental data will 
require a surface averaging of the flux. Since in general such experimental and numerical inaccuracies can be 
quantified there is in principle control over the quality of the data and the inferred model. With this understand-
ing the data, either the set of δūi ’s or equivalently of q̄i+1/2’s, can be used to construct the labels for supervised 
training. We address details related to this step next.

Smoothness.  The performance of a numerical scheme depends on the smoothness of the functions appear-
ing in the target PDEs. While this is not an issue with analytic expressions unless the functions of interest are 
intrinsically irregular, the question arises in the case of latent representations provided by a Multilayer-Percep-
tron (MLP), owing to their noisy character. The smoothness we are referring to here concerns the validity of 
Taylor expansion’s approximation, from which the accuracy and convergence properties of a scheme are inferred 
through the methods of numerical analysis3. We thus assess the smoothness of an MLP function by the residual 
error, Ep , of its Taylor expansion up to order p− 1 , for variation h of an individual components ξ of x , namely

where x0 is the expansion point, ∂kξ f0 ≡ ∂kξ f (x0) and ξ̂ is a unit vector in the ξ-direction of parameter space. The 
last equality is expected to hold for any p for infinitely differentiable functions such as the ones we are dealing 
with. We compute Ep for the analytic function q(x = (n, T , β)) defined in Eq. (13), and for its MLP representa-
tion described in the ‘MLP Representation of the Flux Function’ in Methods, although the specific details do not 
affect the conclusions of the current discussion.

In Fig. 1 we plot Ep(h) as a function of δξ/ξ ≡ h/x0,ξ , after averaging over 30 expansion points, x0 , randomly 
chosen in the domain of the q function for p = 1, 2, 3 . Each panel corresponds to the expansion along a dif-
ferent component ξ , with the shaded regions representing the range between the absolute mean value (bottom 

(4)q̄k± 1

2

= qb ∓
h

δt

n∑

i=m

δūi

(5)Ep(h; x0, f ) =
1

f0



f (x0 + hξ̂)−
p−1
�

k=0

∂kξ f0

k! hk



 = O(hp)

Figure 1.   Taylor expansion’s error: residual error from Taylor expansion up to order 0, 1, 2 (corresponding 
to Ep with p = 1, 2, 3 , respectively in the legend) of the analytic flux function q in Eq. (13) (red) and its MLP 
representation (blue). Each panel corresponds to variations of each individual thermodynamic variable, with 
the shaded regions representing the range between the absolute of the mean value (bottom boundary) and one 
standard deviation (upper boundary) for a sample of 30 randomly chosen expansion points.
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boundary) and one standard deviation (upper boundary). The results indicate that while for the analytic case 
(red), Ep ∝ hp , as expected, for the MLP representation (blue) only E1 follows expectations, in fact overlapping 
with the analytic counterpart. Instead, E2 scales only as h1.5 and E3 is virtually equivalent to E2 (notice the cross 
hatch pattern), suggesting that additional terms of Taylor’s series do not improve the approximation.

In Fig. 2 we plot Ê2 , i.e. E2 computed for a single value x0 but rescaled by the factor E2(h ≈ 10−3 x0,ξ ) . The 
figure shows that the scaled Taylor expansion of the MLP representation does follow the parabolic curve (black 
line), but only within a much smaller interval than the analytic case (gray pentagon). In the specific case, beyond 
δξ/ξ ≤ 10−3 , Ê2 grows linearly indicating that the function’s derivative has changed substantially. That this simple 
description, indicative of a noisy character, is sufficient to reproduce the qualitative and quantitative behaviour 
of the MLP representation illustrated in Supplementary Fig. S1. Here the same sample averages of Ep as in Fig. 1 
are plotted together with those of the analytic function q modified for an additional random term proportional 
to its first derivative, namely

where a is a random number sampled uniformly within [−A, A] with A of order unity.
This lack of smoothness implies poor numerical performance. For example, applying a finite difference cen-

tered scheme to estimate the gradient of q yields only O(h0.5) accuracy as opposed to O(h2) as usual. The resulting 
truncation error is likewise of order τ(h) ∝ O(h0.5) . Oddly enough, however, due to the stochastic character of 
the offending term spoiling Taylor expansion’s approximation the convergence rate would be better than inferred 
by the truncation error because the error accumulates only as N1/2

steps . Therefore, in a finite different scheme for 
example, at a given solution time, t = Nsteps �t and for fixed �x/�t =const.

Later in the paper we will support this finding with an actual numerical experiment.
First order convergence rate would still be poor by modern standards. However, in view of the foregoing 

discussion it is clear that using an MLP representation of the flux gradient instead of the flux itself would suffice 
for the purpose of a second order accurate scheme. In fact, the primitive of the MLP representation, the flux 
function, would now have a valid Taylor expansion up to p = 2.5 and, by the above arguments, would be able to 
fulfill the requirements of second order convergence rate. Suitably smooth functions for higher order schemes 
could be also built starting from representations of correspondingly higher derivatives, although it would require 
additional integration operations further complicating the overall scheme. Thus, in the ‘Application to heat 
transport’ section we stick to second order accurate schemes.

(6)qs(x) = q(x)+ a∇q
h1.5

x0.50,ξ

,

(7)ε(t,�x,�t) =
∑

Nsteps

τ(�x) �t ∝ τ(�x) (�t)1/2 = O(�x).

Figure 2.   Smoothness test: plot of the scaled residual of a first order Taylor expansion 
Ê1 = E2 / E2(h ≈ 10−3x0,ξ ) , with respect to each thermodynamic variable, n,T ,β (no sample averaging over the 
expansion point was computed). The open gray pentagons represent the three overlapping expansions for the 
analytic flux function q in Eq. (13). The blue, red and olive symbols (circles + dash-line) show the expansions 
with respect to n,T ,β , respectively, for the case of the MLP representation. The black solid line is the parabolic 
curve that all scaled residual errors are expected to follow, an expectation fulfilled by the analytic case, but not 
the MLP representation, except that for a very short interval.
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Regularisation.  The presence of noise in the data prevents direct calculation of the flux gradient (and higher 
derivatives). To improve the data quality we therefore first undertake a regularization procedure. Tikhonov’s 
method was found particularly effective for this purpose48–52. The method solves an optimization problem in 
which, given a set of noisy data yi(xi) , the smoothed, noise reduced data, ŷ , is found by minimising an objec-
tive function, Q, containing two contrasting terms, one measuring ŷ ’s fidelity to the original data and the other 
its smoothness. We evaluate the former term through the mean-squared-error (MSE) and the latter from  high 
order derivatives , y(p) , as estimated from the regularised values, i.e.

where �s is a parameter weighting the regularization term. Although Eq. (8) is typically formulated in the context 
of one-dimensional data, we apply it volumetrically, i.e. simultaneously to all different x-space components. Thus 
x, y and y(p) correspond linearised one-dimensional data array. While increasing the computational complexity, 
this yields isotropic smoothness of y(x).

