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Background: Sorafenib, a kinase inhibitor, is a standard treatment for advanced
hepatocellular carcinoma (HCC) but provides only a limited survival benefit. Disulfiram
(DSF), a drug for treating alcoholism and a chelator of copper (Cu), forms a complex with
Cu (DSF/Cu). DSF/Cu is a potent inducer of autophagic apoptosis of cancer stem cells,
which can demonstrate drug resistance. Thus, we hypothesized that DSF/Cu could
increase the sensitivity of HCC cells to sorafenib by targeting hepatic cancer stem cells.

Methods: The synergistic effect of DSF/Cu and sorafenib on human HCC cell lines was
assessed by cell viability MTT assay. Changes in stemness gene expression in HCC cells
were investigated by assessing the presence of hepatic cancer stem cells (HCSCs)
(defined as ALDH+ cells) using flow cytometry, sphere formation ability as an index of in
vitro tumorigenicity, and expression of stemness gene-encoded proteins by western blot.
Autophagic apoptosis and the ERK signaling pathway were also assessed by western
blot. Most importantly, the in vivo anti-tumor efficacy of DSF/Cu and sorafenib was tested
using orthotopic HCC xenografts in mice.

Results: Compared with sorafenib alone, DSF/Cu + sorafenib synergistically inhibited
proliferation of all HCC cell lines, decreased the stemness of HCC cells, and increased the
autophagy and apoptosis of HCC cells. The mechanism by which DSF/Cu mediated
these phenomena with sorafenib was sustained activation of the ERK pathway. The
combination of DSF/Cu (formed with endogenous Cu2+) and sorafenib was significantly
more effective than sorafenib alone in inhibiting the growth of orthotopic HCC xenografts in
mice. This in vivo anti-tumor efficacy was associated with decreased stemness in treated
HCC tumors.
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Conclusions: DSF/Cu and sorafenib can synergistically and effectively treat HCC by
targeting HCSCs in vitro and in vivo. Our data provide a foundation for clinical translation.
Keywords: sorafenib, disulfiram, copper, hepatic cancer stem cells, ERK pathway
INTRODUCTION

Primary liver cancer is the seventh most commonmalignancy and
the fourth leading cause of cancer death worldwide with high rates
of incidence (4.7%) and mortality (8.2%) (1, 2). Up to 75-85% of
primary liver cancers are hepatocellular carcinoma (HCC) (1).
Surgical interventions, including partial hepatectomy, liver
transplantation, transarterial chemoembolization, and ablation,
are effective in patients with early-stage HCC (3). However,
most patients with HCC are diagnosed in the advanced stage,
past the optimal time for surgical treatment (4). Therefore,
systemic pharmacotherapy and radiotherapy play an important
role in patients with advanced HCC, although they do not
markedly improve the overall survival rate.

No effective drugs for treating advanced HCC were available
until 2007, when sorafenib, a multi-kinase inhibitor, was
approved for use, opening a new era in the treatment of
advanced HCC. Sorafenib exerts its anti-tumor ability by
blocking the RAF/MEK/ERK pathway, vascular endothelial
growth factor receptor (VEGFR), and platelet-derived growth
factor receptor (PDGFR) (5). Sorafenib prolongs median survival
time by 2-3 months and improves the quality of life of patients
with advanced HCC (6, 7). However, few HCC patients respond
to sorafenib and rapidly become treatment-resistant, resulting in
disease progression (8).

In recent years, considerable evidence indicates that hepatic
cancer stem cells (HCSCs), the subpopulation of HCC cells
considered responsible for HCC initiation, metastasis, and
recurrence, are highly resistant to therapy (9, 10). HCSCs
possess the characteristics of self-renewal (11), stemness gene
expression, and elevated expression of aldehyde dehydrogenase
(ALDH+), distinguishing them from bulk tumor cells that are
essentially ALDH-. HCSCs (12, 13) also express an array of cell
surface markers including CD133, CD90, CD24, EpCAM, CD44,
OV6, and CD13 (14). ALDH+ HCC cells contribute to
chemoresistance and are associated with a higher rate of
metastasis than ALDH- HCC cells (13). As acquired resistance
to sorafenib in HCC patients is closely correlated with HCSCs
(10, 15, 16), the use of therapies that target HCSCs in
combination with sorafenib could improve the efficacy of
sorafenib treatment for advanced HCC.

