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Systematic lncRNA mapping to 
genome- wide co- essential modules 
uncovers cancer dependency on 
uncharacterized lncRNAs
Ramkrishna Mitra, Clare M Adams, Christine M Eischen*

Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson 
University, Philadelphia, United States

Abstract Quantification of gene dependency across hundreds of cell lines using genome- scale 
CRISPR screens has revealed co- essential pathways/modules and critical functions of uncharacter-
ized genes. In contrast to protein- coding genes, robust CRISPR- based loss- of- function screens are 
lacking for long noncoding RNAs (lncRNAs), which are key regulators of many cellular processes, 
leaving many essential lncRNAs unidentified and uninvestigated. Integrating copy number, epigen-
etic, and transcriptomic data of >800 cancer cell lines with CRISPR- derived co- essential pathways, 
our method recapitulates known essential lncRNAs and predicts proliferation/growth dependency of 
289 poorly characterized lncRNAs. Analyzing lncRNA dependencies across 10 cancer types and their 
expression alteration by diverse growth inhibitors across cell types, we prioritize 30 high- confidence 
pan- cancer proliferation/growth- regulating lncRNAs. Further evaluating two previously uncharacter-
ized top proliferation- suppressive lncRNAs (PSLR-1, PSLR-2) showed they are transcriptionally regu-
lated by p53, induced by multiple cancer treatments, and significantly correlate to increased cancer 
patient survival. These lncRNAs modulate G2 cell cycle- regulating genes within the FOXM1 tran-
scriptional network, inducing a G2 arrest and inhibiting proliferation and colony formation. Collec-
tively, our results serve as a powerful resource for exploring lncRNA- mediated regulation of cellular 
fitness in cancer, circumventing current limitations in lncRNA research.

Editor's evaluation
This manuscript makes a valuable contribution to the common understanding of the function of 
lncRNAs in cancer formation and progression. Besides developing and applying a robust analysis 
framework of large- scale pan- cancer omics datasets to discover the roles of 30 long non- coding 
RNAs (lncRNAs) in cancer proliferation and growth, the authors performed direct function- testing 
experiments to validate the predicted biological mechanisms of two lncRNAs. The analysis frame-
work developed here can serve as a resource to study the functions of lncRNA in cancer, and the 
computational framework can also be further extended to study cancer- relevant transcriptional and 
post- transcriptional regulation.

Introduction
Sequencing data estimate the existence of >1,00,000 long noncoding RNAs (lncRNAs) in the human 
genome (Zhao et  al., 2021). lncRNAs are RNAs longer than 200 nucleotides that do not encode 
proteins, but have emerged as critical modulators of gene expression networks through diverse regu-
latory mechanisms, including regulation of RNA transcription, chromatin remodeling, and nuclear 
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architecture (Statello et al., 2021). Despite the expression of a large fraction of the lncRNAs being 
altered in diseases, including cancer, the functions of only a very small fraction have been verified, and 
even fewer are known for their roles in regulating fundamental cancer Hallmark processes, such as 
cell proliferation/growth (Bao et al., 2019; Liu et al., 2017b; Ning et al., 2016; Schmitt and Chang, 
2016). Dysregulated cell proliferation/growth is at the heart of cancer, and, thus, identifying the genes 
and RNAs that regulate it is critical.

A key advance towards identifying essential proliferation/growth regulators was the development 
of RNA interference and genome- scale clustered regularly interspaced short palindromic repeats 
(CRISPR)–Cas9 screens (Blomen et al., 2015; Hart et al., 2015; McFarland et al., 2018; Meyers 
et al., 2017; Tsherniak et al., 2017). These approaches were used for >700 cancer cell lines and 
identified >1800 pan- cancer proliferation/growth and/or survival- regulating essential genes (Blomen 
et al., 2015; Hart et al., 2015; Tsherniak et al., 2017). Such loss- of- function screens for lncRNA 
have lagged significantly behind protein- coding genes and lack sufficient robustness. Only seven cell 
lines were screened for growth and/or survival modulating lncRNA loci (Liu et al., 2017a). In another 
study, CRISPR screening of keratinocytes determined nine lncRNAs that regulate its proliferation (Cai 
et al., 2020). Although lncRNAs are emerging as critical cell proliferation/growth regulators, a very 
limited number of screens that covered only a few cell lines has left many potentially essential lncRNAs 
unidentified and uninvestigated in cancer.

Increasing evidence suggests that lncRNAs are part of gene regulatory units/modules, where one 
or more lncRNAs regulate complex physiological processes, including those required in cancer, by 
modulating the expression of protein- coding genes (Schmitt and Chang, 2016; Statello et al., 2021). 
Over 5000 co- essential gene complexes/modules have been identified from genome- wide CRISPR 
screens of 485 cell lines of multiple different cancer types (Wainberg et al., 2021). The identified 
modules recapitulate diverse known pathways and protein complexes that have critical oncogenic 
functions during tumorigenesis. Since functionally related genes are highly enriched in co- essen-
tial modules (Wainberg et  al., 2021), here we hypothesize that a statistically robust mapping of 
lncRNAs to genome- wide co- essential modules should enable unbiased predictions of proliferation/
growth dependencies of uncharacterized lncRNAs and circumvent the limitations of lncRNAome- wide 
knockout/activation screens.

With the goal of mapping lncRNAs to co- essential modules systematically, we developed a large- 
scale data analysis framework. Our integrative computational framework consistently prioritizes known 
proliferation/growth inducers and suppressors as the top hits in both the evaluation and validation 
datasets. Additionally, we predict proliferation/growth dependencies of 289 previously uncharacter-
ized lncRNAs. We experimentally validated transcriptional regulation and functions of top predicted 
proliferation/growth suppressor lncRNAs in lung adenocarcinoma (LUAD), whose increased expres-
sion correlates with favorable overall survival across cancer types. Our study significantly advances the 
ability to decode high- confidence critical lncRNAs upon which cancer cells are dependent for their 
growth and survival, accelerating further biological discovery of lncRNAs.

Results
Mapping lncRNAs to genome-wide co-essential modules reveals critical 
uncharacterized lncRNAs in cancer
We devised an approach based on a multivariate regression model, a classic statistical technique, to 
map the lncRNAome in genome- wide cancer cell proliferation/growth- regulating co- essential gene 
networks (Figure 1). This model estimated lncRNA- gene co- expression networks accounting for the 
noise from DNA methylation and copy number alterations, two factors that introduce false positives 
in gene regulatory networks (Figure 1A; ‘Materials and methods’; Jacobsen et al., 2013; Mitra et al., 
2020; Mitra et al., 2017). We applied the multivariate model to our evaluation data containing molec-
ular profiles of 807 cancer cell lines in the cancer cell line encyclopedia (CCLE) (Ghandi et al., 2019) 
and 10 validation datasets consisting of 3017 patient samples of 10 TCGA cancer types (Hoadley 
et al., 2018; Figure 1A; Figure 1—figure supplements 1 and 2).

From the CCLE- based lncRNA- gene networks, we identified 1049 (6.6%) of the GENCODE (V27) 
(Frankish et al., 2019) annotated lncRNAs (n = 15777) that have significantly enriched (Benjamini–
Hochberg [BH] adjusted p<10–10; hypergeometric test) positive (549 lncRNAs; Supplementary file 
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Figure 1. Mapping of long noncoding RNAs (lncRNAs) to genome- wide co- essential networks. (A) Identification of lncRNA- mediated mRNA expression 
changes after controlling for the impact of DNA methylation and gene copy number changes by modeling a multivariate regression function. The 
model was separately employed for pan- cancer cell lines (evaluation data) and patient samples (validation data) of 10 TCGA cancer types. The lncRNAs 
showing significantly enriched associations with the essential genes were identified (n denotes the number of lncRNAs; EG: essential genes; BH adj. P 

Figure 1 continued on next page
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1a) or negative (500 lncRNAs; Supplementary file 1b) associations with the pan- cancer cell survival/
growth- regulating essential genes (EG; Figure 1A; ‘Materials and methods’). The positive or negative 
associations with a stringent significance cutoff indicate high confidence that these lncRNAs induce or 
suppress survival/growth, respectively.

We systematically mapped these 1049 lncRNAs to predefined genome- wide co- essential pathways/
modules (Wainberg et al., 2021). To retain high- quality co- essential modules, we rejected syntenic 
ones (i.e., all genes within the module on the same chromosome) and selected only those that have 
higher (≥0.5) module density scores (Wainberg et al., 2021; Figure 1B; ‘Materials and methods’). 
As there is no report of the impact of these modules on cancer Hallmark processes, we reannotated 
their functions using Hallmark genesets (Liberzon et al., 2015) and Kyoto Encyclopedia of Genes 
and Genome (KEGG) (Kanehisa and Goto, 2000) annotated pathways (‘Materials and methods’; 
Supplementary file 1c and d). As expected, the co- essential modules were preferentially (p=2.06 × 
10–4; Wilcoxon rank- sum test) enriched with proliferation/growth- regulating genesets (MYC targets V1 
and V2, E2F targets, G2/M checkpoint, cell cycle, and mitotic spindle) compared to other genesets/
pathways (Figure  1B, Figure  1—figure supplement 3, Supplementary file 1e). Using two inde-
pendent statistical tests (hypergeometric- based enrichment analysis and a thousand randomization 
test), we estimated whether an lncRNA regulates a module with higher confidence (‘Materials and 
methods’; Figure  1C). Both tests showed that the essential genes- linked lncRNAs have a greater 
association with proliferation/growth- regulating genesets/pathways compared to the other genesets/
pathways (Figure 1—figure supplement 4). Among the 1049 lncRNAs, 1027 potentially regulate 78 
proliferation/growth- linked co- essential modules (Figure 1C, Supplementary file 1f). The modules in 
the network were positively or negatively impacted preferentially by the essential genes inducing or 
suppressing lncRNAs, respectively (Figure 1C, Figure 1—source data 1). Adding direction into the 
regulation provides power to distinguish proliferation/growth- suppressing lncRNAs from those that 
induce this cancer hallmark process.