Using matrix operators

where U weights the element-wise contribution according to its volume measure in the MSE metric (i.e. the dx 
element in an integral) and Dp consists of a stack of partial differential operators with respect to all components 
of x including, in general, mixed terms up to order p (see ‘Regularisation’ in Methods for additional details). In 
the application example discussed in the next Section, where y is the heat flux and x the thermodynamic variables, 
we find it sufficient to include only non-mixed terms of order p = 4 . The optimal set, ŷ , is found by solving the 
equation obtained by setting ∂Q/∂ ŷ to zero, hence

As for the �s parameter, we follow the practice of setting its value such that the resulting (y − ŷ) statistics is 
close to what is expected for the random errors of the data. In particular, when the noise standard deviation, σy , 
is known, Morozov52 principle can be applied and

When σy is unknown, generalised cross-validation method50 can be applied instead. In our experiments we 
find these two methods to give virtually identical results and use Morozov’s for computational convenience.

Latent representation.  In order to obtain a latent representation of the transfer process of interest we use 
an MLP with the architecture summarised in Fig. 3 and described in detail in ‘MLP Architecture’ in Methods. 
The MLP is trained to learn the gradient of the flux function using a set of labels obtained by differentiating the 
regularised input flux data, as described in the previous section. The training is based on Stochastic Gradient 

(8)Q((ŷ, y) = �y − ŷ�2 + �s

∑

p

�ŷ(p)�2,

(9)Q((ŷ, y) = (ŷ − y)TU(ŷ − y)+ �s(D
pŷ)TU(Dpŷ).

(10)ŷ =
(

I + �sD
pTUD

p
)
−1y.

(11)�s = argmin
�s

(
σŷ(�s)− σy

)2
.

Figure 3.   Trainable MLP representing the flux-gradient function. The first layer embeds the input features via 
Random Fourier Features (RFFs) which are then fed to the first hidden layer. The number of RFFs is the same as 
the number of hidden units which is constant across the hidden layers. Nonlinearity is introduced by application 
of a ReLU activation function to the affine mapping returned by the hidden units. The RFF embeddings are also 
fed to every other hidden layer except the last through skip connections. The output layer consists of as many 
regression units as the gradient components without activation function.
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Descent using an objective function given by the MSE of the relative error of the predicted value with respect to 
its label (further details are given in ‘MLP Architecture’ in Methods).

While in our application example discussed later on the flux density and its gradient depend on the point-wise 
values of the thermodynamic variables, a more general dependence from values in a neighbouring region of the 
evaluation point may at times be required. For such case an MLP may not suffice and a more flexible implemen-
tation of our machinery is conceivable, in which our MLP unit is embedded within a non-local-neural-network 
or even a full graph-network30,53,54 (of which the former is a special type).

Application to heat transport
Basics.  We now consider the case of heat transport in a high temperature plasma, a case of realistic scientific 
and engineering interest. As already mentioned in the Introduction, classically this process is described by Fick’s 
law with a thermal diffusion coefficient given by Spitzer–Härm model20

where Te , vte , ne , �ei are the electron temperature, thermal speed, number density and collisional mean free 
path, respectively, LT ≡ Te/∇Te is the temperature gradient scale-length, Z is the ions charge state, e the electric 
charge, me the electron mass, and � the Coulomb logarithm. The model equations (12), become invalid (and 
the heat flux strongly suppressed) as the electron mean free path approaches the temperature gradient scale-
length, i.e. 5–7. Kinetic models based on a phase-space description of the plasma continue to apply so 
one possibility would be to learn the representation of latent heat flux function from such simulation data. For 
simplicity, however, in the following we use a dataset of values generated from the following heat flux function11

where B is a magnetic field strength, v‖ is the velocity component parallel to the magnetic field and

yielding a suppression factor

with respect to Spitzer–Härm’s flux, qSH = neTevte�ei/LT.
Physically, this model describes the heat flux suppression due to whistler instabilities occurring in a low den-

sity, high-β intergalactic plasma, characterised by ne ≈ 10−4 cm−3 , Te ≈ a few keV, and B ≈ 10−6 G, in the pres-
ence of temperature gradients with scales LT ≈ 1022 cm11. In other words the above equations describe a specific 
emergent behavior of the heat flux suppression mechanism, caused by specific complex microscopic processes 
operating over several �ei scales. As already pointed out, however, the heat flux suppression is a phenomenon 
occurring whenever  irrespective of the underlying mechanism responsible for it. So for conditions 
relevant to, e.g., High Density Plasma Physics and Inertial Confinement Fusion, with similar keV temperatures 
and ne ≈ 1019–1023 cm−3 but not necessarily supporting ordered magnetic fields, there would still be a transition 
to non-local transport for a temperature scale LT ≈ 10−1–10−5 cm although the driving physical mechanism may 
differ6,7. Likewise can be said of plasmas characterised by different parameters that still combine to produce a 
similar value of LTT2

e /ne . In each of these cases the cause and specific characteristics of the emergent behaviour 
will be different. However, our purpose here is to demonstrate that if such an behavior exists and can be described 
in terms of a set of input parameters characteristic of the plasma state, then we shall be able to capture it.

Datasets.  To build the various datasets for the supervised training we consider a domain defined by the 
parameter ranges in Table  1 and discretise it with a uniform grid. At each grid point, x = (ne , Te , βe) , we 
then evaluate the flux function y = q(x) according to Eq.  (13). To assess the impact of the data volume on 
the model’s performance we have generated three sets of data with different sampling density described by the 
number-of-points-per-decade parameter, Nppd = 5, 10, 20 . As detailed in the next Section the computed gra-
dient function share the same grid as the flux function except for a  surface layer one grid-point wide where 
the gradient cannot be fully computed. To compensate for this we pad the grid surface with a  one grid-point 
wide buffer zone.   The size of the buffer zone is then doubled to also account for an additional layer of gradi-
ent data that we do not use due to the degrading performance of the regularization step there. Thus, in general 
the grid dimensions are, (Nn,NT ,Nβ) = (2Nppd + 4, Nppd + 4, 2Nppd + 4) , with a corresponding grid spacing 
�ξ = (ξmax − ξmin)/(Nξ − 1) , with the min and max values given in the Full Grid section of Table 1, and Nξ 
the grid size corresponding the parameter ξ.Notice that because of the different grid spacings for different values 
of Nppd the actual parameter range covered by the gradient data differs for the different datasets, as illustrated 
by the ‘Gradient Grid PR-Nppd ’ sections in the lower part of Table 1. The flux suppression factor ǫLT/�ei , also 
computed in the table, continues nonetheless to range from values ≪ 1 , i.e. the regime of highly suppressed flux, 
to values ≈ 1 , corresponding to the Spitzer–Härm limit. Finally, to assess the impact of noise in the data, we 

(12)

qSH = −κ Te/LT , κ = 128

3π
ζnevte�ei ,

vte =
(
2Te

me

) 1
2

, �ei =
3T2

e√
32πZ2nee4�

, ζ = 0.24+ Z

4.2+ Z
,

(13)q(ne ,Te ,B) = neTev� = ǫ neTevte , ǫ(ne ,Te ,B) ≡
v�
vte

,

(14)ǫ(ne ,Te ,B) =
(
LT

�ei
+ βe + 4

)−1

, βe =
neTe

B2/8π
.