Disulfiram (DSF), a drug used for treating alcoholism since
1951, is an ALDH inhibitor. DSF binds with copper ions (Cu2+)
to form DSF/Cu complexes that have anti-tumor efficacy (17).
We previously found that pancreatic cancer stem cells (CSCs)
and non-stem cells (non-CSCs) are effectively targeted by
incorporating DSF/Cu into standard chemoradiation regimens
(18). Here, we investigated whether treatment with DSF/Cu
increases the sensitivity of HCC cells, in particular HCSCs, to
sorafenib in both in vitro and in vivo preclinical experiments.
2

HCSCs present in four well-established human HCC cell
lines, HepG2, Hep3B, SNU423, and SNU387, were identified
by flow cytometry as ALDH+ HCC cells (12, 13). Independently
of ALDH expression, HCSCs were also identified through the
sphere formation of single tumor cells, a surrogate marker for the
CSC-associated activity of self-renewal, as well as expression of
the stemness genes SOX9 (19), HER2 (20, 21), and c-Myc (22).
The MEK/ERK signaling pathway was examined in cell lines
treated with a combination of DSF/Cu + sorafenib to monitor its
impact on therapeutic efficacy (23). Lastly, the effect of DSF/Cu
and/or sorafenib on the growth of HCC cells was examined
in vivo in an orthotopic HepG2-derived xenograft mouse model.
MATERIALS AND METHODS

Cell Culture
The human HCC cell lines HepG2, Hep3B, SNU387, and
SNU423 were obtained from ATCC. HepG2 and Hep3B cell
lines were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM; Mediatech, Inc.) supplemented with 10% fetal bovine
serum (FBS; Atlanta Biologicals). SNU387 and SNU423 cell lines
were cultured in RPMI 1640 medium (Corning) with 10% FBS.
All cell lines were cultured at 37°C in a humidified atmosphere of
5% CO2.

Chemical Reagents, Antibodies, and
Monoclonal Antibodies
Tetraethylthiuram disulfide (disulfiram, DSF), copper (II)
D-gluconate(C12H22CuO14) or Copper (II) chloride (CuCl2),
and MEK inhibitor U0126 were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Sorafenib was obtained from
Bayer Corporation (Whippany, NJ, USA). DSF, sorafenib,
and U0126 were reconstituted in DMSO for all in vitro
experiments. DSF was reconstituted in olive oil for in vivo
experiments. Copper was reconstituted in distilled water for
all experiments. ALDH+ cells were determined by ALDH
activity measured by ALDEFLUOR® reagent (Stem Cell
Technologies, Cambridge, MA, USA).

Antibodies (Ab) and monoclonal Ab (mAb) and their
dilutions used for western blotting were specific rabbit mAbs
for human ERK1/2 (#4695, 1:1000), human MEK1/2 (#9126,
1:1000), human phosphorylated ERK1/2 (#9101, 1:1000), human
phosphorylated MEK1/2 (#9154, 1:1000), human HER2/ERBB2
(#2165, 1:1000), human c-Myc (#9402, 1:1000), LC3A/B (#4108,
1:1000), cleaved PARP (#5625, 1:1000), human b-actin (#4970,
1:2000), specific rabbit mAbs, and goat anti-rabbit IgG HRP-
conjugated antibody (#7074, 1:2000), purchased from Cell
Signaling Technology (Danvers, MA, USA). Human SOX9-
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specific rabbit Ab (ab26414, 1 mg/mL) was purchased from
Abcam (Cambridge, MA, USA). All ab were diluted in Tris-
buffered saline with 0.1% Tween® 20 (TBST) containing 5% non-
fat dry milk plus 2% bovine serum albumin (BSA). All dilutions
were prepared immediately before use.

Animals
Male NSG mice at 6 weeks of age were obtained from the
Massachusetts General Hospital COX7 animal facility. The
Institutional Animal Care and Use Committee approved all
animal experiments.

MTT Assay and Synergy Analysis
HCC cells were plated in 96-well plates at a density of 5000
cells/well in 100 mL appropriate complete medium and
incubated overnight. Cells were then treated with the indicated
concentrations of drugs for 48 h before determining cell viability
using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay (Sigma). The synergistic effect of drug
combinations was evaluated using the Chou-Talalay method
with CompuSyn software (www.combosyn.com) to calculate
combination index (CI) values. CI values of <1, = 1, and >1
indicated synergistic, additive, and antagonistic effects,
respectively (24).