The regulating lncRNAs were ranked for each co- essential module based on their average regres-
sion coefficients with the module members. These rankings summarize lncRNA- module association 
strength. With a meta- analysis using RobustRankAggreg (v1.1) method (Kolde et  al., 2012), we 
determined the lncRNAs that consistently rank higher as positive or negative regulators across the 
proliferation/growth- linked co- essential modules with statistical significance (Figure 1D; BH adjusted 
RobustRankAggreg p<0.05; ‘Materials and methods’). The meta- analysis identified 123 and 252 
lncRNAs that may induce or suppress cancer cell proliferation/growth by inducing or suppressing 
co- essential modules, respectively (Supplementary file 1g and h). Using a comprehensive PubMed 
search with the keywords ‘lncRNA’ and ‘cancer,’ we determined that over 66% of the identified lncRNAs 
have not been studied in cancer. Another 10% of the lncRNAs are poorly characterized as they have 

denotes Benjamini–Hochberg corrected adjusted hypergeometric p- value; avg. reg. coef. denotes regression coefficients; ∩: intersection). (B) Selection 
of high- confidence proliferation/growth- regulating modules (n denotes number of co- essential modules). (C) The lncRNAs and co- essential modules 
with significant association strengths (left of dashed vertical lines; FDR: false discovery rate), measured by indicated statistical tests, were selected to 
construct lncRNA- mediated proliferation/growth- regulatory networks. n denotes the number of indicated node types present in the network. Density 
plot (center) indicates distribution of lncRNA- module positive or negative associations. p- Value in the density plot was calculated from two- tailed 
Wilcoxon rank- sum test. Reg. coef. denotes regression coefficients. (D) A schematic heatmap showing indicated numbers of proliferation/growth- 
inducing (red) or suppressing (blue) lncRNAs, identified from the meta- analysis tool RobustRankAggreg. (E) Volcano plot of the lncRNAs that potentially 
induce (red dots) or suppress (blue dots) proliferation/growth- regulating co- essential modules. X- axis summarizes lncRNA- module association strength 
where positive and negative scores indicate the lncRNAs potentially induce or suppress the co- essential modules, respectively. RobustRankAggreg 
significance levels, denoted on Y- axis, indicate the lncRNAs with consistent positive (red dots) or negative (blue dots) associations across the co- essential 
modules or the remaining lncRNAs (gray dots).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Long noncoding RNAs (lncRNA)- mediated potential regulation of co- essential modules.

Figure supplement 1. Ten TCGA cancer types evaluated in this study.

Figure supplement 2. Distribution of samples having each of the four different types of omics data in each of the 10 TCGA cancer types.

Figure supplement 3. The number of co- essential modules associated with proliferation or other gene signatures.

Figure supplement 4. Percentage of long noncoding RNA (lncRNA)- associated co- essential modules showing enrichment with proliferation or other 
gene signatures.

Figure 1 continued
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only been mentioned in a single study, including those with exclusively prediction results (Supplemen-
tary file 1i). Collectively, our results reveal many unknown significant associations between lncRNA 
and cancer cell proliferation/growth- regulatory networks.

To validate our predictions, we evaluated lncRNAs from the small nucleolar RNA host gene (SNHG) 
family, previously recognized as biomarkers for cancer development and aggressiveness (Jin et al., 
2019; Zimta et al., 2020). Multiple members of the SNHG family of lncRNAs (e.g., SNHG1, SNHG3, 
SNHG5, SNHG7, SNHG13/DANCR, SNHG15, SNHG16, and SNHG17) have previously been shown 
to induce cancer cell proliferation/growth across different cancer types (Figure 1E; Jin et al., 2019; 
Zimta et al., 2020). Our meta- analysis predicted that these lncRNAs consistently positively associ-
ated with the co- essential modules, indicating elevated levels of these lncRNAs may induce cancer 
cell proliferation/growth. Furthermore, among our top predicted proliferation/growth inducers were 
the lncRNAs DLEU2, TMPO- AS1, and MIR17HG. DLEU2 has been verified as a proliferation- inducing 
lncRNA in the vast majority of cancer types (13 out of 16) (Ghafouri- Fard et al., 2021), and TMPO- 
AS1 has a role in tumorigenesis and progression and is overexpressed in 15 different cancer types 
(Zheng et al., 2021). The lncRNA MIR17HG is the host gene of the miR- 17–92 cluster, which consists 
of a group of onco- microRNAs that induce pan- cancer cell proliferation/growth (Mogilyansky and 
Rigoutsos, 2013). In contrast, the tumor- suppressor p53 negatively impacts the essential genes and 
co- essential network modules (Figure 1D; Wainberg et al., 2021). The meta- analysis indicates known 
p53- regulated tumor- suppressor lncRNAs (e.g., PICART1 [Cao et al., 2017], LINC00475 [Melo et al., 
2016], NEAT1 [Mello et al., 2017], LNCTAM34A/GUARDIN [Hu et al., 2018], and ST7- AS1 [Sheng 
et al., 2021]) were consistently negatively associated with the proliferation/growth- regulating co- es-
sential modules (Figure 1E). Literature evidence suggests that elevated levels of these lncRNAs upon 
p53 activation suppress tumorigenesis (Cao et al., 2017; Hu et al., 2018; Mello et al., 2017; Melo 
et al., 2016; Sheng et al., 2021). Collectively, our approach recapitulates known proliferation/growth- 
regulating lncRNAs and predicts cancer cell proliferation/growth dependency of a large number (n = 
289, >77%) of lncRNAs that are functionally poorly or not at all characterized.

Pan-tumor tissues reproduce uncharacterized lncRNA-mediated growth 
regulation
To assess the impact of the cell line- derived proliferation/growth- linked lncRNAs in cancer patient 
samples, we evaluated lncRNA- mRNA associations independently in each of the 10 TCGA cancer 
types utilizing the same multivariate regression model (‘Materials and methods’; Figure 1A). We sepa-
rated the top 200 negatively and top 200 positively associated genes for each lncRNA and deter-
mined which of the cancer Hallmark gene signatures were significantly (BH adjusted p<0.05) enriched 
with genes that were positively or negatively associated with an lncRNA. We selected the top five 
gene signatures per lncRNA. Distribution of these lncRNAs across eight broad categories of Hallmark 
processes (Liberzon et al., 2015), constructed from the 50 Hallmark gene signatures, shows signifi-
cant (p=1.96 × 10–11; ANOVA) variability in the number of regulating lncRNAs. We determined that the 
proliferation/growth- linked lncRNAs, identified from the cell line- based evaluation data, preferentially 
regulate proliferation across TCGA cancer types (median = 142) compared to the other Hallmark 
processes (median range across the Hallmark categories = 15–99) (Figure 2A, Figure 2—source data 
1). To investigate whether we biased the results by selecting the top 200 co- expressed protein- coding 
genes, we conducted Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005), considering 
all the genes that have significant (BH adjusted p<0.001) association with each lncRNA to connect 
the lncRNA with cancer Hallmark processes. The top five significantly (BH adjusted p<0.05) enriched 
gene signatures were connected to each lncRNA. Again, significant (p=8.68 × 10–14; ANOVA) varia-
tion in the number of regulating lncRNAs of the Hallmark processes across the TCGA cancer types 
was obtained (Figure 2—figure supplement 1). Importantly, proliferation was regulated by a higher 
number of lncRNAs (median = 187) compared to the other Hallmark categories (median range across 
Hallmark categories = 7–135) (Figure 2—figure supplement 1). Therefore, consistent biological inter-
pretation observed from two different approaches that utilized different sets of genes indicates that 
the identified lncRNAs have a preferential association with proliferation/growth with high confidence.

We further investigated the direction of lncRNA- proliferation associations obtained from the top 
200 lncRNA- gene pairs. We determined that the lncRNAs predicted as potential inducers and suppres-
sors in the CCLE data showed significantly higher positive (5.17 × 10–4; Wilcoxon rank- sum test) and 
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negative (3.19 × 10–3; Wilcoxon rank- sum test) associations, respectively, with proliferation genesets 
across the cancer types (Figure 2B, Figure 2—source data 2). Altogether, the results indicate that 
cancer patient samples resemble the cell line data with respect to the identified lncRNA- mediated 
proliferation/growth regulation.

We then evaluated lncRNA levels in TCGA patient samples with higher proliferation activity 
compared to the samples with lower proliferation activity (‘Materials and methods’). Predicted 
proliferation/growth inducers and suppressors had a significantly distinct distribution of expression 

Figure 2. TCGA cancer patient samples reproduce growth- regulating long noncoding RNAs (lncRNAs). (A) Box plot shows indicated number of 
lncRNAs (Y- axis) that potentially regulate different Hallmark functions in cancer (X- axis) across 10 TCGA cancer types. p- Value calculated from ANOVA 
indicates a significant difference in the number of regulating lncRNAs across Hallmark functional categories. Dot represents individual cancer types. 
(B) Violin plots of the percentage of predicted proliferation- suppressing lncRNAs (blue) or proliferation- inducing lncRNAs (red) with negative (-) or 
positive (+) associations with proliferation signatures across TCGA cancer types; *p=3.19 × 10–3, **p=5.17 × 10–4; two- tailed Wilcoxon rank- sum test. 
(C) Levels of proliferation- inducing and -suppressing lncRNAs in patients with higher proliferation activity compared to patients with lower proliferation 
activity across 10 TCGA cancer types; *p=0.022, **p<1.68 × 10–6; two- tailed Wilcoxon rank- sum test. (D) Scatter plot shows known proliferation/growth- 
inducing and -suppressing lncRNAs that have positive or negative impact on the indicated number of Hallmark proliferation genesets (Y- axis) in the 
indicated number of TCGA cancer types (X- axis). (E) Poorly characterized lncRNAs that potentially regulate (induce or suppress) proliferation/growth in 
at least five Hallmark proliferation genesets in five or more TCGA cancer types are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. The number of long noncoding RNAs (lncRNAs) predicted to regulate different Hallmark categories in a specific cancer type.