ǫ LT/�ei
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also generate datasets in which the flux-density values are modified to include a normally distributed random 
percentage error,

with σ̂n a random variate from a Gaussian distribution N (0, σn).
The list of datasets is summarised in Table 2. The first column is the name of the dataset and the second the 

value of σn multiplied by 100. The next three columns indicate the Nppd parameter, the buffer size, and the total 
number of flux function evaluations, respectively. The last four columns refer to the flux gradient, in particular 
the total number of evaluations and the size of the training, validation and testsets partitions, respectively.

Data regularization.  For each dataset in Table 2 we apply Tikhonov’s regularization to the log values of y as a 
function of the log values of x. This means that our fidelity term in Eq. (8) is a relative error. The regularization 
term is given by the 4-th derivative computed on the regularised data based on finite differences of adjacent cell 
values (we effectively apply the operator D4,1,∗

Nn ,NT ,Nβ
 described in ‘Regularization’ in Methods). The flux gradient, 

providing the labels for the MLP’s supervised learning discussed above, is then computed using a second-order 
accurate central difference scheme (the operator D1,2,∗

Nn ,NT ,Nβ
 ) on the regularised data. Thus, for the ξ component

Figure 4 shows the results of the regularisation procedure in terms of the accuracy of the flux function and 
its gradient component, for the specific case of the dataset B.10, i.e. Nppd = 10 and σn = 0.1 . The top panels 
from left to right show the relative error distribution of the regularised and unregularised flux and of each of its 
gradient component, respectively. The blue shade corresponds to the regularised error distribution expanded 
by a factor 10. The bottom part similarly compares, in the corresponding panels, the cumulative error distribu-
tions of the regularised and unregularised flux function (blue and red) and its gradient components (green and 
olive), respectively. The plot shows that Tikhonov’s regularization is very effective at suppressing the noise in 
the original data allowing reliable estimates of the function gradients even in the case of relatively high noise. 
In this particular case we effectively obtain errors RMS below 1% and of order of a few % for the flux function 
and its gradient components, respectively, starting from a dataset with 10% normally distributed relative error. 
The improvement is particularly dramatic for the flux gradient whose calculation, as is well known, would be 
otherwise very challenging.

The results for all datasets are summarised in Fig. 5. For each combination of the Nppd and σn parameters, 
the various panels show the cumulative distribution of the relative error of the flux function and its gradient, 

(15)y ←(1+ σ̂n)y

(16)y
(1)
ξ (xi) =

ŷ(xi +�ξ ξ̂)− ŷ(xi −�ξ ξ̂)

2�ξ
.

Table 1.   Grid of parameter space: range and spacing for the grids of plasma parameter values at which the 
heat flux function (top) and its gradient (bottom three panels) are evaluated at different sampling density 
( Nppd). For each Table section, the last line shows the range of values of the heat-flux suppression factor. The 
temperature gradient length is fixed at LT = 3× 10

22 cm.

Parameter Min Max Spacing

Full grid

ne (cm−3) 10−5 10−3 Uniform

Te (keV) 1 10 Uniform

βe 10−1 10 Uniform

ǫ LT/�ei 7.0× 10−4 1.0 –

Gradient grid PR-20

ne (cm−3) 5.6× 10−5 9.5× 10−4 Uniform

Te (keV) 1.8 9.2 Uniform

βe 5.6× 10−1 9.5 Uniform

ǫ LT/�ei 4.8× 10−3 0.9 –

Gradient grid PR-10

ne (cm−3) 9.6× 10−5 9.1× 10−4 Uniform

Te (keV) 2.4 8.6 Uniform

βe 9.6× 10−1 9.1 Uniform

ǫ LT/�ei 9.6× 10−3 0.8 –

Gradient grid PR-5

ne (cm−3) 1.6× 10−4 8.5× 10−4 Uniform

Te (keV) 3.3 7.8 Uniform

βe 1.6 8.5 Uniform

ǫ LT/�ei 0.02 0.6 –
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Table 2.   Datasets: the columns represent the datasets’ name, the percentage of random relative noise added 
to the flux function, the sampling density represented by the points-per-decade parameter, the total number 
of buffer grid points, and the total number of flux function evaluations. The last four columns relate to 
the gradient function datasets (three components each), including the total number of evaluations and its 
partitions into training (68%), evaluation (17%) and test (15%) sets, respectively.

Name
σn
(×100) Nppd Nbuf Nq

N∇q

Total Training Eval. Test

A.0 0 20 4 46,464 32,000 21,760 5440 4800

A.1 1 20 4 46,464 32,000 21,760 5440 4800

A.5 5 20 4 46,464 32,000 21,760 5440 4800

A.10 10 20 4 46,464 32,000 21,760 5440 4800

A.20 20 20 4 46,464 32,000 21,760 5440 4800

B.0 0 10 4 8064 4000 2720 680 600

B.1 1 10 4 8064 4000 2720 680 600

B.5 5 10 4 8064 4000 2720 680 600

B.10 10 10 4 8064 4000 2720 680 600

B.20 20 10 4 8064 4000 2720 680 600

C.1 1 5 4 1764 500 340 85 75

C.0 0 5 4 1764 500 340 85 75

C.5 5 5 4 1764 500 340 85 75

C.10 10 5 4 1764 500 340 85 75

C.20 20 5 4 1764 500 340 85 75

Figure 4.   Single regularization result: regularization results for the dataset B.10, with Nppd = 10 and 
σn = 0.1 . Top panels: histograms of the relative error distribution of the regularised and unregularised flux 
function (left) and each gradient component (next three panels), respectively (see legend for details). The 
blue shaded regions correspond to the regularised error distribution expanded by a factor 10. Bottom panels: 
corresponding cumulative error distributions for the histograms in the top panels, particularly the regularised 
and unregularised flux function data (blue and red) and its individual gradient components (green and olive), 
respectively.
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for the the regularised (blue and green) and unregularised (red and olive) data, respectively. To estimate the 
flux gradient error, we compute the Euclidean norm of the flux log-gradient error and divide it by the Euclidean 
norm of the correct flux log-gradient. Here log-gradient of f (x) , with x a vector, means that (∇log x f )i = ∇log xi f  
and Euclidean norm of x means (