Flow Cytometry
Cells were seeded in 6-well plates at a density of 2×105 cells/well
in 2 mL appropriate complete medium and incubated overnight.
Cells were then treated with DMSO, DSF/Cu, sorafenib, or DSF/
Cu + sorafenib for 12 h, and IC50 values (Table 1) of DSF/Cu and
sorafenib for each cell line were used for experiments. For the
detection of ALDH+ activity in each cell line, flow cytometry was
performed as previously described (18).

Sphere Formation Assay
Cells were plated in 24-well plates at a density of 1000 cells/well
in 0.5 mL appropriate complete medium followed immediately
by treatment with DMSO, DSF, Cu, DSF/Cu, sorafenib, or DSF/
Cu + sorafenib for an additional 24 h. IC50 values (Table 1) of
DSF and sorafenib in each cell line were used for experiments.
Sphere formation procedures were performed as previously
described (18). For secondary/tertiary sphere formation
experiments, primary/secondary spheres were dissociated by
tumor/tissue dissociation reagent (BD Biosciences, San Jose,
CA, USA) into single cells followed by the same sphere
formation procedure. Sphere formation was performed using
cells from a single cell suspension collected from HCC cell lines
Frontiers in Oncology | www.frontiersin.org 3
or disaggregated (with collagenase IV, 1 mg/mL in PBS)
mouse tumors.

Western Blot Analysis
Cells were plated in 6-well plates at a density of 1×105 cells/well
in 2 mL appropriate complete medium and incubated overnight.
All cells were treated and collected at time point(s) as indicated.
Cells were collected and lysed in lysis buffer (10 mM Tris-HCl
(pH 8.2), 1% NP40, 1 mM EDTA, 0.1% BSA, 150 mM NaCl)
containing 1/50 (vol/vol) protease inhibitor cocktail
(Calbiochem, Burlington, MA, USA). Western blotting to
assess protein levels of stemness genes was carried out as
previously described (25).

Orthotopic HCC Xenograft Mouse Model
Orthotopic mouse models were established by inoculating
6×105 HepG2 cells/mouse in the left hepatic lobe of 6-week-
old male NSG mice. Surgical procedures were performed under
general anesthesia using maintenance inhalational isoflurane
anesthesia (2% (v/v) in 1 L/min O2). An 8-10 mm transverse
incision was made below the xiphoid and perpendicular to the
median line after sterilization with 70% ethanol and povidone-
iodine solution. A cotton-tipped applicator was used to expose
and stabilize the left hepatic lobe. A total volume of 30 mL cell
suspension was injected into the left hepatic lobe using a 27G 1/
2 insulin syringe needle. After the needle was removed from the
liver, a cotton-tipped applicator was placed over the puncture
site with gentle pressure for 30 seconds to prevent leakage of the
tumor cell suspension and achieve complete hemostasis. The
skin was cleaned with 70% alcohol, and the wound was sutured
with a Plus 5-0 suture line. Orthotopic HCC xenograft tumor
formation was establ ished on day 4 based on our
preliminary experiments.

In Vivo Anti-Tumor Efficacy
Mice were divided into four groups (n=5 per group) using a
randomization strategy. Mice were either (1) untreated, (2),
treated with oral administration of sorafenib (30 mg/kg/day)
for 12 days, (3) treated with oral administration of sorafenib
(30 mg/kg/day) for 12 days and intraperitoneal (i.p.)
administration of DSF (25 mg/kg in olive oil) twice per
week, or (4) treated with sorafenib and DSF along with i.p.
administration of copper (II) D-gluconate (1 mg/kg) twice per
week. All oral administrations were given by oral gavage using
an 18-gauge plastic feeding tube (Solomon Scientific, San
Antonio, TX, USA). Body weight was measured every 3 days.
On day 24, all mice were euthanized, and tumor volume
was measured, and tumors were collected for sphere
formation assay.