Source data 2. The number of cell line- based predicted proliferation- regulating long noncoding RNAs (lncRNAs) that potentially alter proliferation 
signatures across TCGA cancer types.

Source data 3. Cell line- based predicted proliferation- regulating long noncoding RNAs (lncRNAs) that have significant (false discovery rate [FDR] < 
0.05) differential expression in TCGA patients with higher proliferation activity compared to the patients with lower proliferation activity.

Figure supplement 1. More long noncoding RNAs (lncRNAs) potentially regulate proliferation across TCGA cancer types.

https://doi.org/10.7554/eLife.77357
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alterations in 9 out of 10 cancer types (Figure  2C; p<0.05, BH adjusted Wilcoxon rank- sum test; 
Supplementary file 2a, Figure 2—source data 3). The median fold change of proliferation inducers 
indicates their coordinated overexpression in all 10 TCGA cancer types, and the suppressors showed 
coordinated downregulation in 7 cancer types (Figure 2C). Therefore, the observed alterations of the 
proliferation/growth- inducing and -suppressing lncRNAs suggest they are selected for during tumor-
igenesis to allow for cancer cell proliferation/growth.

We also determined that 91% of known proliferation- inducing lncRNAs (highlighted in Figure 1E) 
have potentially induced proliferation/growth in a higher number of TCGA cancer types by regulating 
a higher number of Hallmark proliferation genesets (Figure 2D). Similarly, four of five known p53- 
regulated tumor- suppressor lncRNAs show a negative impact on a higher number of proliferation 
genesets across TCGA cancer types (Figures  1E and 2D). We determined 30 uncharacterized or 
poorly characterized lncRNAs that potentially regulate at least five Hallmark proliferation- linked gene-
sets across five or more TCGA cancer types (Figure 2E). Their reproducible association with prolifer-
ation in both CCLE and TCGA datasets indicates they have high- confidence proliferation regulation 
potential that has not been addressed previously.

Identifying proliferation/growth-regulating lncRNAs altered frequently 
by growth inhibitors
By analyzing seven RNA- seq datasets, we identified the proliferation/growth- regulating lncRNAs 
altered at least twofold in cells treated by one of the proliferation- inhibiting DNA- damaging stimuli 
(doxorubicin, 5- fluorouracil, gamma radiation) compared to control (Supplementary file 2b). We 
determined proliferation/growth- suppressing and -inducing lncRNAs were preferentially elevated 
and reduced, respectively (Figure  3A). These DNA- damaging proliferation inhibitors cause the 
activation of the p53 tumor- suppressor transcription factor. To pinpoint specific lncRNAs that have 
potential roles in p53- mediated tumor- suppressive functions, we analyzed seven additional RNA- 
seq datasets where p53 wild- type (p53WT) cells were treated with Nutlin- 3, a compound that blocks 
the binding of p53 to Mdm2 (Vassilev et al., 2004), triggering p53 activation independent of DNA 
damage, or controls (‘Materials and methods’; Supplementary file 2b). Compared with the control 
cells, Nutlin- treated cells showed a preferential up- and downregulation (at least twofold) of the 
proliferation/growth- suppressing and -inducing lncRNAs, respectively, similarly to what we observed 
from the cells treated by the DNA- damaging proliferation inhibitors (Figure 3A). Furthermore, we 
observed reproducible expression patterns in Nutlin- treated single- cell RNA- seq profiles with p53 
wild- type cells, but not for cells with mutant p53 (Figure 3B). Our results suggest that our iden-
tified proliferation/growth- regulating lncRNAs have notable crosstalk with p53- mediated tumor- 
suppressive pathways.

We determined that 7–32% (average = 17.2%) of the identified lncRNAs have more than twofold 
differential expression in individual RNA- seq datasets (Figure 3—figure supplement 1). The majority 
(59%) of lncRNAs showed differential expression in only one or two datasets, which supports cell 
type- specific functions of these lncRNAs (Liu et al., 2017b; Figure 3—figure supplement 2, Supple-
mentary file 1j). Although high tissue/cell- type specificity is a reported feature of lncRNA, some 
critical lncRNAs are likely functional in many cancer types (de Goede et al., 2021; Gao et al., 2021). 
We determined that less than 5% of the lncRNAs were altered in more than five datasets (Figure 3—
figure supplement 2, Supplementary file 1j). Conducting RobustRankAggreg- based meta- analysis, 
we identified 13 consistently upregulated lncRNAs across the RNA- seq datasets, and of them, 8 were 
identified as the top proliferation/growth suppressors (Figure 3C, Supplementary file 1k). We also 
identified four consistently downregulated lncRNAs and three of them were identified as the top 
proliferation/growth inducers (Supplementary file 1l). Consistent reduction or increased expression 
of these proliferation/growth- inducing or -suppressing, respectively, lncRNAs indicates their expres-
sion changes suppress the proliferation/growth of cells treated with the proliferation inhibitors and 
p53 activators. For example, a known pan- cancer onco- lncRNA, TMPO- AS1, was one of the top prolif-
eration/growth- inducing lncRNAs and had more than twofold downregulation in six RNA- seq datasets 
(Zheng et al., 2021). Conversely, among the eight consistently upregulated lncRNAs, three are known 
p53- regulated tumor suppressors (GUARDIN, PICART1, and LINC00475) (Cao et al., 2017; Hu et al., 
2018; Melo et al., 2016; Figure 3C), whereas the remaining lncRNAs have not been previously inves-
tigated for p53 regulation.

https://doi.org/10.7554/eLife.77357
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Figure 3. Modulation of growth- regulating long noncoding RNAs (lncRNAs) across diverse stresses. (A) Density plots showing the distribution of 
proliferation- inducing and -suppressing lncRNA levels in cells treated with doxorubicin (Dox), 5- fluorouracil (5- FU), or ionizing radiation (IR) in seven bulk 
RNA- seq data and seven bulk RNA- seq data of cells treated with Nutlin- 3. (B) Density plots as in (A) from 24 single- cell RNA- seq data from cells treated 
with Nutlin- 3 (7 p53WT and 17 p53MUT cell lines). (C) Heatmap showing fold change of predicted proliferation- inducing and -suppressing lncRNAs across 
14 RNA- seq datasets, indicated in (A). n is the number of consistently upregulated lncRNAs across the RNA- seq datasets with statistical significance 
(Benjamini–Hochberg [BH] adjusted *p<0.05) calculated by the meta- analysis tool RobustRankAggreg; a subset of the top proliferation suppressors are 
highlighted in the box. (D) The number of ChIP- seq datasets showing p53- binding sites near the transcription start site of the 13 meta- analyses- derived 

Figure 3 continued on next page
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p53 directly transcriptionally regulates proliferation/growth-
suppressive lncRNAs
With the analysis of 17 p53 ChIP- seq datasets (Supplementary file 2c), we investigated whether the 
13 lncRNAs that were consistently upregulated following treatment with proliferation inhibitors have 
the potential to be directly transcriptionally regulated by p53. We determined that a significantly 
(p=1.65 × 10–9; Wilcoxon rank- sum test) higher number of ChIP- seq datasets had p53- binding sites 
within 10 kilobases from the transcription start site of these lncRNAs compared with the remaining 
lncRNAs (background data) annotated in GENCODE version 27 (Frankish et al., 2019; Figure 3D, 
Figure 3—figure supplement 3). The two poorly characterized top proliferation suppressing lncRNAs 
(PSLRs) FAM198B- AS1 (PSLR- 1) and SEPTIN9- DT (PSLR- 2) identified in our analysis had consistently 
elevated expression upon p53 activation across diverse cell types and treatments (more than twofold 
in at least six RNA- seq datasets; BH adjusted RobustRankAggreg p<5.48 × 10–3) (Figures 2E, 3C 
and E). These two lncRNAs also had p53- binding sites in at least nine ChIP- seq datasets (Figure 3D, 
Figure 3—figure supplement 3). To experimentally validate the meta- analysis results showing regu-
lation of PSLR- 1 and -2 expression by p53, we treated two p53WT LUAD cell lines (A549 and H460) 
with p53- activating stimuli (Nutlin, etoposide, cisplatin, and gamma radiation) and evaluated their 
expression. Following exposure to any of the four p53- activating stimuli, levels of these two lncRNAs 
were significantly increased compared to vehicle control- treated cells (Figure 3F, Figure 3—source 
data 1). A known p53 target gene, BAX, and a gene that is not a p53 target, acetyl choline receptor 
(AchR), were positive and negative controls, respectively. These results support our bioinformatic 
analyses, showing activation of p53 results in increased expression of these lncRNAs. Notably, none 
of the 14 RNA- seq datasets used in the meta- analysis included lung cancer lines (Supplementary file 
2b); therefore, our results from the high- throughput data analysis were validated in a completely inde-
pendent cell type. These data indicate that previously uncharacterized lncRNAs are regulated by p53.

