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Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this
paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria
values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is
based on the generalized prioritized aggregation operator ofHFLNs. Firstly, the new operations and comparisonmethod forHFLNs
are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized
prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given
to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.

1. Introduction

Since the fuzzy set was proposed by Zadeh in 1965 [1],
it has been widely researched and developed as well as
being successfully applied in various fields [2–5]. Due to the
fuzziness and uncertainty of many MCDM problems, the
criteria weights and values of alternatives can be inaccurate,
uncertain, or incomplete. Under such circumstances, Zadeh’s
fuzzy sets can provide robust solutions. In Zadeh’s fuzzy sets,
themembership degree of the element in a universe is a single
value between zero and one; however, these single values are
inadequate to provide complete information due to a lack of
systematic and comprehensive knowledge.

Hesitant fuzzy sets (HFSs), an extension of traditional
fuzzy sets, can address this problem. HFSs were first intro-
duced by Torra and Narukawa [6, 7], and they permit the
membership degree of an element to be a set of several
possible values between zero and one. HFSs are highly useful
in expressing hesitance existing when decision makers give
the evaluation values, and they have been a subject of great
interest to researchers. For example, some work on the
aggregation operators of HFSs has been undertaken in [8–
11], and the distance and correlation measures for HFSs were

developed in [12–15]. Later still, hesitant fuzzy TOPSIS [16]
and hesitant fuzzy TODIM [17] methods for solving MCDM
problems have been proposed.

When faced with problems that are too complex or ill-
defined to be solved by quantitative expressions, linguistic
variables can be an effective tool because the use of linguistic
information enhances the reliability and flexibility of classical
decision models [18]. Linguistic variables have been studied
in depth and used in many fields [19–23]. The linguistic
variable could be a single linguistic term [24], or interval of
linguistic terms, that is, uncertain linguistic variables [25].
Rodŕıguez et al. [26, 27] proposed hesitant fuzzy linguistic
term sets (HFLTSs) that assess a linguistic variable by using
several linguistic terms. However, similar to linguistic vari-
ables, they cannot reflect the possible membership degrees
of a linguistic term to a given concept. The information they
express is not sufficiently comprehensive and they cannot
deal with problems in which both the evaluation value and
its associatemembership degrees are described through fuzzy
concepts. By contrast, intuitionistic linguistic sets (ILSs) [28]
and their extensions [29, 30] can describe two fuzzy attributes
of an object: a linguistic variable and an intuitionistic fuzzy
number. The former provides an evaluation value, whilst
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the latter describes the confidence degree for the given
evaluation value.

To express decision-makers’ hesitance that exists in giving
the associated membership degrees of one linguistic term,
the concept of hesitant fuzzy linguistic sets (HFLSs), which
is based on linguistic term sets and HFSs, was introduced in
[31].The elements inHFLSs are called hesitant fuzzy linguistic
numbers (HFLNs). That is to say, for one object, an HFLS is
reduced to an HFLN, which can be considered as a special
case of HFLSs. For example, ⟨𝑠

2
, (0.3, 0.4, 0.5)⟩ is an HFLN

and 0.3, 0.4, and 0.5 are the possible membership degrees
to the linguistic term 𝑠

2
. HFLSs have enabled great progress

in describing linguistic information and to some extent may
be considered an innovative construct. The main advantage
of HFLSs is that they can describe two fuzzy attributes of
an object: a linguistic term and a hesitant fuzzy element
(HFE). The former provides an evaluation value, such as
“excellent” or “good.”The latter describes the hesitancy for the
given evaluation value and denotes the membership degrees
associated with the specific linguistic term. However, the
operations proposed by Lin et al. [31] have some limitations
that will be discussed in Section 3, and this paper will define
new operations for HFLNs.

To date, several methods have been proposed for dealing
with linguistic information and the main ones will now be
briefly described. (1) One of the methods is based on a
transformation to fuzzy numbers, which converts linguistic
information into triangular, or other kinds of fuzzy numbers
by means of a membership function [32–34]. However, this
method led to a certain degree of information loss in the
transformation process and it is difficult to choose the appro-
priate membership functions in practical decision-making
applications. (2) Another method is based on symbols that
made computations on the subscripts of linguistic terms
and was easy to operate [35–38]. However, in order to
express the results in the initial term sets, this method per-
formed the retranslation step as an approximation process,
which led to a lack of accuracy [39]. (3) One method is
based on the cloud model, which can correctly depict the
uncertainty of a qualitative concept. This model has been
successfully utilized [40–42]. (4) Another method is based
on the 2-tuple linguistic representation model [43], which
avoided the information distortion and loss that had hitherto
occurred in linguistic information processing [44–47]. In
this method, there is a conversion and inverse conversion
process. Motivated by this idea and taking into consideration
the limitations in previous linguistic methods, Wang et al.
[48] proposed linguistic scale functions to deal with linguistic
translation issues under different semantic situations. These
scale functions provide a higher degree of flexibility for
modeling linguistic information.