Statistical Analysis
For both in vivo and in vitro data, the differences among three or
more groups were determined using one-way ANOVA followed
by Tukey’s method to adjust for multiple comparisons.
Additional two-way ANOVA was adopted as specified. All
data are expressed as mean ± standard deviation (SD) unless
TABLE 1 | IC50 of sorafenib and DSF/Cu in HCC cell lines in vitro. Data are
shown as mean ± SD (n=3).

HCC cell lines IC50 (mM/1 mM) IC50 (mM)
DSF/Cu Sorafenib

HepG2 0.236 ± 0.024 24.550 ± 3.286
Hep3B 0.117 ± 0.015 9.599 ± 2.252
SNU387 0.033 ± 0.008 25.210 ± 0.939
SNU423 0.247 ± 0.032 21.990 ± 1.881
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specified otherwise. Data were analyzed and graphs were plotted
using GraphPad Prism 8 software. Results were obtained from
two or three independent experiments. Differences between
groups were considered significant when p<0.05.
RESULTS

DSF/Cu and Sorafenib Synergistically
Inhibit the Growth of HCC Cells In Vitro
Four HCC cell lines—HepG2, Hep3B, SNU387, and SNU423—
were used to evaluate the sensitivity of HCC cells to DSF/Cu and/
or sorafenib. Cells were treated with a gradient of DSF/Cu
concentrations or sorafenib alone for 48 h followed by
determination of cell growth inhibition using MTT assay. A
fixed dose of 1 mMCu2+ was used with DSF in these experiments
based on our previous experience and related publications (26,
27). DSF/Cu or sorafenib alone suppressed the growth of all four
HCC cell lines in a dose-dependent manner (Figures 1A, B). The
IC50 values of DSF/Cu and sorafenib alone for the four HCC cell
lines are presented in Table 1.

To determine whether DSF/Cu and sorafenib could act
synergistically to inhibit the growth of HCC cells, each HCC
cell line was treated with DSF/Cu at a fixed concentration that
was lower than the IC50 DSF/Cu value for that cell line and
various concentrations of sorafenib for 48 h. Combining DSF/Cu
with sorafenib significantly increased the inhibition of cell
growth compared with sorafenib alone (Figure 1C). Fraction
affected values, namely, the fraction of cells inhibited by drugs,
were obtained for each HCC cell line. The CI value was
calculated from the fraction affected value of each drug
combination. At combinations below IC50 values, DSF/Cu
showed synergistic interactions (CI<1) with sorafenib at
indicated doses in inhibiting the growth of all HCC cell
lines (Figure 1D).

HCSCs Are Sensitive to DSF/Cu and
Sorafenib
ALDH+ HCSCs in all four HCC cell lines were identified by flow
cytometry (Figures 2A–D). DSF/Cu treatment reduced the
percentage of ALDH+ cells in all cell lines (Figures 2A–D).
In the Hep3B cell line, the percentage of ALDH+ cells increased
after sorafenib treatment (p=0.0003) (Figure 2B). However,
sorafenib had little impact on the percentage of ALDH+ cells
in HepG2 and SNU423 cell lines (p=0.2558 and 0.2324,
respectively) (Figures 2A–D). Notably, DSF/Cu + sorafenib
was significantly more effective in reducing ALDH+ cells in all
four HCC cell lines compared with either drug alone
(Figures 2A–D).

A critical characteristic of CSCs is their ability to self-renew,
which was assessed using sphere formation assay. As
monotherapy, DSF/Cu was more effective than sorafenib in
preventing the formation of spheres in HepG2 (p<0.001),
Hep3B (p=0.0345), SNU387 (p=0.0011), and SNU423
(p<0.001) cells (Figures 2E, F). Notably, DSF/Cu + sorafenib
resulted in significantly less sphere formation than any single
Frontiers in Oncology | www.frontiersin.org 4
treatment alone (p<0.001) except for DSF/Cu alone (p>0.05)
(Figures 2E, F). By comparing sphere numbers of DSF/Cu vs.
DSF treated cells in all 4 cell lines, it is clear that the effect of DSF
on targeting HCSCs is Cu-dependent (Figures 2E, F). To
determine whether DSF/Cu and sorafenib effects were
interrelated, we statistically assessed the interaction effect
between DSF/Cu and sorafenib using two-way ANOVA and
found that their interaction effect was significant (p<0.0001 in all
four cell lines).
A B