PSLR-1 and -2 modulate CHR-enriched cell cycle-regulating pathways
To gain a greater understanding of PSLR- 1 and -2, we evaluated their expression levels in our own 
LUAD patient samples. Both lncRNAs were significantly (p<1.23 × 10–7; t- test) reduced in LUAD patient 
samples compared to normal lung tissue, indicating suppression of their functions during tumorigenesis 
(Figure 4A, Figure 4—source data 1). To experimentally verify the proliferation/growth- suppressive 
roles of the PSLRs in cancer cells and evaluate consequences independent of any drug effects that 
induce p53, we engineered A549 LUAD cells to express PSLR- 1, PSLR- 2, or vehicle control. From the 
lncRNA perturbation data, we determined that elevated expression of either of the two lncRNAs 
results in significantly (p<7.9 × 10–12; Wilcoxon rank- sum test) higher expression of those genes that 
had significant (BH adjusted regression p<0.001) positive associations with the lncRNAs in the TCGA 
LUAD patient cohort compared with the genes that had significant negative associations (Figure 4B). 
Further, we extracted curated tumor- suppressor genes and oncogenes from the literature (Liu et al., 
2017b; Zhao et  al., 2016) and the cancer gene census of the COSMIC database and selected a 

significantly upregulated lncRNAs, indicated in (C), or background lncRNAs. For (A, B, D), p- values were calculated from two- tailed Wilcoxon rank- sum 
tests. (E) The expression fold change of two poorly characterized top predicted proliferation- suppressing lncRNAs in cells treated with p53- activating 
agents (see A) compared to control cells. The X- axis indicates the accession number of the 14 RNA- seq datasets present in the Gene Expression 
Omnibus database. (F) Two lung adenocarcinoma (LUAD) cell lines treated with 10 µM of Nutlin (NUT), etoposide (ETO), or cisplatin (CIS) or received 
5 Gy of gamma- radiation (IR) were harvested at intervals. qRT- PCR (triplicate) for specific lncRNA was performed. BAX and AchR mRNA are positive and 
negative controls, respectively. RNA levels were normalized to β-ACTIN, and values are presented as 2-ΔΔCt, with vehicle control- treated cells set at 1 
(black line); data are mean ± SEM. For A549, PSLR- 1 *p<6.86 × 10–4, PSLR- 2 *p<1.17 × 10–2, BAX *p<4.93 × 10–6; for H460, PSLR- 1 *p<6.95 × 10–6, PSLR- 2 
*p<5.69 × 10–3, and BAX *p<3.99 × 10–4; two- tailed t- tests.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. qRT- PCR for Figure 3F.

Figure supplement 1. Percentage of predicted proliferation/growth- regulating long noncoding RNAs (lncRNAs) showing at least twofold expression 
change in the cells treated with a growth inhibitor compared to the control cells.

Figure supplement 2. Distribution of differentially expressed long noncoding RNAs (lncRNAs) across RNA- seq datasets.

Figure supplement 3. p53 ChIP- seq datasets showing long noncoding RNAs (lncRNAs) bound by p53.

Figure 3 continued
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Figure 4. Functional characterization of PSLRs in lung adenocarcinoma (LUAD). (A) Expression of PSLR- 1 and -2 was measured by qRT- PCR (triplicate) 
in normal human lung tissue (n = 5) and LUAD patient samples (n = 10). RNA levels were normalized to β-ACTIN and values are presented as 2-ΔCt; data 
are mean ± SEM. PSLR- 1, *p=7.75 × 10–9; PSLR- 2, *p=2.77 × 10–8; two- tailed t- tests. (B–D) RNA- sequencing of A549 LUAD cell line after expression of 
each of the two long noncoding RNAs (lncRNAs) or vector control (quadruplicate). (B) Genes that have significant (adjusted regression p<10–3) positive 
or negative associations with the indicated lncRNA in TCGA LUAD data were selected. Empirical cumulative distribution of expression fold changes of 
these genes in A549 cells expressing the indicated lncRNA compared with vector control. (C) Empirical cumulative distribution of expression changes of 
curated tumor- suppressor genes and oncogenes in A549 cells expressing the indicated lncRNA compared with vector control. For (B, C), x- axis indicates 
the expression fold changes of genes, y- axis estimates the percentage of genes at a log2 fold- change value indicated on the x- axis, and p- values were 
from two- tailed Wilcoxon rank- sum tests. (D) Gene Set Enrichment Analysis (GSEA) demonstrated top up- and downregulated Hallmark genesets after 
expression of the indicated lncRNA in A549 cells compared with vector control. Positive and negative normalized enrichment scores (NES) indicate up- 
and downregulation, respectively. Significantly enriched (false discovery rate [FDR] < 0.05) proliferation- associated pathways/gene signatures indicated. 
(E) Enrichr- calculated combined score indicates transcription factor (TF) enrichment of genes altered upon expression of the indicated lncRNA in A549 

Figure 4 continued on next page
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subset of them as high confidence by determining whether they were significantly (≥2 fold change 
with BH adjusted p<0.05) down- or upregulated, respectively, in TCGA LUAD compared with normal 
lung samples. With elevated expression of each lncRNA in A549 cells, the tumor- suppressor genes 
and the oncogenes were preferentially elevated and suppressed, respectively (Figure 4C). Moreover, 
the distribution of their expression changes was significantly distinct (p<5.6 × 10–6; Wilcoxon rank- sum 
test), indicating these lncRNAs act as negative regulators of lung tumorigenesis.

Following RNA- seq of our samples, we also evaluated transcriptome- wide changes by performing 
GSEA (Subramanian et  al., 2005) to gain insight into which Hallmark genesets were significantly 
(FDR < 0.05) modulated with the increased expression of the two lncRNAs. The p53 pathway was 
consistently ranked as the top among the significantly (FDR < 0.05) upregulated Hallmark genesets 
in A549 cells with elevated levels of the two lncRNAs (Figure 4D). In contrast, the proliferation- linked 
Hallmark genesets (E2F targets, G2M checkpoint, mitotic spindle, and MYC targets V1 and V2) were 
also consistently ranked among the top significantly (FDR < 0.05) downregulated pathways/genesets, 
indicating they were negatively impacted with the overexpression of the two lncRNAs (Figure 4D). 
Collectively, our results indicate that previously unrecognized PSLR- 1 and -2 likely suppress prolifer-
ation by negatively regulating proliferation- linked oncogenic genes and/or processes and positively 
regulating tumor- suppressive genes and/or processes.

Utilizing Enrichr (Kuleshov et al., 2016), a tool that integrates genome- wide ChIP experiments 
from ENCODE (ENCODE Project Consortium, 2012) and ChEA (Lachmann et al., 2010) projects, 
we investigated whether elevated PSLRs impact the expression of distal genes randomly or alter the 
transcriptional regulation of specific transcription factors. Increased PSLR- 1 or -2 expression showed 
E2F4 and FOXM1 were the most enriched transcriptional regulators for the downregulated genes, 
and p53 was the top transcriptional regulator for the upregulated genes (Figure 4E). Subsequently, 
we identified regulatory motifs enriched in the promoters of the downregulated genes using the tool 
HOMER (Heinz et al., 2010). We determined that cell cycle genes homology region (CHR), a DNA 
element present in promoters of many cell cycle genes bound by E2F4 and/or FOXM1- containing 
protein complexes (Chen et  al., 2013), was consistently among the top enriched motifs for both 
PSLR- 1 and -2 (Figure 4F). Recent reports indicate that G2/M cell cycle genes with CHR sites are 
activated by a FOXM1- containing protein complex (Chen et al., 2013; Sadasivam et al., 2012). Our 
results from Hallmark GSEA, transcription factor, and motif enrichment analyses collectively indicate 
that elevated PSLRs likely modulate CHR- containing cell cycle genes within the E2F4 and/or FOXM1 
transcriptional network, which may negatively impact G2/M cell cycle progression.

PSLR-1 and -2 exert G2 cell-cycle arrest and suppress proliferation/
growth in LUAD cells
To further verify whether PSLR- 1 and PSLR- 2 have growth- suppressive effects in cancer cells, we 
expressed them in two LUAD cell lines (A549 and H460) and evaluated the biological consequences. 
Expression of each lncRNA resulted in significantly decreased LUAD cell growth compared to cells 
with empty vector (Figure 5A, Figure 5—source data 1). Serving as an lncRNA control, we over-
expressed MALAT1, a pro- proliferative lncRNA (Tripathi et al., 2013), which increased LUAD cell 
growth (Figure 5A, Figure 5—source data 1). Additionally, there was a decrease in the number of 
colonies formed from cells expressing PSLR- 1 or PSLR- 2 compared to cells with an empty vector 
or MALAT1 (Figure 5B, Figure 5—source data 2). Because there was a significant decrease in 
live cell numbers with expression of these lncRNAs (Figure 5C, Figure 5—source data 3) without 
changes in cell viability (Figure 5—figure supplement 1A), we evaluated cell cycle. Expression 
of PSLR- 1 or PSLR- 2 resulted in increased numbers of cells in the G2/M phase of the cell cycle 
(Figure  5D, Figure 5—source data 4). To discriminate between cells in G2 and M phases, we 
evaluated phospho- histone H3, a marker of mitosis (Hans and Dimitrov, 2001). There was an 

LUAD cells. (F) HOMER- calculated promoter motif enrichment of downregulated genes upon indicated lncRNA expression in LUAD cells. CHR motif 
elements are shown (right).

The online version of this article includes the following source data for figure 4:

Source data 1. qRT- PCR for Figure 4A.