∑

i x
2
i )

1/2 . Additional statistics on the errors and their trends with the Nppd 
parameter are shown in Supplementary Fig. S2. Consistently with Figs. 4, and 5 and Supplementary Fig. S2 
show the effectiveness of the regularization, which allows us to compute estimates of the flux gradient with an 
accuracy that in most cases is significantly better than even that of the original data. It is tempting but somewhat 
not straightforward to compare the panels in Fig. 5 not corresponding to the same Nppd . In fact, on the one hand 
as already pointed out the domain of the regularised data differs for different values of the Nppd parameter. On 
the other hand, the higher Nppd , i.e. the grid resolution, the higher the impact of noise on the calculation of 
the gradient components, as is clearly visible in Supplementary Fig. S2. In the following we will show that it is 
definitely advantageous to use finer grids, i.e., larger Nppd.

Training data.  The MLP is trained on a set of data consisting of features, x , the thermodynamic variables 
already discussed, and labels y(1) corresponding to the gradient of the flux function obtained from the regular-
ised data. We take the natural logarithm of both except for the β component of the flux gradient for which we 
take the log of the negative value, and normalise the resulting x and  y(1) components to have zero mean and 
unit standard deviation.

Learned representations.  For each dataset listed in Table  2 we train a total of 100 MLP-models with 
hyperparameters selected from a (reduced) search space given in Table 5 (see ‘Hyperparameter Optimization’ 
in Methods for further details). Table 3 shows a selection of best models with the corresponding used dataset, 
hyperparameters and also final RMS and Max evaluation errors. We aimed for evaluation errors to be at least 
consistent with those characterising the regularised data. We have repeated the analysis and tests shown in this 

Figure 5.   Regularization results: for each combination of the Nppd and σn parameters, the blue and red curve 
show the cumulative distributions of the relative error of the flux function while the green and olive curves show 
the cumulative distributions of the flux gradient relative error, estimated by the ratio of the Euclidean norm of 
the flux log-gradient error and the Euclidean norm of the correct flux log-gradient (see main text for definition 
of log-gradient and Euclidean norm).
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section with alternative selection of best models obtained during the hyperparameter search and found consist-
ent results.

In the following we compute various statistics of the model prediction errors in which all gradient components 
are treated without distinction. This is feasible because the models are trained to learn the log of the labels, and 
the prediction errors correspond to relative errors (hence the axis label). It also means that the computed error 
refer equally to each component.

Figure 6 shows a summary of the test-errors for the models in Table 3. For each model of the A-, B-, C- series 
the errors are computed with respect to the noiseless testset, i.e. the testsets of the A.0, B.0 and C.0 datasets 
respectively. Each row corresponds to a different Nppd (and parameter range domain PR-Nppd ), while each column 
corresponds to a different value of σn , the noise in the flux dataset before applying Tikhonov’s regularization. 
The bias µ is typically negligible with respect to the variance term and, as it would be expected, in general the 
performance improves consistently for smaller values of the noise, σn , and for denser datasets, i.e. larger Nppd . It 
is interesting to note that for large values of the input noise, i.e. σn = 10, 20 , the MLP representations are charac-
terised by an RMS error per component ≃ σn/2 ≃ 2σreg , i.e. half the pre-regularization error but twice as large 
that of the regularised data (Supplementary Fig. S2). This is likely a consequence of the fact that the residual error 
noise in the regularised data is not purely Gaussian and the MSE is a less effective objective for closing in on the 
ground truth. Here, we also see that although in Supplementary Fig. S2 the error values for the regularised data 
at given percentile appear to plateau, MLP representations trained with more densely sampled datasets always 
shows an overall better performance. Below we show a more direct comparison of the models tested within the 
same parameter domain. In any case it is remarkable that we can obtain representations of the flux gradient 
with errors per components of only a few percent, despite an input relative error of the flux data of even 10%.

Figure 7 shows more specific error statistics, in particular the RMS (blue dash line), Max (red dash line) 
and Bias values (yellow thin dash line), characterising the model predictions and their trend with the pre-
regularization noise. From top to bottom, the rows correspond to errors computed using the noiseless testset 
of the C-, B- and A-series respectively, while from left to right the columns correspond to models trained with 
datasets with Nppd = 20, 10 and 5, respectively. The half-filled points threaded by the black dash line correspond 
to the case of equal relative error and input noise (the identity line, which would be diagonal in a linear plot).

In general the error statistics appear to trace the value of the pre-regularization noise. The RMS value remains 
well below the identity line, consistent with the quality of the gradient data obtained after Tikhonov’s regulari-
sation, except at the low noise end, σn ≤ 10−2 . Since panels on the same row correspond to prediction errors 
computed using the same testset, their comparison shows that models trained with larger datasets, i.e. with larger 
Nppd are significantly more accurate. This is shown more specifically in Fig. 8 where the statistics presented in 
the top three panels of Fig. 7, relative to the PR-5 domain, are plotted as a function of Nppd in three separate 
panels. Although the data points are not aligned along straight lines, there appear to be a trend for the various 
statistics to decrease linearly with the parameter Nppd . Related to the improvement of the model performance as 

Table 3.   Best models selection: from left to right the columns include the model’s name, the name of training 
set as listed in Table 2, the number of hidden layers and units, respectively, the σRFF parameter for generation 
of Random Fourier Features embeddings, and final the RMS and Max statistics for the evaluation errors. The 
table is divided into three subtables, one for each density of sampling parameter, Nppd , characterising the 
training data.