D

C

FIGURE 1 | DSF/Cu and sorafenib (or Sora) synergistically inhibit the growth
of HCC cells in vitro. The HCC cell lines HepG2, Hep3B, SNU387, and
SNU423 were treated with DSF/Cu or sorafenib at different concentrations for
48 h followed by MTT assay to evaluate their cell growth inhibition rate (A, B).
Cells were treated with a fixed concentration of DSF/Cu [HepG2 (0.15 mM/1
mM), Hep3B (0.10 mM/1 mM), SNU387 (0.20 mM/1 mM), and SNU423 (0.15
mM/1 mM)] and different concentrations of sorafenib for 48 h. Cell growth
inhibition was determined by MTT assay (C). CI values were calculated using
CompuSyn software and graphed for each cell line (D). CI<1, = 1, and >1
indicated synergistic, additive, and antagonistic effects, respectively. IC50,
half-maximal inhibitory concentration. All experiments were performed in
triplicate for each cell line.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


zhang et al. Disulfiram/Copper Synergizes Sorafenib in HCC
DSF/Cu and Sorafenib Decrease
Stemness Gene Expression in HCC Cells
To examine the effect of DSF/Cu and sorafenib on stemness gene
expression in HCC cells, the four HCC cell lines were treated
with different doses and combinations of drugs and monitored
for their expression of stemness genes at the protein level by
Frontiers in Oncology | www.frontiersin.org 5
western blot analysis. Sorafenib decreased HER2 and SOX9
expression but had little impact on c-Myc expression in all cell
lines (Figures 3A–D). However, DSF/Cu alone or in
combination with sorafenib decreased the expression of all
three stemness genes to low or non-detectable levels
(Figures 3A–D). These results indicate that DSF/Cu +
A

B

D

E

F

C

FIGURE 2 | HCSCs are sensitive to DSF/Cu and sorafenib. The HCC cell lines HepG2 (A), Hep3B (B), SNU387 (C), and SNU423 (D) were treated as indicated,
and ALDH+ cells was measured using flow cytometry. Sphere formation assays were performed in six-well plates by seeding treated cells and culturing for 14 days.
Spheres were quantified by counting sphere numbers per well on day 14 (E, F). All experiments were performed in triplicate for each cell line, and data are shown as
mean ± SD. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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sorafenib could effectively decrease the stemness of HCC cells in
vitro, consistent with our previous studies in breast and
pancreatic cancer cells (18, 27, 28).

DSF/Cu and Sorafenib Induce Autophagy
and Apoptosis of HCC Cells
Previously, we demonstrated that DSF/Cu induces autophagic
apoptos i s in breas t cancer and pancreat ic ducta l
adenocarcinoma cell lines (25). The conversion of the
cytosolic form of the microtubule-associated protein 1A/1B
light chain 3B (LC3-I) to lipid-bound LC3-II is a marker of
autophagy, whereas cleavage of poly (ADP-ribose)
polymerase (PARP) by caspase-3 is a commonly used
marker of apoptosis. To determine whether DSF/Cu +
sorafenib could induce autophagy and apoptosis, cell lines
were cultured in the presence or absence of DSF/Cu or
sorafenib for 12 h followed by western blot analysis to
determine LC3-II/LC3-I ratios, which reflect the amount of
autophagy, and cleaved PARP levels. Whereas DSF/Cu-
induced autophagy and apoptosis in all four cell lines, lower
to non-detectable levels of LC3-II/LC3-I conversion and
cleaved PARP were detected following treatment with
Frontiers in Oncology | www.frontiersin.org 6
sorafenib alone (Figures 4A–D). As expected, DSF/Cu +
sorafenib enhanced the induction of autophagy and
apoptosis in all four HCC cell lines in a dose-dependent
manner as indicated by LC3-II/LC3-I ratios and cleaved
PARP levels (Figures 4A–D). However, the results of
autophagy and apoptosis must be interpreted with caution,
as an in-depth study on cell death induced by DSF/Cu +
sorafenib should be carried out with additional markers and
methods (29).

