
Vol.:(0123456789)1 3

European Journal of Nutrition (2020) 59:2641–2649 
https://doi.org/10.1007/s00394-019-02112-3

ORIGINAL CONTRIBUTION

Daily intake of heat‑killed Lactobacillus plantarum L‑137 improves 
inflammation and lipid metabolism in overweight healthy adults: 
a randomized‑controlled trial

Yusuke Tanaka1 · Yoshitaka Hirose1 · Yoshihiro Yamamoto1 · Yasunobu Yoshikai2 · Shinji Murosaki1

Received: 14 June 2019 / Accepted: 4 October 2019 / Published online: 16 October 2019 
© The Author(s) 2019

Abstract
Purpose  The effects of heat-killed Lactobacillus plantarum L-137 (HK L-137) on inflammation and lipid metabolism were 
investigated in overweight volunteers.
Methods  One hundred healthy subjects with a body mass index from 23.0 to 29.9 (51 men and 49 women; mean age: 
41.4 years) were enrolled in this randomized, double-blind, placebo-controlled, parallel group study. Subjects were randomly 
assigned to daily administration of a tablet containing HK L-137 (10 mg) or a placebo tablet for 12 weeks. Blood samples 
were collected every 4 weeks to measure biomarkers of lipid metabolism and inflammatory mediators.
Results  The percent change of concanavalin A-induced proliferation of peripheral blood mononuclear cells was significantly 
larger in the HK L-137 group than in the control group, similar to previous studies. The decreases of aspartate aminotrans-
ferase and alanine aminotransferase over time were significantly larger in the HK L-137 group than in the control group, as 
were the decreases of total cholesterol, low-density lipoprotein cholesterol, and the leukocyte count at one time point. These 
effects of HK L-137 were stronger in the subjects with higher C-reactive protein levels.
Conclusions  These findings suggest that daily intake of HK L-137 can improve inflammation and lipid metabolism in sub-
jects at risk of inflammation.
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Abbreviations
ALT	� Alanine aminotransferase
ANOVA	� Analysis of variance
AST	� Aspartate transaminase
BMI	� Body mass index
CD	� Cluster of differentiation
Con A	� Concanavalin A
CRP	� C-reactive protein
DSS	� Dextran sulfate sodium
HDL-C	� High-density lipoprotein cholesterol
HK L-137	� Heat-killed Lactobacillus plantarum L-137
IFN	� Interferon

IL	� Interleukin
LDL-C	� Low-density lipoprotein cholesterol
LPS	� Lipopolysaccharide
PBMCs	� Peripheral blood mononuclear cells
TC	� Total cholesterol
TG	� Triglyceride
Th	� T helper
TNF	� Tumor necrosis factor
VLDL	� Very-low-density lipoprotein

Introduction

Obesity is one of the most important public health issues in 
many countries. It has been suggested that obesity-related 
chronic inflammation contributes to various metabolic dis-
orders, including insulin resistance [1], type 2 diabetes [2], 
non-alcoholic fatty liver disease [3], cardiovascular disease 
[4–7], hypertension [8], and dyslipidemia [9]. Production 
of inflammatory cytokines by adipose tissue is increased in 
the obese state, followed by elevation of the serum levels 
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of inflammatory mediators, including C-reactive protein 
(CRP), plasminogen activator inhibitor-1, and the white 
blood cell count. There is considerable evidence that inflam-
matory cytokines like tumor necrosis factor (TNF)-α, inter-
leukin (IL)-1β, and IL-6 not only induce systemic insulin 
resistance, but also influence lipid metabolism. For example, 
it was reported that these cytokines induce lipolysis in adipo-
cytes [10, 11], as well as enhancing lipogenesis and triglyc-
eride (TG) synthesis in hepatocytes, resulting in increased 
hepatic secretion of very-low-density lipoprotein (VLDL) 
and elevation of the serum TG level [12–15]. Therefore, sup-
pression of inflammatory mediators in obese or overweight 
persons may be effective for prevention/improvement of obe-
sity-associated metabolic disorders such as insulin resistance 
and dyslipidemia.