Figure 4 continued
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Figure 5. p53- regulated long noncoding RNAs (lncRNAs) exert tumor- suppressive activity in lung adenocarcinoma 
(LUAD). The lncRNAs PSLR- 1, PSLR- 2, or MALAT1 or vector control were expressed (lentivirus) in LUAD cell lines. 
(A) MTT assays (quadruplicate) performed at 24 hr intervals. Each assay performed 2–4 independent times for 
both cell lines and one representative experiment is shown ± SD; A549 *p=1.11 × 10–4 and **p<3.03 × 10–4, H460 
*p=2.04 × 10–5 and **p<2.28 × 10–4; two- tailed t- tests. (B) Colonies from colony formation assays were counted 

Figure 5 continued on next page
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analogous percentage of cells with phospho- histone H3 in cells expressing any of the lncRNAs or 
vector control (Figure 5—figure supplement 1B), indicating the cells were arresting in G2 and not 
M. Together, these data demonstrate a tumor- suppressive function of PSLR- 1 and PSLR- 2, whereby 
an increase in their expression results in decreased cancer cell proliferation due to a G2 cell cycle 
arrest.

PSLR-1 and -2 coordinately modulate the G2 cell cycle arrest network
To gain insight into the PSLR- induced G2 cell cycle arrest (Figure 5D), we determined from our 
RNA- seq data which genes in the G2 regulatory subnetwork that were indicated in the KEGG cell 
cycle pathway had significant alterations following increased expression of the PSLRs (Figure 6A). 
There was reduced expression of nine genes (blue squares; median fold change 7.67; median  
FDR = 2.27 × 10–91) and increased expression of three genes (red squares; median fold change 7.32; 
median FDR = 4.66 × 10–52) with elevated PSLR levels, which would result in cells arresting in the 
G2- phase of the cell cycle (Figure 6A). To validate the changes in expression of these G2- related 
cell cycle genes, we performed qRT- PCR for seven of the genes in A549 and H460 cells expressing 
PSLR- 1, PSLR- 2, or vector control (Figure 6B, Figure 6—source data 1). Following forced expres-
sion of PSLR- 1 and PSLR- 2 mRNA levels of cell cycle regulators CCNA2, CCNB1, CDC25C, and 
CDK1 were downregulated, whereas CDKN1A, GADD45A, and SFN (14- 3- 3-σ) were elevated in 
both lines (Figure 6B, Figure 6—source data 1). Furthermore, the expression changes observed 
at the RNA level for these genes were also reflected at the protein level following expression of 
the PSLRs (Figure 6C, Figure 6—source data 2) and are consistent with their function in G2. Alto-
gether, our data indicate that the PSLRs coordinately alter the expression of the G2 cell cycle arrest 
network.

Because our multiple lines of evidence indicate that the PSLRs have proliferation/growth- 
suppressive functions in multiple cancer types through regulation of G2, we investigated alterations 
of the seven G2 cell cycle- regulating genes (Figure 6B and C) in the TCGA patient samples of the 10 
cancer types (Figure 1—figure supplement 1). For individual cancer types, we divided the samples 
into two groups based on the highest or lowest quartile expression of PSLR- 1 or PSLR- 2. We measured 
the expression changes of the G2 cell cycle- regulating genes in the patients with the highest quartile 
expression compared to the patients with the lowest quartile expression of the individual PSLRs. 
There was a significantly (p=5.09 × 10–4 for PSLR- 1 and P=2.72 × 10–4 for PSLR- 2; Wilcoxon rank- sum 
test) distinct expression fold- change distribution of the genes that inhibit cell cycle arrest compared 
with the genes that induce the same process for both (Figure 6D). Altogether, our results provide a 
striking example of the power of our approach to accurately predict the functions of uncharacterized 
lncRNAs.

14 days after lncRNA expression. Assays (triplicate) performed 2–3 independent times and a representative 
experiment ± SEM and images (no magnification) shown; A549 *p=1.49 × 10–2 and **p<2.09 × 10–4, H460 *p=3.42 
× 10–2 and **p<1.16 × 10–3; two- tailed t- tests. (C) Live cell number determined by Trypan Blue dye exclusion 48 hr 
after placing cells in 6- well plates. Mean of four independent experiments for both cell lines ± SD is graphed; 
A549 *p=5.77 × 10–4 and **p<2.68 × 10–5, H460 *p=2.90 × 10–5 and **p<3.63 × 10–6; two- tailed t- tests. (D) Cell cycle 
evaluated at intervals following propidium iodide staining and flow cytometry; representative histograms from one 
experiment shown (left). Graphs of the cell cycle phases represent the mean of four independent experiments for 
both cell lines at 48 hr ± SEM; A549 *p=8.82 × 10–3 and **p<1.73 × 10–2, H460 *p=4.00 × 10–3 and **p<1.35 × 10–3; 
two- tailed t- tests.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. MTT for Figure 5A.

Source data 2. Colony number for Figure 5B.

Source data 3. Live cell number for Figure 5C.

Source data 4. Cell cycle for Figure 5D.

Figure supplement 1. Cell viability and numbers of cells in mitosis are not altered by ectopic expression of the 
PSLRs.

Figure 5 continued
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Figure 6. Elevated PSLR expression alters the G2 regulatory network across diverse cancer types. (A) A network was constructed from the genes that 
regulate cell cycle in G2 phase (left) and were significantly altered in PSLR- expressing A549 cells compared to control cells from our RNA- seq data 
(right). Circle, square, and triangle nodes represent the PSLR, genes, and p53, respectively. Red and blue nodes indicate up- and downregulation, 
respectively. The edges with direction indicate regulator- mediated target activation (red line with arrowhead) or suppression (blue line with T- shape 
head). The outgoing edges from the PSLRs indicate expression association. All other edges indicate biologically validated interactions. Benjamini–
Hochberg (BH) adjusted *p<6.34 × 10–3 and **p<3.23 × 10–43 were calculated from EdgeR. (B, C) 48 hr after lentiviral expression of the PSLRs in lung 
adenocarcinoma (LUAD) cell lines, qRT- PCR (triplicate) for the cell cycle genes indicated was performed (B) and the proteins assessed by Western 
blotting (C). RNA levels were normalized to β-ACTIN and values plotted as log2 fold change relative to vector (VEC) control. Data are mean values 
± SEM; A549 *p<2.55 × 10–3 and H460 *p<5.31 × 10–4; two- tailed t- tests. Vertical line in the Western blots denotes a lane was removed in between 
PSLR- 1 and PSLR- 2 of this exposure. (D) Expression fold- change distribution of the four genes that inhibit (blue dots) or the three genes that induce (red 
squares) G2 cell cycle arrest from (B) and (C). The expression fold changes were measured in samples with increased (highest quartile) PSLR expression 
compared to the samples with reduced (lowest quartile) PSLR expression. Accumulated results from 10 TCGA cancer types are shown; *p<2.73 × 10–4 
from two- tailed Wilcoxon rank- sum test denotes significantly distinct distribution.

The online version of this article includes the following source data for figure 6:

Source data 1. qRT- PCR for Figure 6B.

Source data 2. Western blots for Figure 6C.
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Elevated PSLR-1 and -2 impact patient prognosis across cancer types
Given that the two PSLRs had proliferation/growth- suppressive functions, we evaluated whether their 
expression correlates with patient overall survival. First, utilizing our RNA- seq data where the indi-
vidual PSLRs were ectopically expressed in A549 LUAD cells, we evaluated the distribution of the 
favorable and unfavorable prognostic genes of the TCGA LUAD patient cohort. The genes whose 
overexpression correlated with favorable patient outcome had preferentially higher expression upon 
elevated levels of each lncRNA in A549 cells. In contrast, elevated PSLR expression preferentially 
reduced those genes whose overexpression is linked with unfavorable prognosis (Figure 7A). Signif-
icant (p=1.54 × 10–55 for PSLR- 1 and p=2.49 × 10–86 for PSLR- 2; Wilcoxon rank- sum test) differences 
in the distribution of favorable and unfavorable gene expression changes in A549 cells indicate that 
levels of these lncRNAs may impact LUAD patient prognosis.

Evaluation of whether PSLR expression correlates with patient survival in LUAD showed that LUAD 
patients within the high lncRNA expression group of either of the two PSLRs had significantly (log- rank 

Figure 7. Elevated PSLR expression correlates with increased patient overall survival across diverse cancer types. (A) Distribution of expression changes 
of genes that have significant favorable or unfavorable prognostic associations with TCGA lung adenocarcinoma (LUAD) patient cohort; p- values from 
two- tailed Wilcoxon rank- sum tests. (B) Kaplan–Meier plots of overall survival associations between the indicated PSLR and the patients of the indicated 
cancer types. The low and high groups of patient samples were determined based on median expression of the indicated PSLR. To measure significantly 
different survival outcomes, log- rank tests were performed; n represents number of samples (A, B).

https://doi.org/10.7554/eLife.77357
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test p<7.0 × 10–3) increased overall survival compared with the patients that had low PSLR expres-
sion (Figure 7B). Moreover, high expression of the PSLR had significant favorable prognostic associa-
tions for multiple cancer types (Figure 7B). Our results show the cell proliferation/growth- suppressive 
function of the newly identified PSLRs significantly contributes to patient prognosis across multiple 
cancers. Altogether, our systems- level analysis provides a highly confident resource to identify previ-
ously unrecognized proliferation/growth- regulating lncRNAs that impact cancer.