The efficacy of sorafenib against advanced HCC is
attributed to its direct inhibitory effects on the growth of
HCC cells via the Raf/MEK/ERK signaling pathway and its
indirect suppressive effects on HCC angiogenesis via
inhibition of receptor tyrosine kinases, including VEGFR
and PDGFR (5, 23). Given that DSF/Cu + sorafenib had a
more potent anti-tumor effect than sorafenib alone, one
hypothesis is that DSF/Cu functions synergistically with
sorafenib by also inhibiting the MEK/ERK signaling
pathway. To investigate the underlying mechanism involved
in this process, the expression of MER/ERK pathway-related
proteins in DSF/Cu-treated HCC cell lines was analyzed by
western blot. Surprisingly, increased protein levels of
A B

DC

FIGURE 3 | DSF/Cu and sorafenib decrease stemness gene expression in HCC cells. The HCC cell lines HepG2 (A), SNU387 (B), Hep3B (C), and SNU423 (D)
were treated as indicated for 24 h. Treated cells were lysed to detect stemness gene encoded protein expression by western blot analysis.
A B

DC

FIGURE 4 | DSF/Cu and sorafenib induce autophagy and apoptosis of HCC cells. The HCC cell lines HepG2 (A), SNU387 (B), Hep3B (C), and SNU423 (D) were
treated as indicated for 24 h. Treated cells were lysed to detect levels of LC3-II/LC3-I and cleaved PARP by western blot analysis.
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phosphorylated ERK (p-ERK) and phosphorylated MEK
(p-MEK) were detected in all four HCC cell lines in a dose-
and time-dependent manner following DSF/Cu treatment
(Figures 5A–D). However, a high dose (0.6 mM/1 mM) or a
long period (24 h) of DSF/Cu treatment decreased expression
of p-ERK and p-MEK in Hep3B (Figure 5B) and SNU387
(Figure 5C) cell lines. Moreover, high expression of MEK/
ERK pathway-associated genes was generally associated with
low protein expression of stemness, increased autophagy and
apoptosis (Figures 5A–D) (Supplementary Figures 1A–G).
Frontiers in Oncology | www.frontiersin.org 7
These findings indicate that the autophagy, apoptosis and
stemness of HCC cells were determined by sustained MEK/
ERK activation induced by DSF/Cu.

To further confirm this mechanism, HCC cell lines were
treated with U0126, a highly selective inhibitor of MEK1/2 and
ERK activation, which decreased p-ERK levels (Figures 5E–H).
However, U0126 increased p-MEK levels, possibly due to a
negative feedback mechanism (30). In addition, U0126 induced
apoptosis in HepG2 and SNU387 cell lines and autophagy in
SNU387 and SNU423 cell lines (Figures 5E–H). Considering the
A B

D

E F

G H

C

FIGURE 5 | DSF/Cu induces autophagic cell death via sustained activation of the ERK signalling pathway in vitro. The HCC cell lines HepG2 (A, E), Hep3B (B, F),
SNU387 (C, G), and SNU423 (D, H) were treated with different doses of DSF/Cu in the presence or absence of U0126. Treated cells were lysed at different time
points and analysed by western blot for the expression of stemness genes encoded proteins, autophagy, apoptosis markers, and MEK/ERK pathway activation-
related genes.
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expression of stemness genes, U0126 inhibition of ERK
activation resulted in mixed responses in HCC cell lines, with
increased HER2 expression and decreased SOX9 and c-Myc
expression (Figures 5E–H). To investigate the function of
DSF/Cu in the MEK/ERK signaling pathway in HCC
cells, cells were exposed to DSF/Cu (0.4 mM/1 mM) and
different doses of U0126 (1, 5, 10, or 20 mM). The inhibitor
partially blocked DSF/Cu-induced conversion of LC3-I to LC3-II
and PARP cleavage all four HCC cell lines. However, the
effect of U0126 on DSF/Cu-induced downregulation of
Frontiers in Oncology | www.frontiersin.org 8
stemness gene encoded protein expression was not clearly
noted (Figures 5E–H).