Several lactic acid bacteria are used as probiotics with 
health-promoting effects that include modulation of the 
intestinal flora, protection against intestinal infection, and 
immune modulation. Recent studies have indicated that pro-
biotics can also modulate host lipid metabolism. Administra-
tion of viable Lactobacillus plantarum (L. plantarum) LIP-1 
was reported to normalize lipid metabolism by modifying 
the gut microbiota in hyperlipidemic rats with dietary obe-
sity [16]. Kefir is a fermented milk beverage containing via-
ble bacteria, viable yeasts, and their products, which exhibits 
a cholesterol-lowering effect [17–21]. A meta-analysis of 11 
clinical trials evaluating the effects of probiotics on serum 
lipids revealed that administration of probiotics decreased 
serum total cholesterol (TC) and LDL cholesterol (LDL-
C), but had no effect on high-density lipoprotein cholesterol 
(HDL-C) or TG [22]. The mechanisms by which viable pro-
biotic bacteria suppress dyslipidemia remain to be fully elu-
cidated. Similarly, the reduction of serum cholesterol or TG 
by intake of some heat-killed bacteria has also been studied. 
Toshimitsu et al. reported that administration of heat-killed 
L. plantarum OLL2712 to KKAy mice decreased serum TG 
levels by suppressing chronic inflammation [23]. In ham-
sters on a high-fat diet, heat-killed L. reuteri GMNL-263 
lowered the serum levels of TC, LDL-C, and TG, as well 
as the plasma malondialdehyde level, without decreasing 
HDL-C [24]. These results suggest that not only viable bac-
teria, but also heat-killed bacteria, can be used to improve 
obesity-induced inflammation and abnormalities of lipid 
metabolism.

Lactobacillus plantarum L-137 is a strain isolated from 
a fermented fish and rice dish that is popular in Southwest 
Asia [25]. It was reported that daily intake of heat-killed 
L. plantarum L-137 (HK L-137) improved health-related 
quality of life [26] and reduced the occurrence of upper 
respiratory tract infections [27] by its immunomodulatory 
effects. Recently, Uchinaka et al. demonstrated an anti-
inflammatory effect of HK L-137 on the heart and adipose 
tissue in DahlS.Z-Leprfa/Leprfa (DS/obese) rats, a model of 

metabolic syndrome. Administration of HK L-137 to these 
rats attenuated left-ventricular inflammation and fibrosis, 
reduced adipose tissue hypertrophy and inflammation, and 
improved insulin resistance [28]. These results suggested 
that HK L-137 might also ameliorate obesity-induced 
chronic inflammation and metabolic disorders in obese or 
overweight healthy persons.

Accordingly, we investigated the effect of daily intake 
of HK L-137 on immune function and serum levels of 
inflammatory and lipid markers in overweight healthy 
volunteers.

Experimental methods

Subjects

Healthy persons aged from 20 to 75 years whose body 
mass index (BMI) was more than 23 and less 30 were 
recruited in November 2017, and their eligibility for this 
study was assessed. Exclusion criteria included the follow-
ing: allergic rhinitis or bronchial asthma; use of medica-
tions that could affect the results of this study; prior daily 
consumption of the lactic acid bacteria used in this study; 
pregnancy, breastfeeding, or intention to become pregnant; 
current or previous history of diabetes, hepatic disease, 
kidney disease, cardiac disease, gastrointestinal disease, 
vascular disease, or other diseases; high alcohol intake; 
heavy smoking; cow’s milk allergy; extremely irregular 
diet; unstable work schedule or working the night shift; 
and being judged unsuitable for this trial by the investiga-
tor or subinvestigator. Among 227 potential recruits, 100 
persons (51 men and 49 women; mean age: 41.4 years) 
were found to be eligible and were randomly assigned to 
the HK L-137 group or the control group (Fig. 1). The 
sample size was determined from the results of a previ-
ous study investigating the effects of probiotics on serum 
total cholesterol [29]. In that study, the mean within-
group changes showed a normal distribution with a stand-
ard deviation of 0.70. If the true difference of the mean 
value between the treated and control groups is assumed 
to be 0.45, we needed 39 subjects per group to be able to 
reject the null hypothesis (i.e., the population means of 
both groups are equal) with a power of 0.8. The probabil-
ity of a Type I error associated with this test of this null 
hypothesis was 0.05. We initially recruited 100 volunteers 
to allow for an estimated drop-out rate of 20% over the 
study period. Eating habits were not considered in detail, 
but the subjects were instructed to remain on their habitual 
diet during the study. This study was registered with the 
University Hospital Medical Information Network Clinical 
Trials Registry (UMIN000030079).
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Preparation of HK L‑137