Model Dataset Learning rate

Neural network Regularization Result

Layers Units σRFF Type Param. RMS error Max error

A-series: Nppd = 20

MA.0 A.0 1.23× 10−3 4 1024 0.963 L1 1.02× 10−6 7.6× 10−3 3.9× 10−2

MA.1 A.1 1.80× 10−3 4 512 0.733 – – 7.5× 10−3 3.4× 10−2

MA.5 A.5 3.42× 10−3 5 256 0.601 L1 6.45× 10−6 1.1× 10−2 9.4× 10−2

MA.10 A.10 1.05× 10−3 6 512 0.663 – – 8.8× 10−3 6.5× 10−2

MA.20 A.20 2.53× 10−3 6 1024 1.723 L1 8.44× 10−7 1.7× 10−2 3.1× 10−1

B-series: Nppd = 10

MB.0 B.0 1.13× 10−3 4 512 0.790 L2 6.49× 10−3 8.7× 10−3 5.6× 10−2

MB.1 B.1 2.88× 10−3 6 512 0.739 – – 9.9× 10−3 6.3× 10−2

MB.5 B.5 1.57× 10−3 5 512 0.564 L2 8.25× 10−4 9.0× 10−3 8.0× 10−2

MB.10 B.10 2.15× 10−3 4 512 0.965 L2 1.01× 10−4 9.4× 10−3 8.1× 10−2

MB.20 B.20 2.66× 10−3 6 256 0.844 L1 9.79× 10−6 1.0× 10−2 1.0× 10−1

C-series: Nppd = 5

MC.0 C.0 1.30× 10−3 5 1024 0.444 L1 6.18× 10−7 2.4× 10−2 8.2× 10−2

MC.1 C.1 3.34× 10−3 5 128 0.515 – – 2.4× 10−2 1.3× 10−1

MC.5 C.5 1.89× 10−3 6 256 0.545 – – 2.5× 10−2 2.5× 10−1

MC.10 C.10 2.03× 10−3 5 128 0.483 L1 6.82× 10−6 2.7× 10−2 1.9× 10−1

MC.20 C.20 2.51× 10−3 5 128 0.547 L2 1.00× 10−2 2.7× 10−2 1.8× 10−1
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we move along the rows of Fig. 7 from right to left, which is attributed to a higher sampling density of training 
data, there is a corresponding performance worsening as we compare panels from top to bottom along vertical 
columns which, in addition to the reverse of the above effect, includes the additional difficulty of modeling the 
function’s gradient on a progressively larger domain.

Convergence tests.  To test the performance of our MLP representation in a numerical context, we set out 
to compute the temperature evolution of a plasma in a one-dimensional domain. The thermodynamic state of 
the plasma is constant in space, except for a sinusoidal perturbation with 5% amplitude in both the temperature 
and a second randomly chosen variable (n or T). The temperature evolution is computed by time integrating 
the Eq. (1), using a second order accurate numerical scheme for hyperbolic equations55 that employs the heat 
flux gradient provided by our MLPs. The algorithm, further detailed in ‘Numerics’ in Methods, is a higher order 
extension of Godunov method using a predictor corrector scheme. The computational domain has periodic 
boundary conditions and is discretised with NMesh Points resolution elements. The performance is based on the 
convergence rate of the numerical solution, i.e. the rate at which the error drops as a function of NMesh Points . 
The numerical error is computed using Richardson’s extrapolation method (also further detailed in ‘Numerics’ 
in Methods). We repeat the numerical integration test for a sample of 30 runs with different, randomly chosen, 
unperturbed ( n,T ,β ) plasma parameters.

The results are summarised in Fig. 9 where, for each MLP model, labeled according to the noise characteris-
ing the unregularised heat-flux data, the sample averaged L2 (blue dashed line) and Linf  (red dashed line) error 
norms are plotted as a function of, NMesh Points . The corresponding results for the analytic form of the heat-flux 
function are also shown (gray and cyan dashed line for L2 and Linf  respectively) together the L2 error of the ini-
tial conditions (olive dashed line), providing a simple sanity check. The L2 and Linf  errors norms of the various 
MLP based integration scheme implementations actually overlap and, more importantly, display a second order 
convergence rate (see black line), as expected for a second order accurate scheme. The slight flaring of Linf  at the 
high resolution end is sensitive to the sinusoidal amplitude and is perhaps indicative of nonlinear effects. The 
implementation using the analytic heat-flux function shows the same convergence—actually this test simply 

Figure 6.   MLP models test errors: Histogram of the test-errors of the MLP models in Table 3. All the 
histograms are rescaled so that they all peak at 1. Each row corresponds to a different Nppd (and parameter range 
domain PR-Nppd ), while each column corresponds to a different value of σn , the noise in the flux dataset before 
applying Tikhonov’s regularization. The errors are computed with respect to the noiseless testsets, i.e. the A.0, 
B.0 and C.0 testsets for models of the A-, B-, C-series, respectively. The legend shows the mean µ and standard 
deviation σ of the histogram in each panel. The lightblue shapes in some panels correspond to a histogram of 
10× larger errors.
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verifies the correctness of our code implementation—as would any other analytic expression, including the 
results of our regression analysis. Notice that the numerical solutions corresponding to each implementation do 
converge to different results. This is a consequence of the consistency property of the scheme3. In fact, in each 
case we are modeling a slightly different equation specified by the specific flux function model (analytic, MLP 
or symbolic regression) utilised in the numerical scheme.

The second order convergence of the implemented scheme confirms the error analysis presented earlier in 
Eq. (7). To further illustrate that it is the stochastic oscillation of the gradient in the neighbor of an expansion 
point that causes the random error cancellation of the spurious term and the resulting partial improvement of 
the convergence rate with respect to the expectation from the truncation error, we carry out the following sim-
ple experiment. We implement the above integration scheme using the flux model in Eq. (6) and compare the 
results obtained with three different models for a: in addition to the original ‘stochastic’ value sampled between 

Figure 7.   Test-error Statistics: RMS (blue dash line), Max (red dash line) and Bias (yellow thin dash line) 
statistics of the model prediction errors and their trend with the pre-regularization noise for different sampling 
size cases. In particular, from top to bottom, the rows correspond to errors computed using the noiseless testset 
of the C-, B- and A-Series respectively, while from left to right the columns correspond to models trained with 
datasets with Nppd = 20, 10 and 5, respectively. The half-filled points threaded by the black dash line correspond 
to the case of equal relative error and input noise (the identity line, which would be diagonal in a linear plot).
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Figure 8.   Trend with data sampling density: Test-errors’ RMS (left), Max (center) and Mean (left) presented 
in the top three panels of Fig. 7, relative to the PR-5 domain, plotted as a function of Nppd . Different symbols 
correspond to models trained with data characterised by different pre-regularization noise (see Figure’s legend). 
The error statistics appear to roughly decrease as the inverse of the parameter Nppd (black dashed line).