The DSF With Endogenous Cu2+ and
Sorafenib Is Significantly More Effective
Than Sorafenib Alone in Inhibiting the
Growth of Orthotopic HCC Xenografts
in Mice
To assess whether these in vitro findings could be extended to a
preclinical animal tumor model, HepG2 cells were directly
July 2022 | Volume 12 | Article 913736
A

B

D E

C

FIGURE 6 | DSF with endogenous Cu2+ and sorafenib inhibits the growth of orthotopic HCC xenografts in mice more effectively than sorafenib alone. Human
HepG2 cells were injected directly into the liver of NSG mice (left) and the resulting orthotopic liver tumor formation (right). (A). Mice were grouped and all the
treatments were initiated (on day 4). At the time of sacrifice (on day 24), tumors were resected and measured (B). The sphere formation of cells isolated from the
cells collected from xenograft tumors of each mouse group was assessed. Spheres were quantified by counting sphere numbers/well on day 14 (C, D). To monitor
toxicity, mouse body weight was measured every 3 days (E). Data are shown as mean ± SD. *p<0.05, **p<0.01, ****p<0.0001.
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injected into the liver of immunodeficient NSG mice to establish
orthotopic HCC xenografts (Figure 6A).

Mice treated with sorafenib + DSF had smaller tumors at
day 24 than untreated (1.4 ± 0.78 mm vs. 52.9 ± 9.09 mm,
p<0.0001) or sorafenib-treated (1.4 ± 0.78 mm vs. 18.55 ±
3.58 mm, p=0.0017) mice. Tumor size was similar between
sorafenib + DSF and sorafenib + DSF/Cu groups, but there
was a tendency toward reduced tumor volume in the
sorafenib + DSF group compared with the sorafenib + DSF/
Cu group (1.4 ± 0.78 mm vs. 9.56 ± 6.84 mm) (Figure 6B).
Exogenous Cu2+ is not necessary for the efficacy of DSF in in
vivo experiments due to the existence of endogenous Cu2+ in
HCC (31) and other types of tumors (27). Sorafenib + DSF
exerted a larger anti-tumor effect on third-generation exerted
a larger anti-tumor effect on the third generationHCSCs, as
evidenced by sphere formation compared with no treatment,
sorafenib alone, or sorafenib + DSF/Cu (1.50 ± 1.05 vs. 36.67 ±
2.73, 9.83 ± 1.72, and 3.50 ± 1.05; p<0.0001, p<0.0001, and
p=0.24, respectively) (Figures 6C, D). This finding suggests
that sorafenib monotherapy only partially eliminates HCSCs,
whereas sorafenib + DSF eliminates nearly all HCSCs. The
interaction effect between DSF and sorafenib indicated a
significant difference in terms of tumor volume and 3rd

generation of sphere numbers (p<0.0001).
As a preliminary gauge of the potential drug-induced toxicity

of combined treatment, mouse body weight was measured every 3
days. The two-way ANOVA followed by the Tukey’s multiplicity
comparison were used to determine the interaction between time
and treatments (DSF), the results showed significant difference
(p<0.0001). Notably, sorafenib alone and sorafenib + DSF/Cu
groups showed greater loss of body weight than the sorafenib +
DSF group (6.76% and 16.52% loss, p=0.034 and 0.0057,
respectively) (Figure 6E). No DSF-associated drug toxicity was
observed in in this mouse tumor model. On the contrary, DSF
showed evidence of protection against sorafenib treatment-
induced weight loss.
DISCUSSION

Considerable evidence indicates that HCSCs sustain tumor
growth, produce differentiated progeny, and eventually result
in tumor metastasis (32, 33). In addition to scientific
consensus on their role in cancer is the finding that the
presence of HCSCs is associated with poor prognosis and is
predictive of clinical outcomes (34). Therefore, in this study,
we aimed to develop an effective approach to targeting HCSCs
to improve the efficacy of current chemotherapy for patients
with advanced HCC.

The chemoresistance of HCSCs also extends to sorafenib
(16). We found that sorafenib had a limited effect on HCSCs
identified as ALDH+ HCC cells by flow cytometry or through
their sphere formation ability. This could explain why many
patients with advanced HCC are not sensitive to sorafenib.
Increasing evidence from preclinical studies indicates that
combining sorafenib with other drugs can enhance its anti-
Frontiers in Oncology | www.frontiersin.org 9
tumor efficacy (35, 36). However, poor clinical efficacy and
undesirable side effects limit the clinical application of
combined drug therapy in patients with advanced HCC (37,
38). Therefore, any successful method for improving cell
sensitivity and reversing resistance to sorafenib has
clinical potential.