LP20 (House Wellness Foods Corporation, Hyogo, Japan), 
containing 20% HK L-137 and 80% dextrin, was used. 
Preparation of HK L-137 for addition to LP20 was done as 
described previously [30].

Experimental design

The 100 subjects were enrolled in a study with a randomized, 
double-blind, placebo-controlled, parallel group design. The 
subjects were randomly assigned to either group with strati-
fication by age, sex, BMI, and CRP using sequentially num-
bered sealed envelopes that each contained one treatment 
randomly generated by a computer program. After grouping, 
the subjects either took one tablet per day containing 50 mg 
of LP20 or a matching control tablet that contained dextrin 
instead of LP20 for 12 weeks. Blood and urine samples were 
collected every 4 weeks to measure biomarkers of immune 
function and other parameters (lipids, glucose, and inflam-
matory mediators). Biomarkers of immune function (Con 
A-induced proliferation and the Th1:Th2 ratio) were the 
primary outcome variables and were measured by an exter-
nal clinical laboratory (SRL, Tokyo, Japan). Biochemical 
tests, hematology tests, and urinalysis were done by another 
external clinical laboratory (LSI Medience, Tokyo, Japan). 
Inflammatory biomarkers (CRP, leukocyte count, and TNF-
α) and lipid metabolism parameters (glucose, TC, LDL-C, 

and HDL-C) were assessed as secondary outcomes. This 
study was conducted at Higashi Koganei Sakura Clinic 
(Tokyo, Japan) from December 2017 to March 2018.

Biomarkers of immune function

Peripheral blood mononuclear cells (PBMCs) were isolated 
by the Ficoll–Conray centrifugation technique (Ficoll–Con-
ray, d = 1.077). Then, 5 × 105 cells/mL were cultured for 72 h 
at 37 °C with or without the optimal dose of concanavalin A 
(Con A, 5 µg/mL), with pulse labeling by 37 kBq of [3H]-
thymidine during the last 8 h of incubation. DNA synthesis 
was assessed by measuring thymidine uptake. The percent-
age of cluster of differentiation 4 (CD4) + T cells producing 
interferon (IFN)-γ and IL-4 (Th1:Th2 ratio) was determined 
by single-cell measurement of intracellular cytokines using 
flow cytometry, as described previously [31]. Serum TNF-α 
concentration was determined by LSI Medience using a 
Human TNF-α QuantiGlo ELISA Kit (R&D Systems, Inc.) 
according to the manufacturer’s instructions.

Stratified analysis

Participants were stratified according to the serum CRP 
level, with the cut-off value being 0.045 mg/dL. Subjects 
with a serum CRP level < 0.045  mg/dL were assigned 
to the low CRP group and those with a serum CRP 
level ≥ 0.045 mg/dL were assigned to the high CRP group.

Statistical analysis

IBM SPSS statistics version 25 software was used for sta-
tistical analyses. The percent changes of immune function 
parameters relative to baseline were analyzed by two-way 
analysis of variance (ANOVA), and the changes from base-
line of other parameters were analyzed by two-way repeated 
ANOVA. For comparison between groups at each time point, 
the f test was performed to assess equality of variance, fol-
lowed by the unpaired Student’s t test or Welch’s t test.

Results

Baseline characteristics

One subject in the control group and three subjects in the 
HK L-137 group dropped out for personal reasons, but the 
other 96 subjects completed the study and were included in 
the statistical analysis (Fig. 1). The baseline parameters of 
immune function, lipid metabolism, and inflammation of 
these 96 participants are shown in Table 1. Baseline charac-
teristics did not differ between the two groups.