Figure 9.   Convergence test: L2 and Linf error norms for the implementations using an MLP model of the flux 
gradient (blue and red, respectively) and for the implementation using instead an analytic expression (gray and 
cyan, respectively, with the cyan curve multiplied by 1.15 to make it visible). The plotted errors are averages over 
a sample of 30 runs using different, randomly chosen, unperturbed values of the thermodynamic parameters, 
( n,T ,β ). Models trained with data characterised by different pre-regularization noise are represented by 
different symbol (see legend), though they are difficult to distinguish as their calculated error data points mostly 
overlap. The L2 error norm is also shown for the initial conditions (olive). Expected error drop rate for a second 
order accurate scheme is indicated by the black dash line.
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[-1, 1] we also set a = 0 (i.e. the ‘analytic’ model) and a = 1 (‘fixed’ value). We carry out the same numerical 
integration tests as above except that we now perturb only the temperature component. The results for the three 
models are shown in Supplementary Fig. S2 together with the usual ICs sanity check. The plot shows that while 
the ‘stochastic’ model (gray) displays second order convergence rate (see bottom black line) as the the ‘analytic’ 
model (blue), the ‘fixed’ model (red) converges only as N−1.5 . This would be expected for a consistent error build 
up due to the spurious fixed term during each time-step integration.

Symbolic regression.  In this final stage we attempt to recover a mathematical expression for the heat 
flux function through a symbolic regression analysis. For this purpose we use the Deep Symbolic Optimisa-
tion package56 which builds the mathematical expressions through a recurrent neural network trained with a 
reinforcement learning method. We first, however, precondition our symbolic regression in two ways: first, as 
suggested in46, we restrict the search to expressions with sensible physical dimensions. In addition, we exploit 
knowledge of the asymptotic limit of the sought mathematical expression if known. This is common practice 
when seeking to extend a law of physics to previously unexplored regimes (e.g., from classic to the relativistic or 
quantum limits). Both of these measures help reduce the symbolic search space which grows exponentially with 
the number of components. As already mentioned, the heat flux is well known when the electron mean free path 
is small compared to the temperature gradient scale, i.e.

Since q∗ has the same physical dimensions as q, we only need to search for a multiplicative dimensionless factor, 
our ǫ in Eq. (13), which will be a function of dimensionless variables. Given the dimensional physical quantities 
entering our plasma physics problem, (ne ,Te ,Be ,me , e, LT ) , only three dimensionless combinations are possible 
(or combinations thereof) namely, LTnee4T−2

e ∝ LT/�ei ≡ x1 , which in fact already appears in the asymptotic 
limit (17), neTe/B

2 ∝ βe ≡ x2 , and, n1/3e LT ≡ x3 , which actually ǫ does not depend upon. Notice that from the 
point of view of the symbolic regression there is no advantage in choosing x2 = βe or x2 = neTe/B

2 , or x1 versus 
3x1 for that matter, because the analysis will have to figure out the value of those coefficients by itself. Instead, 
we chose βe and LT/�ei because they have a clear physical meaning.

The datasets for the symbolic regression consist of 2000 entries containing the values of the target func-
tion, ǫ ≡ q/q∗ and the corresponding independent variables (x1, x2, x3) . The entries are randomly sampled 
from the four Datasets A.1, A.5 A.10 and A.20 in Table 2, allowing us to compare the performance of the 
symbolic regression under various conditions of data quality. Our function set includes a minimal choice of 
{+,−,×,÷, const.} , with a max of three constants, as well as the functions log and exp , allowing for generic expo-
nential expressions, often seen in physics, like, ‘ exp(g(log(x)) ’, where g is an arbitrary combination of the function 
set. We  avoid trigonometric functions, which are not expected in this problem. We set batch_size = 104 
and n_samples = 106 , resulting in 100 iterations and use standard settings otherwise. The chosen number of 
iterations appears sufficient for the reinforcement learning’s reward function to reach a plateau, but is otherwise 
arbitrary and longer runs could lead to slightly better accuracy. The DSO optimizes an objective function given 
by the Normalised Root Mean Squared Error (i.e. the root of the MSE of the relative error) of the function pre-
diction, similar to the case of the previously discussed regularisation and MLP training.

The results are summarised in Table 4 where for each dataset we report the symbolic expression obtained 
through the regression, the RMS and Max of the relative error for both the flux and its gradient, computed on 
a random sample of 106 entries. The symbolic regression appears to successfully retrieve the correct functional 
form of the factor ǫ , clearly outperforming the MLP model in terms of uncertainties of the flux gradient. Excep-
tion is made for the case of the A.5 Dataset, in which the symbolic formula is found to be characterised by an 
unusually large error. This result is rather peculiar and illustrates the importance of running the regression with 
multiple random initialisation seeds to obtain statistically robust results. The other interesting observation is 
that there seems to be no obvious advantage from running the DSO on the regularised data. As in the case of the 
MLP models, this seems related to the non Gaussian character of the residual error in the regularised data, which 
the NRMSE minimization carried out by the DSO is not effective at reducing. In this respect it is interesting to 

(17)lim
�ei/LT→0

q(ne ,Te ,Be) = q∗
�ei

LT
, q∗ = neTevte .

Table 4.   Results from the symbolic regression analysis. From left to right the column indicate the name of the 
dataset from which the training data were sampled, the found symbolic expression corresponding for clarity 
to ǫ−1 , the RMS and Max statistics of the relative error for the function and its gradient on a random sample of 
106 entries.

Dataset Symbolic expression for ǫ−1

Function error Gradient error

RMS Max RMS Max

Function set = {+, −, ×, ÷, log, exp, const.,    Iterations = 100

A.1 (0.9992 · x1 + 1.0008 · x2 + 3.9928)1.00055 7.3× 10−4 1.9× 10−3 1.6× 10−3 3.9× 10−3

A.5 (1.0977 · x1 + x2 + 3.8453919)/ log(0.3062 · log(x3)) 7.3× 10−2 1.6× 10−1 1.3× 10−1 2.5× 10−1

A.10 (x1 + x2 + 3.9388) · e0.0013·x2 8.3× 10−3 1.5× 10−2 1.3× 10−2 1.4× 10−1

A.20 (0.9855 · x1 + 1.0145 · x2 + 3.8580)1.0108 1.5× 10−2 3.7× 10−2 3.1× 10−2 7.6× 10−2
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compare the statistics of residual errors after Tikhonov’s regularization given in Supplementary Fig. S2 and those 
of the symbolic regression in Table 4, and notice, with a grain of salt, their comparable magnitude.

In conclusion, it is difficult to predict the performance of the DSO in the case of more complex functional 
dependencies between features and labels, and when the statistics of the data errors is not purely Gaussian. 
Nevertheless, the performance shown in a study of realistic research interest even with high levels of data noise 
is encouraging, particularly from the perspective of using experimental data.