DSF is an ALDH inhibitor that is shown to exert anti-tumor
activity in multiple mouse syngeneic and xenograft tumor
models and cancer patients (18, 27, 39–41). We previously
demonstrated that DSF/Cu targets CSCs and thereby improves
the efficacy of standard chemotherapy or radiotherapy in
pancreatic ductal adenocarcinoma, breast cancer and
chondrosarcoma (18, 27, 28, 41). The same conclusion was
obtained in the present study using HCC cell lines by detecting
the proportion of ALDH+ cells to identify HCSCs and assessing
their sphere formation ability and expression of stemness genes
HER2, SOX9, and c-Myc. Whereas exogenously supplied Cu2+

is needed for DSF to target CSCs and induce cancer cell
apoptosis in vitro (18), exogenously supplied Cu2+ is not
required in vivo. The liver plays an important role in the
supply, storage, and secretion of Cu2+ (42). Compared with
patients with benign liver diseases, HCC patients show much
higher levels of serum Cu2+ (43), which are strongly associated
with poor HCC-specific survival (44). In addition, compared
with normal liver tissues or a primary hepatocyte line, HCC
tissue or HCC tissues or HCC cell lines exhibit excessive
accumulation of Cu2+ (45, 46). These facts may explain why
the supplied exogenous Cu2+ reduced the anti-tumor effect of
DSF accompanied by weight loss in the HCCmouse model used
in this study, as Cu2+ at a higher dose, e.g., 5 µM is tumor-
promoting (47) and Cu2+ is necessary for toxicity of DSF at
concentrations < 4 mM (48). Relevantly, the high level of Cu2+

in liver may explain the failure of DSF and exogenous Cu2+ in a
previous clinical trial for treatment of refractory solid tumors
metastasized to liver (NCT00742911), suggesting that Cu2+

levels in tumor tissues and/or serum should be taken into
consideration when conducting future clinical trials
involving DSF.

The present study aimed to improve the efficacy of
sorafenib for treating advanced HCC by repurposing DSF
targeting HCSCs. As expected, DSF/Cu and sorafenib
synergistically inhibited the growth of HCC cells in vitro.
Compared with either drug used as monotherapy, the
combination of DSF/Cu and sorafenib was more effective in
eliminating HCSCs and induced more potent autophagy and
apoptosis. The anti-tumor activity of sorafenib was attributed
to its inhibition of angiogenesis (VEGFR and PDGFR) and
direct effect on tumor cell proliferation and survival (RAF/
MEK/ERK pathway) (23). Previous studies demonstrate that
an MEK inhibitor combined with sorafenib synergistically
exhibits anti-tumor activity (49, 50). In addition, some studies
show that MEK inhibition can reduce the proliferation and
self-renewal of CSCs in many tumor types, including HCC
(51–53). Therefore, we suspected that DSF/Cu could serve as a
MEK inhibitor to improve the anti-tumor effect of sorafenib.
Surprisingly, however, DSF/Cu was found to activate the ERK/
July 2022 | Volume 12 | Article 913736
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MEK signaling pathway and sustain high expression of p-ERK
and p-MEK, which was associated with the loss of stemness
gene expression. This finding is contrary to those of previous
studies, which suggest that MEK inhibition contributes to the
apoptosis of HCC cells and HCSCs (23, 51). Furthermore,
substantial evidence indicates that high expression of p-ERK
may serve as a good prognostic biomarker for sorafenib
response in HCC (54, 55). The synergistic effect of DSF/
Cu + sorafenib on HCC can be interpreted by the fact that
DSF/Cu maintains activation of ERK/MER pathway, which is
harmful to HCC cells and HCSCs, and elevates p-ERK,
thereby improving the sensitivity of HCC to sorafenib. It is
important to further study the mechanisms of DSF/Cu +
sorafenib on bulk HCC cells and sorted HCSCs. Also, we
plan to establish sorafenib-resistant HCC cell lines to further
reveal the mechanisms involved.

To generate more clinically relevant and translational data
on DSF/Cu + sorafenib therapy, we established an orthotopic
HCC xenograft model in mice and found that combination
therapy was significantly more effective in inhibiting
xenografts than monotherapy. Of note, DSF did not cause
additional toxicity but appeared to have a protective role,
consistent with our previous results in pancreatic ductal
adenocarcinoma and breast cancer mouse models (18, 27).
Together, these in vitro and in vivo findings provide a
foundation for further developing an effective clinical
strategy involving the repurposing of DSF to enhance the
therapeutic efficacy of sorafenib against HCC.
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