Fig. 1   This flow diagram summarized according to the consolidated 
standards of reporting trials shows the number of subjects rand-
omized, lost to follow-up, and analyzed by treatment arm
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Effects of HK L‑137 on immune function

In the control group, three sets of proliferation data (1 at 
4 weeks and 2 at 8 weeks) were excluded from analysis 
because Con A-stimulation of PBMC elicited no response. 
The percent change of proliferation induced by Con A (stim-
ulation index = Con A-stimulated cells/unstimulated cells) 
showed considerable variation, especially over time due to 
the complicated method of measurement [26]. However, it 
was significantly larger in the HK L-137 group than in the 
control group over time (P = 0.04) (Table 2), similar to the 
results of previous studies [26, 27].

Effects of HK L‑137 on serum inflammatory and lipid 
markers

There was no significant difference of BMI between the 
control group and the HK L-137 group during the study 
period (data not shown). In the HK L-137 group, the leu-
cocyte count of 1 subject at 12 weeks was unavailable for 
analysis because of coagulation. In addition, serum CRP 
levels ≥ 1 mg/dL (2 at 4 weeks and 1 at 12 weeks in the 
control group; 2 at 4 weeks, 4 at 8 weeks, 3 at 12 weeks in 
the HK L-137 group) were excluded from analysis because 
of reflecting acute inflammation. The decreases in the 
serum levels of aspartate transaminase (AST) and alanine 
aminotransferase (ALT), biomarkers of hepatic inflam-
mation, were significantly larger in the HK L-137 group 
than in the control group during the study period (P = 0.02 
and P = 0.02, respectively), and the decrease of the leuko-
cyte count also tended to be larger in the HK L-137 group 
(P = 0.08) (Table 3). In addition, the decrease of AST (at 4 
and 12 weeks), ALT (at 4 weeks), and the leukocyte count 
(at 4 weeks) were significantly larger in the HK L-137 
group compared with the control group (Table 3). Among 
the serum lipid markers, TC and LDL-C increased in the 

Table 1   Baseline characteristics of the subjects

Values are the mean ± SD
BMI body mass index, Con A concanavalin A, Th1 type 1 T helper, 
Th2 type 2 helper, AST aspartate transaminase, ALT alanine transami-
nase, CRP C-reactive protein, TC total cholesterol, HDL-C high-den-
sity lipoprotein cholesterol, LDL-C low-density lipoprotein choles-
terol, TNF tumor necrosis factor, TG triglyceride
a Comparison between two groups by the Chi-square test
b Comparison between two groups by the unpaired Student’s t test or 
Welch’s t test
c Ratio of Con A-induced proliferation to unstimulated proliferation
d Control group: n = 49; HK L-137 group: n = 45

Control group HK L-137 group

N 49 47
Sexa

 Male 26 23
 Female 23 24

Age (years)b 42.1 ± 10.9 41.3 ± 10.2
BMI 26.1 ± 2.0 26.1 ± 1.6
Immune function parametersb

 Con A-induced proliferation 
(stimulation index)c

261 ± 108 220 ± 112

 Th1:Th2 ratio 14.8 ± 9.3 15.3 ± 13.6
Blood parametersb

 AST (units/L) 20.6 ± 4.3 21.1 ± 7.5
 ALT (units/L) 20.5 ± 8.2 21.9 ± 13.8
 CRP (mg/dL)d 0.090 ± 0.128 0.106 ± 0.180
 Glucose (mg/dL) 87.8 ± 7.9 85.4 ± 7.2
 TC (mg/dL) 204 ± 29 207 ± 29
 HDL-C (mg/dL) 54.4 ± 11.3 57.3 ± 15.9
 LDL-C (mg/dL) 125 ± 27 123 ± 27
 Leukocyte count (/mL) 5.59 ± 1.27 6.24 ± 2.11
 TNF-α (pg/mL) 1.96 ± 0.87 2.03 ± 0.93
 TG (mg/dL) 109 ± 61 124 ± 90