Conclusions
In this paper we use a ML based approach to improve basic knowledge, mathematical description and numerical 
modeling capability of generic transport processes. Ours is part of ongoing efforts to employ modern artificial 
intelligence techniques in science and overlaps in scope with developments of augmented schemes and accelera-
tors for numerical simulations, as well as methods to gain insight in and possibly reach discovery of new laws 
of physics through symbolic regression analysis. Transport processes may be ruled by complex micro-physics 
which is impractical to model theoretically, but may exhibit emergent behavior describable by a closed math-
ematical expression. We are, therefore, particularly interested in formulating transport terms, q, employable in 
a continuum mechanics macroscopic description, by learning from data provided either by microscopic-scale 
numerical simulations, progressively closer to first principles, or even directly from experiments, for those physi-
cal conditions under which even current ab initio codes do not provide consistent results.

Ideally one would be able to learn the transport term, q, as a mathematical expression obtained through a 
symbolic regression analysis. This is the preferred path because it allows for easier implementation in computa-
tional modeling and is very valuable to theoretical analysis. However, it is also the less certain path, because it is 
an intrinsically more difficult task due to the unknown complexity of the sought relation and, amongst others, 
the degrading impact of the data uncertainties on its performance46. Alternatively, the transport term, q, can be 
expressed via an MLP representation. Care must be taken, however, with its implementation in numerical inte-
gration codes. Due to its noisy character, its Taylor expansion is unreliable beyond the first order term, leading 
to truncation errors τ(�x) ∼ O(�x1/2) . We have nevertheless shown that owing, in particular, to the peculiar 
stochastic character of the error term spoiling the Taylor expansion, using an MLP representation of ∇q instead 
of q itself, allows us to effectively recover a flux function sufficiently smooth for implementation in a second 
order accurate code. Formulations for even higher order schemes are feasible but add complexity and were not 
explicitly pursued here. In any case, in this approach it becomes necessary to first regularize the flux data, to 
minimize the impact of the error noise on the calculation of the flux gradients, which provide the labels for our 
trainable MLP function. Our method of choice for this purpose is Tikhonov’s.

When applied to an idealised study of heat transport relevant to astrophysical and thermonuclear fusion 
plasmas we find that Tikhonov’s regularization is very effective at cleaning the data from Gaussian noise, allowing 
accurate estimates of the flux gradient. The MLP’s trained on such labels deliver in general flux gradient repre-
sentations of relatively high quality, with their overall performance that, while reflecting the pre-regularization 
noise level, appears to improve roughly linearly with the density of parameter sampling (Fig. 8). For example, for 
a relative error noise of 10% and Nppd = 20 our MLP representation computes the flux gradient components with 
an error RMS of 3.7% (Fig. 6). Interestingly, the MLP training based on regularised data does not lead to model 
prediction errors that are further reduced with respect to the error characterising the training data. This is clear 
when comparing the error RMS of the regularised gradient data in Supplementary Fig. S2 and of the MLP gradi-
ent predictions in Fig. 6. In particular, for each MLP representation, at the low-end of the σn values we have a pre-
diction error RMS ≃ σn while at the high-end, i.e. σn = 10, 20 , we have a prediction error RMS ≃ σn/2 ≃ 2σreg , 
i.e. half the pre-regularizaton noise but twice as large the error of the regularised data (Supplementary Fig. S2). 
We believe this is caused by the non Gaussian character of the residual error of the regularised data which makes 
the MSE a less effective objective for closing in on the ground truth. Finally, the latent representation defined 
by our MLPs is shown to be suitable for implementation in second order accurate schemes and can be used in 
computational models of the continuity equation as a plug-in to augment the numerical integration algorithm 
and deploy and accurate description of the transport process of interest.

The application of the DSO symbolic regression package to our idealised study of heat transport, comple-
mented by some preconditioning operations of the problem, leads to a successful results mostly outperforming 
the precision of the MLP model, though it may be useful to run the regression with multiple random initializa-
tions to help avoiding occasional lack of performance. In line with the findings related to the MLP results, we 
observe that running the DSO on the regularised data appears to produce little or no benefit. This seems again 
related to the non Gaussian character of the regularised data’s error which the DSO optimization based on the 
NRMSE is not so effective at reducing. In this respect, we note the comparable performance of Tikhonov’s regu-
larization in Supplementary Fig. S2 and the DSO prediction in Table 4 in terms of error statistic.

The foregoing discussion suggests that while it is preferable to have accurate data it is also important to have 
control over the error statistics in order to employ the most appropriate objective function. Along the same line, 
we expect our results to remain valid beyond the specific case of random Gaussian relative error assumed in our 
idealised study, provided the objective functions are modified accordingly.

In conclusion, the successful retrieval of accurate MLP and symbolic representations of the heat flux function 
in the context of a study that is somewhat idealised, yet representative of the field11, appears a promising first 
step to be able to employ in macroscopic models the necessary sophisticated information on transport processes 
implicitly available from microscopic descriptions. The robustness of the results even in the case of significant 
noise in the data is also very attractive, particularly in view of applications using experimental data.
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Methods
MLP architecture.  The architecture of our MLP is summarised in Fig. 3. At its core is a number, NLayers , of 
hidden layers each with the same number, NUnits , of hidden units, both tunable parameters. We embed the input 
features into a set of Random Fourier Features57,58 (RFF), i.e. given the input vector x , we define the components

with NRFF = NUnits . As in58 we observe no benefit when training the parameters ki and φi , so following57 we 
randomly sample the ki ’s from the distribution, N (0, σRFF) , with σRFF a tunable parameter, and the φi ’s uniformly 
in the interval [0, 2π) . A ReLU activation function is applied to the affine mapping returned by the hidden units. 
We also employ skip connections to feed the RFF embeddings to every other hidden layer except the last. The 
output layer consists of as many regression units as the gradient component without activation function. To 
train the MLP we define a loss function given by the Mean Squared Error of the predicted value with respect to 
the label. To prevent overfitting we early stop the training if the accuracy does not improve during a number of 
consecutive iterations given by a patience parameter set to 100.

MLP representation of the flux function.  The MLP representation of the flux function uses the archi-
tecture described in the previous section with the following custom choice of the otherwise tunable parameters: 
5 hidden layers each consisting of 512 units, a σRFF = 0.95 for RFF embedding and a L2 regularization with 
parameter � = 10−5 . The MLP was trained with the noiseless data of the A.0 set using a learning rate of 10−3 . 
It reached convergence after 410 integration steps resulting in an RMS error of 9.6× 10−3 and a MAX error of 
3.8× 10−2.

Regularization.  In this section we develop the tools to compute f’s derivative of order p, f (p) , based on finite 
difference schemes. This are the tools employed for the calculation of the regularization term in Tikhonov’s 
method.