Discussion
Analysis of cell fitness after genome- wide single- gene perturbation across hundreds of cell lines 
enabled the identification of essential protein- coding genes, co- essential protein complexes and path-
ways, and proliferation/growth- regulating functions of poorly characterized genes (Blomen et  al., 
2015; Hart et al., 2015; McFarland et al., 2018; Meyers et al., 2017; Tsherniak et al., 2017; Wain-
berg et al., 2021). In contrast, only a very limited number of loss- of- function screens that covered 
a small number of cell lines has left many of the thousands of lncRNAs in the human genome that 
are essential for proliferation/growth unidentified and uninvestigated in cancer (Cai et al., 2020; Liu 
et al., 2017a). Like other noncoding RNAs, lncRNAs participate in complex interaction networks of 
genes and proteins that often have wide- spectrum effects in cell biology, including cancer cell biology 
(Anastasiadou et al., 2018). Historically, network and systems biology approaches from our group 
and other researchers have aided in the discovery of critical protein- coding and noncoding genes in 
cancer and other diseases (Anastasiadou et al., 2018; Jacobsen et al., 2013; Kim et al., 2022; de 
Goede et al., 2021; Mitra et al., 2020; Mitra et al., 2017; Zhao et al., 2016). Here, our systematic 
and statistically robust mapping of lncRNAs to CRISPR- derived genome- wide essential gene networks 
prioritizes known proliferation regulators as the top hits. Additionally, experimental validations of our 
prediction results demonstrated that our approach accurately assigned growth- regulating functions 
of previously uncharacterized lncRNAs and revealed key lncRNAs that mediate G2 cell cycle arrest. 
Collectively, our integrated computational and experimental framework provides a new resource for 
further investigations of cancer dependency on a comprehensive set of functionally uncharacterized 
lncRNAs.

Our network analysis includes directions in the statistically significant associations between 
lncRNAs and co- essential modules, further elucidating a deeper understanding of which lncRNAs 
are potential proliferation/growth inducers and which are suppressors. Notably, identified prolifer-
ation/growth- inducing and -suppressing lncRNAs have a strong trend to be reduced and elevated, 
respectively, in cells treated with anti- neoplastic drugs compared to control cells or in patient samples 
with lower proliferation activity compared with a higher proliferation activity. These data indicate 
that the observed lncRNA alterations in cancer cells may be selected for to induce or allow cell cycle 
progression. Our multilevel verifications from literature searches, analysis of completely independent 
pan- cancer validation datasets, and follow- up biological experiments indicate that the proliferation/
growth- regulating lncRNAs were identified with high confidence. We obtained such high- confidence 
results likely due to employing our multivariate computational model that minimizes the impact of 
copy number changes and DNA methylation in constructing lncRNA- mRNA association networks. 
Secondly, we devised a statistically robust systems- level analysis aiming to capture specific co- essen-
tial modules whose alterations are associated with significant modulation of Hallmark proliferation 
signatures, which could directly impact cellular fitness in cancer.

In the co- essential network modules, the p53 tumor suppressor is negatively associated with many 
genes essential in cell cycle progression (Feeley et al., 2017; Wainberg et al., 2021). CRISPR screens 
show p53 wild- type cell lines gain a growth advantage upon p53 suppression (Tsherniak et al., 2017). 
When activated, the p53 tumor suppressor transcriptionally regulates genes that coordinately modu-
late various cellular processes that inhibit tumorigenesis by blocking cell cycle progression, protecting 
genome stability, and promoting apoptosis (Levine, 2020). Efforts over decades identified core 
protein- coding genes that p53 regulates across cell types and stresses and, more recently, tissue 
types, but these have not fully explained the effects of p53 (Fischer, 2017; Levine, 2020; Moyer 
et al., 2020; Nguyen et al., 2018). Recently, p53 was shown also to regulate the transcription of 
lncRNAs (Chaudhary and Lal, 2017). Here, we gained critical insights into which proliferation/growth- 
regulating lncRNAs are p53- regulated. Several of the proliferation/growth- suppressive lncRNAs we 
identified are known p53 targets (PICART1 [Cao et al., 2017], LINC00475 [Melo et al., 2016], NEAT1 
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[Mello et al., 2017], LNCTAM34A/GUARDIN [Hu et al., 2018], and ST7- AS1 [Sheng et al., 2021]). 
However, none of the known p53- effector lncRNAs were predicted as proliferation/growth inducers, 
as would be expected, and indicate our statistically robust network and systems biology approach 
selects true positives and rejects false- positive regulations. Two top proliferation/growth- suppressor 
lncRNAs (PSLR- 1 and PSLR- 2) uncovered by our analyses are two previously unstudied lncRNA whose 
promoters are bound by p53, as determined by multiple ChIP- seq datasets. We show that downreg-
ulation of either of these two core lncRNAs whose promoters are bound by p53 in multiple cancer 
types results in worse overall patient survival. Following a variety of agents that activate p53 and that 
are used as cancer treatments (Levine, 2020), we observed the induction of PSLR- 1 and PSLR- 2 in 
large- scale data using a robust meta- analysis. Although different sample sizes have the potential to 
bias meta- analysis results, there is no outlier (Tukey’s fences test) in the distribution of sample sizes 
(Supplementary file 2b) across the 14 RNA- seq data that we used for the meta- analysis. Further-
more, our validation experiments on PSLR- 1 and PSLR- 2 indicate that the meta- analysis accurately 
predicted transcriptional changes in the cells treated by different p53- activating agents. Therefore, 
our combined bioinformatics and experimental results revealed two poorly characterized lncRNAs 
whose p53- mediated transcriptional regulation and roles in the regulation of cancer cell fitness have 
not been previously studied.

Our accumulated results show that p53- mediated transcriptional regulation of PSLRs correlates 
with modulation of multiple key genes in the p53- p21- DREAM- CDE/CHR signaling pathway (Fischer 
et al., 2016). We determined a strong enrichment of E2F4 and FOXM1 transcription factors and the 
CHR promoter motif in the PSLR- suppressed genes. These genes regulate the G2 cell cycle, and our 
data showed that increased levels of either of the PSLR lncRNAs resulted in modulation of multiple 
key G2- regulating genes at the RNA level and this translated to changes at the protein level and a 
G2 cell cycle arrest in LUAD cells. Moreover, there were significantly altered proliferation pathways, 
oncogenic and tumor- suppressor genes, and prognostic genes with alteration of PSLRs, confirming 
their proliferation/growth- regulatory roles. Combined, the results indicate that the ability of cells to 
induce these lncRNAs following stress- inducing stimuli, including DNA damaging cancer treatments, 
reduces their survival/growth, prolonging the survival of the patient.

Overall, the 30 pan- cancer high- confidence proliferation/growth- regulating poorly characterized 
lncRNAs we identified constitute an immediately useful resource for cancer biologists and other 
researchers. Many important future investigations will stem from this resource, including determi-
nation of transcriptional and post- transcriptional regulation of the identified lncRNAs, exploration 
of these lncRNAs as competitive endogenous RNA in co- essential pathways, and discovering their 
epigenetic roles in regulating cancer cell proliferation/growth. Altogether, our study provides a signif-
icant leap forward in understanding co- essential pathways and their constituent lncRNAs that critically 
modulate cellular fitness.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Homo 
sapiens) A549, lung adenocarcinoma ATCC CCL- 185

Cell line (H. sapiens) H460, lung adenocarcinoma ATCC HTB- 177   

Transfected construct 
(Homo sapiens) PSLR- 1 VectorBuilder

FAM198B- AS1 VB200405- 
4575kbk Lentiviral construct to express the lncRNA

Transfected construct 
(H. sapiens) PSLR- 2 VectorBuilder

SEPTIN9- DT VB200405- 
4635tnb Lentiviral construct to express the lncRNA

Transfected construct 
(H. sapiens) MALAT1 Addgene #118580 Lentiviral construct to express the lncRNA

Transfected construct GIPZ lentiviral empty vector control Dharmacon/Horizon #RHS4349 Lentiviral construct used as control

Antibody Anti- cyclin B1 (mouse monoclonal) BD Pharmingen #554177 WB (1:1000)

Antibody Anti- 14- 3- 3-σ (goat polyclonal) Santa Cruz #sc- 7681 WB (1:500)
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti- p21 (mouse monoclonal) Santa Cruz #sc- 6246 WB (1:250)

Antibody Anti- cyclin A2 (rabbit polyclonal) Cell Signaling #91500 WB (1:1000)

Antibody Anti- GADD45A (rabbit polyclonal) Cell Signaling #4632 WB (1:1000)

Antibody Anti- CDK1 (mouse monoclonal) Cell Signaling #9116 WB (1:1000)

Antibody Anti- CDC25C (rabbit polyclonal) Cell Signaling #4688 WB (1:1000)

Antibody Anti- B- ACTIN (mouse monoclonal) Sigma #A5316 WB (1:5000)

Antibody
Anti- histone H3 (phospho S10) 
(rabbit polyclonal) Abcam #ab5176 Intracellular staining FACS (1:100)

Sequence- based 
reagent Hsa- CDK1- For This paper qRT- PCR primer GCCGGGATCTACCATACCC

Sequence- based 
reagent Hsa- CDK1- Rev This paper qRT- PCR primer  AGGAACCCCTTCCTCTTCAC

Sequence- based 
reagent Hsa- CCNB1- For This paper qRT- PCR primer  ATGA CATG GTGC ACTT TCCTCC

Sequence- based 
reagent Hsa- CCNB1- Rev This paper qRT- PCR primer  GCCAGGTGCTGCATAACTGG

Sequence- based 
reagent Hsa- CCNA2- For This paper qRT- PCR primer  GAAA ACCA TTGG TCCC TCTTG

Sequence- based 
reagent Hsa- CCNA2- Rev This paper qRT- PCR primer  GGCT GTTT CTTC ATGT AACCC

Sequence- based 
reagent Hsa- CDC25C- For This paper qRT- PCR primer  CTTC CTTT ACCG TCTG TCCAG

Sequence- based 
reagent Hsa- CDC25C- Rev This paper qRT- PCR primer  CCAA GTTT CCAT TGTC ATCCC

Sequence- based 
reagent Hsa- CDKN1A- For This paper qRT- PCR primer  GGAAGACCATGTGGACCTGT

Sequence- based 
reagent Hsa- CDKN1A- Rev This paper qRT- PCR primer  GGATTAGGGCTTCCTCTTGG