Table 2   Changes of immune function relative to baseline

Con A concanavalin A, Th1 type 1 T helper, Th2 type 2 helper
a Mean ± SD of % changes in immune parameters at each time point vs. baseline
b Ratio of Con A-induced proliferation to unstimulated proliferation
c Stimulation index (control group: n = 48, 47, 49 in the 4, 8, 12 weeks)
d Significant differences were evaluated by two-way ANOVA
*P < 0.05, †P < 0.10: significant difference of the mean value vs. the control group (unpaired Student’s t test or Welch’s t test)

Change vs. baseline (%)a Two-way ANOVA: Pd

4 weeks 8 weeks 12 weeks Group Time Interaction

Immune function parameters
Con A-induced proliferation
(stimulation index)b, c

Control − 24.6 ± 37.7 − 1.3 ± 62.2 − 26.9 ± 40.7 0.04 0.10 0.34
HK L-137 − 6.3 ± 50.3* − 1.4 ± 47.4 − 5.7 ± 75.9†

Th1:Th2 ratio Control 3.0 ± 36.9 − 16.8 ± 22.9 23.6 ± 36.6 0.53 < 0.01 0.70
HK L-137 − 3.5 ± 28.8 − 18.5 ± 29.3 24.7 ± 30.5
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control group during the study due to seasonal variation 
[32, 33], while these increases were somewhat suppressed 
in the HK L-137 group, leading to significant differences in 
the changes of TC and LDL-C between the two groups at 
12 weeks (Table 3). There were no significant differences 
in the changes of other parameters between the two groups.

Analysis stratified by serum CRP

To investigate the possible mechanism underlying the effect 
of HK L-137 on liver inflammation and cholesterol metabo-
lism, we assessed the influence of inflammation by CRP-
stratified analysis. In either low or high CRP subjects, BMI 
showed no significant difference between the control and 
HK L-137 groups during the study period (data not shown). 
Among the high CRP subjects, the decreases of AST, ALT, 
and the leukocyte count were significantly larger (P < 0.01, 
P = 0.01, and P = 0.02) in the HK L-137 group compared 

with the control group during the study period (Table 4). In 
addition, the decreases of AST at 4, 8 and 12 weeks, ALT at 
4 and 12 weeks, and the leukocyte count at 4 and 12 weeks 
were significantly larger in the HK L-137 group than in the 
control group (Table 4). Seasonal increases in the levels of 
TC and LDL-C were observed in the control group, but not 
in the HK L-137 group, resulting in significant differences 
between the two groups at 12 weeks (Table 4). In contrast, 
among the low CRP subjects, there were no significant 
differences in the changes of AST, ALT, TC, and LDL-C 
between the HK L-137 group and the control group at any 
time point or across the entire study (Table 4).

Safety

A total of 38 adverse events were recorded during the study. 
Among 17 adverse events in the control group, there were 
four of influenza, two of inflammatory symptoms, two of 

Table 3   Changes of various parameters from baseline

AST aspartate transaminase, ALT alanine transaminase, CRP C-reactive protein, TC total cholesterol, HDL-C high-density lipoprotein choles-
terol, LDL-C low-density lipoprotein cholesterol, TNF tumor necrosis factor, TG triglyceride
a Mean ± SD of the change from baseline at each time point
b CRP: t test (control group: n = 47, 49, 48; HK L-137 group: n = 45, 43, 44 at 4, 8, 12 weeks, respectively), repeated two-way ANOVA (control 
group: n = 46; HK L-137 group: n = 42)
c Leukocyte count: t test (HK L-137 group: n = 46 at 12 weeks), repeated two-way ANOVA (control group: n = 49; HK L-137 group: n = 46)
d Significant differences were evaluated by repeated two-way ANOVA
*P < 0.05, †P < 0.10: significant difference of the mean value vs. the control group (unpaired Student’s t test or Welch’s t test)

Change from baselinea Repeated two-way ANOVA: Pd

4 weeks 8 weeks 12 weeks Group Time Interaction

Blood parameters
 AST (units/L) Control 3.1 ± 10.6 0.6 ± 4.0 1.1 ± 4.3 0.02 0.54 0.12