We consider a D-dimensional parameter space discretized by a grid � ∈ R
D of dimensions n0, . . . nD−1 and 

a scalar function f : ξ ∈ � −→ R . The grid elements, ξ , identified by the set of indexes i0, i1, . . . iD−1 , are not 
necessarily uniformly spaced but their parameter values grow monotonically with the respective index. In view 
of what will follow we define the utility function

which takes as input a comparison operator, cmp , and a dimension, d, and returns the volume of the subspace 
consisting of the dimensions fulfilling the comparison. For example, V>, 1 returns n2 × n3 × . . . nD−1 . We also 
define a stacking function

that takes an indexed operator, Aq , an initial index value, i, and a count, n, and returns a stack of n contiguously 
indexed operators starting from index i. In order to proceed we now linearise the grid of parameter values in � 
by arranging them into a 1-dimensional array, X  , according to an order in which the highest index runs fastest 
and the lower indexes progressively slower. Likewise we define a 1-dimensional array, y , whose i-th element is 
yi = f (xi) , with xi the i-th element of X .

We can now define the matrix operator, �1,m, d
n0,...nD−1

: Rn0·n1...nD−1 −→ R
n0·n1...(nd−m)...nD−1 , computing the 

difference between values corresponding to grid points separated by m points along the d axis,

where

(18)xi ← cos(ki·x + φi), i ∈ {i : 0 ≤ NRFF}.

Vcmp, d ≡
{
�i∈A:={i | 0≤i<D∧ i cmp d} ni , if A �= ∅

1 otherwise

S(Aq, i, n) ≡
(
Ai ,Ai+1, · · · ,Ai+n−1

)T
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The partial differential operator with respect to the d-th component of x is then

and

with the fraction in the last term meant component-wise. Likewise we can define the p-th order finite difference 
operator with respect to the d-th component of x,

and the corresponding p-th partial differential operator

so that

For m = 1 , the above operators map grid point values to midpoint interface values and for m = 2 it maps grid 
point values to interior midpoint grid values. If m is even and the grid spacing is uniform, y(p) and x, y share 
the same � grid except for an outer layer of thickness m/2, as finite differences cannot be computed normal to 
the boundary unless proper boundary conditions are provided. The above differentials can also be composed to 
build mixed differentiation. Finally, differential operators of various order and compositions can be stacked to 
define an overall matrix operators providing the regularization term in Tikhonov’s method. For example, a list 
of all partial derivatives of order p (excluding the mixed terms) is obtained by applying to the input vector y the 
operator obtained after stacking the individual Dp,m, d

n0,...nD−1 for d = 0, 1, . . .D − 1 , as follows

Numerics.  Our numerical integration scheme is a simplified version of the predictor corrector scheme pro-
posed by van Leer’s55. It is described in the pseudocode Algorithm 1, where u = (n,T ,β)T denotes the set of 
thermodynamic variables, �x and �t are the mesh and time-step size, Nx and Nt the numbers of meshes and 
integrations time-steps, respectively, P.B.C. stands for application of periodic boundary conditions necessary to 
complete the operations in the next code block. In addition JF is formally the Jacobian of the vector function 
whose components describe the flux of each thermodynamic variable. Since in this case only the heat-flux q is 
non-zero we have

where ∂z denotes the partial derivative with respect to z. Note that we do not use slope limiters.
The experiments reported in the ‘Convergence Tests’ are characterised by the following setup:

D
1,m, d
n0,...nD−1

= Diag
−1

(

�1,m, d
n0,...nD−1

· x
)

·�1,m, d
n0,...nD−1

y(1) = D
1,m, d
n0,...nD−1

· y =
�1,m, d

n0,...nD−1
· y

�
1,m, d
n0,...nD−1 · x

,

�
p,m, d
n0,...nD−1 =

p times
︷ ︸︸ ︷

�
1,m, d
n0,...nd−m∗(p−1),...nD−1

·�1,m, d
n0,...nd−m∗(p−2),...nD−1

· . . . �1,m, d
n0,...nD−1

D
p,m, d
n0,...nD−1 = Diag

−1
(

�
p,m, d
n0,...nD−1 · x

)

·�p,m, d
n0,...nD−1

y(p) = D
p,m, d
n0,...nD−1y = �

p,m, d
n0,...nD−1 · y

�
p,m, d
n0,...nD−1 · x

.

D
p,m, ∗
n0,...nD−1 = S

(

D
p,m
n0,...nD−1 , 0, nD

)

.

JF : u −→
(

0 0 0
∂nq(u) ∂Tq(u) ∂βq(u)

0 0 0

)

.
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with CFL = 0.5 and �max the max value over the domain of the (only) eigenvalue of the problem, namely � = ∂Tq , 
thus enforcing the CFL condition on the timestep.

The errors are measured using Richardson’s extrapolation. So, given the numerical result Tr at a given resolu-
tion r we first estimate the error at a given grid point i, as

where T̄r+1 is the solution at the next finer resolution, spatially averaged onto the coarser grid (which is second 
order accurate). We then take the 2-norm and max-norm of the error,

where vi = �x is the cell volume.

Hyperparameter optimization.  Our model is characterised by a number of hyperparameters, particu-
larly the number of hidden layers and hidden units, the value of σRFF , the initial value of the learning rate. 
Appropriate range of values for these parameters have become clear during the development and testing stages. 
In the final stage we perform additional optimal tuning by comparing for each dataset listed in Table 2 a total 
of 100 models with hyperparameters selected from the reduced search space given in Table 5. Other parameters 
not listed there include the batch size, typically set to 700, and the number of steps before the decay rate of the 
learning rate enters into effect, ranging between 800 and 1600. The hyperparameter optimisation is efficiently 
carried out with the orchestrator Ray Tune59.

Implementation details.  Our code is implemented in JAX60 and uses public libraries for both data-
structures and algorithms. In particular, Tikhonov’s regularisation code makes extensive use of SciPy libraries 

Nx =
{
23, 24, 25, 26, 27, 28

}

�x = 1

Nx
,

�t = CFL
�x

�max
,

Nt = 2
Nx

23
.

εr,i = Tr,i − T̄r+1,i ,

L2 = �εr�2 =
(∑

|εr,i|2vi
)1/2

,

L∞ = �εr�∞ = max(|εr,i|)
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for sparse matrix operations, while our Deep Learning code is based on libraries from Deepmind including 
Haiku61 for the MLP and Optax62 for the optimiser. The latter consists of a chain object combining an Adam 
algorithm63 with standard settings and a custom exponential-decay scheduler characterised by a drop rate of 
0.9997 and a floor value of 10−5 . The scheduler kicks in after an input number of steps varying between 800 and 
1600.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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