Sequence- based 
reagent Hsa- GADD45A- For This paper qRT- PCR primer CCCTGATCCAGGCGTTTTG

Sequence- based 
reagent Hsa- GADD45A- Rev This paper qRT- PCR primer  GATC CATG TAGC GACT TTCCC

Sequence- based 
reagent Hsa- SFN- For This paper qRT- PCR primer  GAGACACAGAGTCCGGCATT

Sequence- based 
reagent Hsa- SFN- Rev This paper qRT- PCR primer  CTGCCATGTCCTCATAGCGT

Sequence- based 
reagent Hsa- BAX- For This paper qRT- PCR primer  CCCG AGAG GTCT TTTT CCGAG

Sequence- based 
reagent Hsa- BAX- Rev This paper qRT- PCR primer  CCAG CCCA TGAT GGTT CTGAT

Sequence- based 
reagent Hsa- AchR- For This paper qRT- PCR primer  AGGA CCCT ACAG ACCC CTCTTC

Sequence- based 
reagent Hsa- AchR- Rev This paper qRT- PCR primer  AGTG TTCA TGGT GGCT AGGTG

Sequence- based 
reagent Hsa- PSLR1- For This paper qRT- PCR primer  AGCCACCCTTGACTGAGGTA

Sequence- based 
reagent Hsa- PSLR1- Rev This paper qRT- PCR primer  CTCTGTCTTCTGTGCCGTGT

 Continued

 Continued on next page
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Sequence- based 
reagent Hsa- PSLR2- For This paper qRT- PCR primer  GAAAGTCAGCGATTCCTGCG

Sequence- based 
reagent Hsa- PSLR2- Rev This paper qRT- PCR primer  GTTG GACA GTTC CTCC CTGAG

Sequence- based 
reagent Hsa- B- ACTIN- For This paper qRT- PCR primer CACCAACTGGGACGACAT

Sequence- based 
reagent Hsa- B- ACTIN- Rev This paper qRT- PCR primer ACAGCCTGGATAGCAACG

Commercial assay or kit
RT2 SYBR Green ROX qPCR 
Mastermix QIAGEN #330521 qPCR Mastermix

Commercial assay or kit
SuperScript III First- Strand 
Synthesis System Invitrogen #18080051 cDNA synthesis

Commercial assay or kit TRIzol Reagent Invitrogen #15596026 RNA isolation

Chemical compound, 
drug

MTT (3- (4,5- Dimethyl- 2- thiazolyl)–
2,5- diphenyl- 2H- tetrazolium 
bromide) Sigma- Aldrich #475989 Used for proliferation assay

Chemical compound, 
drug Crystal violet Sigma- Aldrich #192 Used for colony formation assay

Chemical compound, 
drug Propidium iodide Sigma- Aldrich #537059 Used for cell cycle analysis

Chemical compound, 
drug Nutlin- 3 Sigma- Aldrich #444143 p53- activating stimuli

Chemical compound, 
drug Etoposide Sigma- Aldrich #341205 p53- activating stimuli

Chemical compound, 
drug Cisplatin Sigma- Aldrich #232120 p53- activating stimuli

Chemical compound, 
drug Colcemid Gibco #15212012

Used to treat cells for positive control for mitotic 
cells

Software, algorithm FlowJo TreeStar
Dean–Jett–Fox cell cycle model used for cell cycle 
analysis

Software, algorithm GraphPad Prism
GraphPad Prism (https:// 
graphpad.com) PRID:SCR_002798   

Software, algorithm R Project for Statistical Computing

R Project for Statistical 
Computing
(https://www.r-project.org/) PRID:SCR_001905   

 Continued

CCLE and TCGA multi-omics data analysis
We extracted gene copy number, DNA methylation, and mRNA expression profiles of 807 cancer 
cell lines from CCLE (Ghandi et al., 2019) and 3017 patient samples of 10 TCGA cancer types from 
the UCSC Xena database (Goldman et  al., 2020). In brief, gene- level copy number variation was 
measured using the GISTIC2 or ABSOLUTE method (Mermel et al., 2011). For DNA methylation, 
data from reduced representation bisulfite sequencing (for CCLE) or Illumina Infinium HumanMethyl-
ation450 platform (for TCGA) were used, except for TCGA ovarian cancer, for which we used Illumina 
Infinium HumanMethylation, as a larger set of DNA methylation profiles was available. In TCGA, rela-
tive DNA methylation levels, described as β-values, ranged from 0 to 1. The values represent the ratio 
of the intensity of the methylated bead type to the combined locus intensity. If more than one methyl-
ation probe mapped to a gene promoter region, a representative probe was selected that showed the 
strongest negative Spearman’s rank correlation between methylation β-value and mRNA expression 
of that gene (Jacobsen et al., 2013; Mitra et al., 2017). In the mRNA- seq expression profiles, mRNAs 
were selected for downstream analysis if their normalized expression values were ≥1 in at least 75% 
of the samples. Additionally, we downloaded processed lncRNA expression profiles for the same 10 
TCGA cancer types from the Tanric database (Li et al., 2015). For CCLE, we extracted the annotated 
lncRNA expression profiles from the mRNA- seq data. To select lncRNAs for downstream analysis, we 

https://doi.org/10.7554/eLife.77357
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employed two filtering criteria as described previously (Mitra et al., 2017; Yan et al., 2015). First, we 
eliminated lncRNAs if the 50th percentile of normalized expression values was not >0; and second, we 
selected lncRNAs if the 90th percentile of the normalized expression values was >0.1.

Multivariate regression to predict lncRNA-mRNA associations
For each gene, we first calculated z- scores for its promoter methylation, mRNA/lncRNA expression, 
and copy number profiles (Ghandi et al., 2019). We estimated whether lncRNA ( xlncl ) and mRNA ( Y  ) 
expression association in n cell lines (for CCLE data) or n tumor samples of a given cancer type (for 
TCGA data) was independent of DNA methylation ( xDM ) and copy number variation ( xCNV ) events 
using the following multivariate regression analysis:

 Ys = β0 + βDMxDM,s + βCNVxCNV,s + βlncl xlncl,s , s = 1, . . . , n  

Here,  β0  is the intercept. Regression coefficients  βDM, βCNV, and βlncl  indicate the association 
strength between RNA- level expression change of the given gene with DNA methylation, copy 
number, and lncRNA expression changes, respectively. The BH adjusted regression p<0.001 was used 
as the cutoff to select significantly associated lncRNA- mRNA pairs in CCLE or a specific TCGA cancer 
type.

Mapping lncRNAs to co-essential modules
Genome- wide co- essential modules (n = 5218) were obtained from Wainberg et  al., 2021. The 
modules were generated using three different module density cutoffs 0.2, 0.5, and 0.9. The module 
density score determines how strong the internal connections are within a module. We retained 2223 
non- syntenic modules (i.e., all genes in the module are not on the same chromosome) with a density 
score of 0.5 or 0.9. The Gene Ontology database was used by Wainberg et al. to assign functions 
of individual modules, which may not reflect comprehensive and diverse oncogenic functions that 
the module members may coordinately regulate. We, therefore, reannotated module functions using 
cancer Hallmark genesets and the KEGG pathways, available in Molecular Signature Database (Subra-
manian et al., 2005). The module functions were annotated with top five Hallmark signatures and 
top five KEGG pathways among the significantly (BH adjusted hypergeometric test p<0.05) enriched 
signature/pathway list. The enrichment analysis was performed using the R package WebGestaltR 
(Zhang et al., 2005). We finally selected 123 modules that show significant enrichment of prolifera-
tion/growth- regulating genesets/pathways.

We merged multivariate regression model- derived lncRNA- mRNA associations with proliferation/
growth- regulating essential modules based on the genes commonly present in the two networks. 
We assigned an lncRNA to a module if the module members were significantly (BH adjusted hyper-
geometric test p<0.05) enriched with the lncRNA- associated protein- coding genes and the lncRNA- 
module association strength was significantly stronger (BH adjusted 1000 randomization test p<0.05). 
The average regression coefficient scores, measured from the lncRNA and module members, were 
used to predict the lncRNA- mediated co- essential module regulation direction. We predicted lncRNA- 
mediated positive (induction) or negative (suppression) regulation of co- essential modules based on 
the calculated positive and negative average regression scores. The final network was constructed 
from 1027 lncRNA, 78 proliferation/growth- linked co- essential modules, and 34,226 edges that 
connect one lncRNA to a module.

Meta-analysis of lncRNA and co-essential module associations
For each proliferation/growth- linked co- essential module, we grouped the lncRNAs based on their 
positive and negative associations with the module, respectively. We ranked each group of lncRNAs 
based on their average regression scores with the module members, which indicates lncRNA- module 
association strength. For 78 proliferation/growth- linked modules, we obtained rankings of 78 sets 
of positively and 78 sets of negatively associated lncRNAs. Obtained rankings were subjected to a 
probabilistic, nonparametric, and rank- based method RobustRankAggreg V1.1 (Kolde et al., 2012) 
to identify the lncRNAs with consistently positive or negative associations with the modules. The 
method assigns p- values as a significance score to indicate whether one achieves consistently better 
ranking under the null hypothesis that the ranked lncRNA lists are uncorrelated. We repeated the 
same analysis 78 times after excluding one of the rankings. Acquired p- values were averaged to assess 
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the stability of the significance scores and further corrected by BH method (Benjamini and Hoch-
berg, 1995) to minimize potential false positives. We considered the lncRNAs to be high- confidence 
proliferation/growth regulators if they had consistent positive- or negative association with statistical 
significance (BH corrected robust rank aggregation p<0.05) (Benjamini and Hochberg, 1995).