HK L-137 − 1.3 ± 4.9* 0.0 ± 10.9 − 1.2 ± 5.1*
 ALT (units/L) Control 5.2 ± 16.0 2.2 ± 9.9 3.3 ± 8.9 0.02 0.47 0.43

HK L-137 − 0.1 ± 8.1* 0.1 ± 8.3 − 0.1 ± 8.1†

 CRP (mg/dL)b Control 0.014 ± 0.090 − 0.005 ± 0.079 − 0.004 ± 0.098 0.79 0.03 0.19
HK L-137 − 0.007 ± 0.176 0.010 ± 0.139 − 0.030 ± 0.174

 Glucose (mg/dL) Control − 1.84 ± 7.65 1.20 ± 5.54 0.16 ± 6.35 0.47 < 0.01 0.66
HK L-137 − 0.85 ± 6.81 2.40 ± 5.77 0.13 ± 5.97

 TC (mg/dL) Control 3.3 ± 23.5 0.4 ± 20.4 7.7 ± 17.4 0.49 0.01 < 0.05
HK L-137 6.9 ± 21.1 − 2.6 ± 21.9 0.2 ± 19.0*

 HDL-C (mg/dL) Control 0.8 ± 6.2 0.7 ± 6.0 2.3 ± 5.9 0.75 < 0.10 0.94
HK L-137 1.4 ± 7.2 1.0 ± 6.5 2.3 ± 5.8

 LDL-C (mg/dL) Control 6.5 ± 22.5 5.2 ± 17.7 9.1 ± 17.4 0.38 0.13 0.06
HK L-137 8.4 ± 19.9 2.0 ± 21.9 1.8 ± 17.0*

 Leukocyte count (/mL)c Control 0.16 ± 1.31 0.02 ± 1.11 0.10 ± 1.12 0.08 0.91 0.29
HK L-137 − 0.45 ± 1.51* − 0.29 ± 1.91 − 0.44 ± 1.77†

 TNF-α (pg/mL) Control − 0.30 ± 1.34 − 0.02 ± 0.81 − 0.05 ± 0.79 0.69 < 0.01 0.21
HK L-137 − 0.52 ± 0.83 0.05 ± 0.92 − 0.10 ± 0.87

 TG (mg/dL) Control − 5.4 ± 51.5 3.1 ± 35.1 3.2 ± 52.7 0.95 0.49 0.78
HK L-137 − 0.9 ± 64.0 − 0.7 ± 74.4 4.5 ± 88.8



2646	 European Journal of Nutrition (2020) 59:2641–2649

1 3

pain, one of hyperesthesia, two of high ALT levels, one of a 
high AST level, two of high gamma-glutamyl transpeptidase 
levels, one of a high alkaline phosphatase level, and two of 
high creatine kinase levels. Among 21 adverse events in the 
HK L-137 group, there were four of influenza, four of com-
mon cold symptoms, two of inflammatory symptoms, two 
of digestive symptoms, one of pruritus, one of palpitations, 
three of high creatine kinase levels, one of a high uric acid 
level, one of a high insulin level, one of high urinary protein, 
and one of hypertension. All adverse events were mild, and 
were judged to be unrelated to the study treatment. Among 
the safety parameters, the pulse rate, serum calcium level, 
and platelet count were significantly higher in the HK L-137 
group than in the control group, while total bilirubin and 

blood urea nitrogen were significantly lower, but all values 
were within the corresponding reference ranges. Among 
male subjects, the red blood cell count, hemoglobin, and 
hematocrit were significantly higher in the HK L-137 group 
than in the control group, but all values were within the 
reference ranges.

Discussion

In the present study, oral intake of HK L-137 significantly 
augmented the proliferative response of PBMCs to Con A 
in overweight healthy subjects, which was a similar find-
ing to our previous reports. Among the biomarkers of 

Table 4   Analysis of lipid parameters and inflammatory markers stratified by CRP

AST aspartate transaminase, ALT alanine transaminase, CRP C-reactive protein, HDL-C high-density lipoprotein cholesterol, TC total choles-
terol, LDL-C low-density lipoprotein cholesterol
a Mean ± SD of the change from baseline at each time point
b Control group: n = 27; HK L-137 group: n = 20, except for leukocyte count (control: n = 27; HK L-137: n = 19)
c Control group: n = 22; HK L-137 group: n = 25
d Significant differences were evaluated by repeated two-way ANOVA
*P < 0.05, †P < 0.10: significant difference of the mean value vs. the control group (unpaired Student’s t test or Welch’s t test)

Change from baselinea Repeated two-way ANOVA: Pd

4 weeks 8 weeks 12 weeks Group Time Interaction

CRP ≥ 0.045 mg/dLc

 AST (unit/L) Control 2.7 ± 5.8 0.9 ± 4.5 2.2 ± 4.1 < 0.01 0.21 0.55
HK L-137 − 2.3 ± 5.3* − 2.7 ± 4.9* − 2.2 ± 5.2*

 ALT (unit/L) Control 5.6 ± 14.8 2.9 ± 9.5 4.7 ± 9.6 0.01 0.61 0.61
HK L-137 − 1.8 ± 7.1* − 1.6 ± 7.5† − 1.1 ± 8.9*

 TC (mg/dL) Control 5.0 ± 22.3 − 0.8 ± 18.4 8.4 ± 13.5 0.19 0.06 0.37
HK L-137 2.4 ± 18.4 − 5.3 ± 23.7 − 2.6 ± 19.8*

 HDL-C (mg/dL) Control 1.4 ± 5.9 0.4 ± 5.6 2.1 ± 5.5 0.87 0.21 0.70
HK L-137 0.7 ± 5.4 1.2 ± 5.1 2.6 ± 5.0

 LDL-C (mg/dL) Control 6.6 ± 20.5 3.9 ± 15.1 9.6 ± 13.8 0.21 0.32 0.33
HK L-137 4.7 ± 17.0 − 1.0 ± 25.5 − 0.8 ± 19.2*

 Leukocyte count (/mL) Control 0.50 ± 0.98 0.54 ± 0.85 0.40 ± 0.81 0.02 0.60 0.98
HK L-137 − 0.50 ± 1.74* − 0.43 ± 2.27† − 0.63 ± 1.94*

CRP < 0.045 mg/dLb

 AST (units/L) Control 3.4 ± 13.4 0.3 ± 3.5 0.2 ± 4.3 0.94 0.51 0.19
HK L-137 0.1 ± 4.0 3.5 ± 15.2 − 0.1 ± 4.9

 ALT (units/L) Control 5.0 ± 17.2 1.7 ± 10.4 2.2 ± 8.3 0.68 0.56 0.72
HK L-137 2.5 ± 8.8 2.3 ± 9.3 1.3 ± 7.3

 TC (mg/dL) Control 1.9 ± 24.8 1.4 ± 22.1 7.2 ± 20.2 0.76 0.24 0.14
HK L-137 11.2 ± 23.8 0.7 ± 20.3 3.5 ± 18.7

 HDL-C (mg/dL) Control 0.3 ± 6.5 0.9 ± 6.4 2.4 ± 6.4 0.70 0.45 0.67
HK L-137 2.2 ± 9.4 1.1 ± 8.2 2.4 ± 6.9

 LDL-C (mg/dL) Control 6.5 ± 24.4 6.3 ± 19.8 8.7 ± 20.0 0.91 0.43 0.20
HK L-137 12.5 ± 23.0 5.9 ± 17.4 5.0 ± 14.6

 Leukocyte count (/mL) Control − 0.13 ± 1.48 − 0.40 ± 1.13 − 0.14 ± 1.28 0.19 0.60 0.07
HK L-137 − 0.07 ± 0.66 0.27 ± 0.73* 0.21 ± 0.88
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inflammation, the decreases of AST and ALT were signifi-
cantly larger and that of the leukocyte count also tended to 
be larger in the HK L-137 group than in the control group 
throughout the study. In addition, biomarkers of lipid metab-
olism such as TC and LDL-C showed a decrease in the HK 
L-137 group compared with the control group at 12 weeks. 
These findings suggested that daily intake of HK L-137 
improved hepatic inflammation and serum cholesterol in 
overweight subjects.