Analysis of RNA-sequencing data
We evaluated 14 RNA- seq datasets from Gene Expression Omnibus (GEO) (Barrett et  al., 2013) 
database (Supplementary file 2b). Each dataset consists of samples treated by p53- activating growth 
inhibitors and DMSO/untreated controls. Seven datasets contain samples treated with Nutlin- 3, and 
the remaining were treated with doxorubicin, 5- fluorouracil, or ionizing radiation in one of the 10 
different cell lines representing eight different cell types. To check the quality of the sequencing 
reads, fastq files of RNA- seq data were analyzed with FASTQC (version 0.11.8; https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/). The script  infer_ experiment. py from R package RSeQC 
was used to determine strand specificity (Wang et al., 2012), and adapter sequences were trimmed 
using Cutadapt version 2.4 (Martin, 2011). We aligned reads to the human genome (Ensembl version 
GRCh38) using Hisat2 (Kim et al., 2019) and assembled transcripts with StringTie version 1.3.6 (Pertea 
et al., 2016). A Python script  prepDE. py from StringTie was used to extract read count information. 
The read counts were imported into edgeR (Robinson et al., 2010), a negative binomial distribution 
was used to normalize the data, and differential expression of lncRNA and protein- coding genes was 
determined in the p53- activated cells compared with control cells (Robinson et al., 2010).

Meta-analysis of lncRNA and gene expression
Differentially expressed lncRNAs and protein- coding genes determined from individual RNA- seq 
datasets were grouped into up- and downregulated and ranked based on fold- change expression 
values. From 14 publicly available RNA- seq datasets, treated with p53- activating growth inhibitors, 
we obtained rankings of 14 sets of up- and 14 sets of downregulated genes. To identify consistently 
dysregulated lncRNAs and genes, obtained rankings were subjected to RobustRankAggreg V1.1 
(Kolde et al., 2012). We repeated the same analysis 14 times after excluding one of the rankings. 
Acquired p- values were averaged to assess the stability of the significance scores and further corrected 
by BH method (Benjamini and Hochberg, 1995) to minimize potential false positives.

Determining favorable and unfavorable genes/lncRNAs
To determine overall survival- associated genes or lncRNAs in a TCGA cancer type, we ranked the 
patients according to the expression of a specific gene/lncRNA. We divided the sample into low 
or high groups based on the median expression cutoff value of the gene/lncRNA. Using univariate 
survival analysis with a log- rank statistical test, we evaluated which genes/lncRNAs in that specific 
TCGA patient cohort have a significant (|Z- score| > 1.96 that corresponds to p<0.05; log- rank test) 
impact on patient survival (Gentles et al., 2015). The genes/lncRNAs were divided into favorable or 
unfavorable prognostic groups depending on whether their overexpression significantly increases or 
reduces patient overall survival.

Determining proliferation activity across TCGA patient samples
For each TCGA patient sample, we averaged the expression values of the genes present in the KEGG 
cell cycle and Hallmark proliferation/growth- regulating genesets (MYC targets V1 and V2, E2F targets, 
G2/M checkpoint, and mitotic spindle). For each cancer type, we ranked the samples based on the 
calculated average expression values, denoted as proliferation activity scores. The lowest and highest 
quartile samples were designated as the lower and higher proliferation activity groups, respectively.

Cell culture, vectors, and viral production
LUAD cell lines (H460 and A549 from ATCC) were cultured in RPMI- 1640 media supplemented with 
10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. A549 media was also supplemented with 
additional L- glutamine. Cell lines were authenticated by STR profiling by ATCC and confirmed to be 
free of mycoplasma. Lentiviral vectors encoding FAM198B- AS1 (PSLR- 1) or SEPTIN9- DT (PSLR- 2) were 
purchased from Vector Builder. The lentiviral vector encoding human MALAT1 was purchased from 
Addgene (plasmid #118580). All vectors were sequenced to verify the lncRNA encoded. Lentivirus 
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was produced by transient transfection into 293T cells using the calcium phosphate precipitation 
method. One million LUAD cells were placed into 10 cm plates 16 hr prior to infection. Also, 16 hr 
after infection, cells were harvested and plated for further experimental analyses (see below).

RNA isolation, qRT-PCR, and RNA-sequencing
A549 and H460 cells (1 × 105 cells/well) in 6- well plates were treated with 10 µM etoposide, cisplatin, 
or Nutlin- 3 (all three from Sigma) or received 5 Gy of gamma radiation (cesium source), and were 
harvested at intervals. A549 and H460 cells expressing lncRNA PSLR- 1 and -2 or vector only via lenti-
viral infection were harvested 48 hr after infection (see above). Total RNA was isolated using TRIzol 
(Ambion) according to the manufacturer’s protocol, except samples were incubated in isopropanol 
overnight at –20°C to increase RNA enrichment. cDNA was generated using the SuperScript III First- 
Strand Synthesis System (Invitrogen), expression of lncRNA and mRNA was determined, in triplicate, 
using SYBR Green qPCR Mastermix (QIAGEN), and values normalized to β-ACTIN and presented as 
2-ΔCt, 2-ΔΔCt, or log2 fold change (indicated in the figure legend). Primer sequences are given in Supple-
mentary file 2d. For RNA- sequencing, quadruplicate samples of A549 cells expressing lncRNA 
PSLR- 1 or -2 or vector only were harvested 48 hr after lentiviral infection. RNA- seq libraries were 
prepared using NEBNext Ultra II RNA library preparation kit. Raw RNA- seq profiles generated from 
Illumina HiSeq 4000 were obtained from GENEWIZ (https://www.genewiz.com/en) and data analyzed 
as described above.

Cell proliferation
A549 and H460 cells infected with lentiviral vectors expressing lncRNA PSLR- 1, -2 or MALAT1 or empty 
vector were placed in 96- well plates (2500  cells/well), in quadruplicate. As soon as cells attached 
(within 8 hr), the 0 hr reading was measured by MTT proliferation assay (562 nm; Sigma) according 
to the manufacturer’s protocol. MTT assays were then performed every 24 hr thereafter for 4 days.

Colony formation assay
A549 and H460 cells infected with lentiviral vectors expressing lncRNA PSLR- 1, -2 or MALAT1 or 
empty vector were cultured at low density (200 cells/well), in triplicate, in 6- well plates. After 14 days 
in culture, colonies were stained with 0.5% crystal violet and counted (≥50 cells defined a colony) using 
an inverted microscope. Pictures were taken using the camera feature of an LG- G6 phone with 13MP 
standard- angle lens.

Cell cycle and viability analyses
A549 and H460 cells infected with lentiviral vectors expressing lncRNA PSLR- 1, -2 or MALAT1 or 
empty vector were cultured (1 × 105 cells/well) in 6- well plates (one sample per condition per time 
point). Cells were harvested at intervals and stained with propidium iodide to evaluate DNA content 
by flow cytometry as described (Adams and Eischen, 2014). The Dean–Jett–Fox model on FlowJo 
(TreeStar) was used to quantify the percentage of cells in each phase of the cell cycle. Experiments 
were repeated four independent times for both cell lines. Intracellular staining for phosphorylated 
histone H3 (phospho- S10; Abcam) was repeated twice and was evaluated using the manufacturer’s 
protocol to detect cells in mitosis; cells treated with colcemid (0.05 µg/mL for 16 hr; Gibco) served 
as a positive control for cells in mitosis. Live cell number and viability were determined using Trypan 
Blue dye exclusion 48 hr after placing cells in 6- well plates. One sample of each condition from four 
independent experiments was quantified for both cell lines.

Western blotting
A549 and H460 cells expressing lncRNA PSLR- 1 and -2 or vector only were harvested 48 hr after 
lentiviral infection, and whole- cell protein lysates were obtained as previously published (Eischen 
et al., 1999). Antibodies include CCNA2 (E1D9T, #91500), GADD45A (D17E8, #4632), CDK1 (POH1, 
#9116), and CDC25C (5H9, #4688) from Cell Signaling Technology; CDKN1A (F- 5, sc- 6246) and 14- 3- 
3-σ (N- 14, sc- 7681) from Santa Cruz Biotechnology; CCNB1 (GNS- 1, #554177) from BD Pharmingen, 
and β-ACTIN (AC- 74, #A5316) from Sigma.

https://doi.org/10.7554/eLife.77357
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Patient samples
Deidentified non- small- cell LUAD patient samples and normal lung tissue were obtained from the 
Vanderbilt University Medical Center Lung Biorepository. Samples were acquired from surgical resec-
tions and were collected with patient consent. A board- certified pathologist verified by H&E stained 
sections that the samples were >80% tumor for tumor samples or lacked evidence of precancerous 
lesions for normal tissue samples.

Statistics
Unpaired t- tests were conducted to determine differentially expressed lncRNAs and protein- coding 
genes except for the RNA- seq data that contain read counts. For that, we performed edgeR 
(Robinson et  al., 2010). All statistical tests were two- tailed, except for computing combined 
p- values using Fisher’s method because it requires the input data to be derived from one- tailed 
test. The statistical tests used in individual analyses are indicated in the text and/or figure/table 
legends. All statistical tests with p- values of <0.05 were considered statistically significant. Experi-
ments with more stringent p- value cutoffs were explicitly indicated. For the biological experiments 
(MTT, colony, cell number, cell cycle, and qRT- PCR), unpaired two- tailed t- tests were used when 
comparing two groups.
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Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files, 
except RNA- sequencing data, which has been deposited into GEO - https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi?acc=GSE169186. We used 43 publicly available data sets (see Supplementary files 
2b and 2c cited in text).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Eischen CM, Mitra R, 
Adams CM

2022 Analysis of gene expression 
in lung adenocarcinoma 
cells following ectopic 
expression of proliferation- 
suppressive lncRNAs (PSLR)

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE169186

NCBI Gene Expression 
Omnibus, GSE169186
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