The intestinal barrier normally prevents translocation 
of lipopolysaccharide (LPS) derived from microbiota or 
the diet, so deterioration of this barrier results in a chronic 
increase of plasma LPS levels in obese animal or humans 
[34–37]. After translocation, LPS binds to lipoproteins such 
as chylomicrons, HDL, LDL, and VLDL. The complexes 
thus formed are preferentially transported to the liver and 
incorporated by Kupffer cells, leading to increased produc-
tion of TNF-α [38–40]. Recently, there have been a number 
of reports that lactic acid bacteria improve the gut barrier in 
obesity. L. gasseri SBT2055 was found to improve the integ-
rity of the intestinal barrier in obese mice, reducing entry 
of LPS from the intestine, and also decreased body weight, 
visceral fat mass, and inflammation [41]. Hsieh et al. dem-
onstrated that both viable and heat-killed L. reuteri GMNL-
263 reversed impairment of the intestinal barrier in obese 
rats [42]. In the present study, intake of HK L-137 improved 
hepatic and systemic inflammation, especially in the subjects 
with higher CRP levels who potentially have impairment of 
the intestinal barrier as a cause of inflammation (Table 4). 
Since HK L-137 has been shown to improve the morphol-
ogy of intestinal villi and epithelial cells in broiler chickens 
[43], it is possible that it restored the intestinal barrier in 
our subjects, leading to improvement of systemic inflamma-
tion (leukocyte count) and hepatic inflammation (AST and 
ALT). The novel finding of this study was that intake of HK 
L-137 decreased biomarkers of hepatic inflammation. To our 
knowledge, this is the first study to show that intake of lac-
tobacilli can reduce AST and ALT levels in healthy human 
subjects. It has been reported that slight elevation of serum 
ALT, even within the normal range, can predict a higher risk 
of type 2 diabetes, metabolic syndrome, and coronary heart 
disease [44–47]. While the reduction of AST and ALT by 
HK L-137 was within the normal range in this study, these 
reports suggest that lowering serum ALT within the nor-
mal range may reduce the risk of type 2 diabetes, metabolic 
syndrome, and coronary heart disease. Because we did not 
measure LPS, further investigation is needed to clarify the 
anti-inflammatory mechanism of HK L-137.

It was reported that a high-fat diet weakens the intestinal 
barrier in mice by reducing the expression of epithelial tight 
junction proteins such as ZO-1 [35]. Cell wall fractions of 
Enterococcus hirae (e.g., lipoteichoic acid) have been dem-
onstrated to promote recovery of ZO-1 protein expression 

and transepithelial resistance in TNF-alpha-treated Caco-2 
cells [48]. Miyauchi et al. also showed that both viable and 
heat-killed L. rhamnosus OLL2838 protected mice from 
dextran sulfate sodium (DSS)-induced colitis, along with 
elevation of intestinal ZO-1 gene expression that had been 
decreased by DSS treatment [49]. HK L-137 was shown 
to have a beneficial effect on DSS-induced colitis in mice 
[50], suggesting that it may improve the intestinal barrier by 
normalizing ZO-1 expression.

HK L-137 improved TC and LDL-C levels in the pre-
sent study, especially in the subjects with high serum CRP, 
an indicator of total inflammation induced by endogenous 
and exogenous stimuli (Table 4). It was reported that LPS 
increases serum cholesterol in Syrian hamsters by induc-
ing hepatic cholesterol synthesis [51], while the TC level 
showed a significant correlation with the endotoxin level in 
healthy subjects [52]. Thus, HK L-137 might decrease TC 
and LDL-C levels by improving the intestinal epithelial bar-
rier function and inhibiting the translocation of endotoxin.

In conclusion, we found that daily intake of HK L-137 
enhanced T-cell responses and suppressed hepatic inflamma-
tion and serum cholesterol in overweight subjects. It is pos-
sible that HK L-137 may be useful for prevention/treatment 
of metabolic dysfunction in persons at risk of inflammation.
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