In general, aggregation operators are important tools for
dealing with information fusion in MCDM problems and
are a research area of great interest throughout the world.
In practical situations, decision makers usually consider
different criteria priorities. To deal with this issue, Yager [49]
developed prioritized average (PA) operators bymodeling the
criteria priority on the weights associated with criteria, which
are dependent on the satisfaction of higher priority criteria.

Yager [50] further focused on PA operators and proposed
twomethods for formulating this type of aggregation process.
As is well known, the PA operator has many advantages
over other operators. For example, the PA operator does
not need to provide weight vectors and, when using this
operator, it is only necessary to know the priority among
criteria. However, Yager [49] only discussed the criteria
values and weights in real number domain, and there has
been no aggregation operator that considers different criteria
priorities in the aggregation process for HFLNs. Therefore,
the aim of this paper is to develop some PA operators for
aggregating hesitant fuzzy linguistic information.

The paper will focus on a type of MCDM problems
where criteria priority exists, referred to as a prioritized
MCDM problem. Two PA operators and one generalized PA
operator for HFLSs will be proposed under a hesitant fuzzy
linguistic environment. These operators are mainly used for
solving hesitant fuzzy linguistic MCDM problems in which
the criteria are in different priority levels. Therefore, the rest
of this paper is organized as follows. In Section 2, some basic
concepts of linguistic term sets andHFSs are briefly reviewed.
In Section 3, new operations of HFLNs are provided and a
method for comparing two HFLNs is proposed based on
the linguistic scale functions. In Section 4, the PA operators
for HFLNs are proposed and some desirable properties are
analyzed. Then, a method for solving MCDM problems with
HFLNs, in which the criteria are in different priority levels,
is developed. In Section 5, an illustrative example is provided
and subsequently the comparison analysis is made. Finally,
the conclusions are drawn in Section 6.

2. Preliminaries

Before discussing HFLSs, some related concepts, such as
linguistic term sets and HFSs are reviewed in this section.
These concepts can lead to a better understanding of HFLSs.

2.1.The Linguistic Term Sets andTheir Extension. Let 𝑆 = {𝑠
𝑖
|

𝑖 = 0, 1, . . . , 2𝑡} be a finite and linguistic term set with odd
cardinality, where 𝑠

𝑖
represents a possible value for a linguistic

variable and should satisfy the following characteristics [32].

(1) The set is ordered: 𝑠
𝑖
> 𝑠
𝑗
, if 𝑖 > 𝑗.

(2) There is a negation operator: 𝑠
𝑖
= neg(𝑠

𝑗
) satisfying

𝑖 + 𝑗 = 2𝑡.

For example, when 𝑡 = 3, a linguistic term set 𝑆 could be
given as follows:

𝑆 = {𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
, 𝑠
6
}

= {very poor, poor, slightly poor, fair,

slightly good, good, very good} .

(1)

When aggregating information as part of the decision-
making process, the aggregated results do not regularlymatch
the elements in the language assessment scale. To preserve all
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the information provided, Xu [51, 52] extended the discrete
linguistic term set 𝑆 to a continuous linguistic term set
𝑆 = {𝑠

𝑖
| 𝑖 ∈ [0, 𝑙]}, in which 𝑠

𝑖
> 𝑠
𝑗
if 𝑖 > 𝑗, and 𝑙 (𝑙 > 2𝑡) is

a sufficiently large positive integer. If 𝑠
𝑖
∈ 𝑆, then 𝑠

𝑖
is called

the original linguistic term; otherwise, 𝑠
𝑖
is called the virtual

linguistic term.
In general, decision makers use original linguistic terms

to evaluate alternatives, whereas virtual linguistic terms are
only used as part of the calculation process in order to avoid
information loss and generally enhance the overall decision
making [51]. Virtual linguistic terms have no practical mean-
ing, with their main role being to rank the alternatives [53].

2.2. HFSs

Definition 1 (see [6]). Let 𝑋 be a reference set, and let a
hesitant fuzzy set (HFS) on 𝑋 be in terms of a function that
will return a subset of [0, 1] in the case of it being applied to
𝑋.

To be easily understood, Xia and Xu [54] expressed HFSs
by a mathematical symbol:

𝐸 = {⟨𝑥, ℎ
𝐸
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (2)

where ℎ
𝐸
(𝑥) is a set of values in [0, 1], denoting the possible

membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐸. ℎ
𝐸
(𝑥)

is called a hesitant fuzzy element (HFE) [54].

Example 2. Let𝑋 = {𝑥
1
, 𝑥
2
} be a universal set, and two HFEs

ℎ
𝐸
(𝑥
1
) = {0.1, 0.4} and ℎ

𝐸
(𝑥
2
) = {0.1, 0.5, 0.7}, respectively,

denote the membership degrees of 𝑥
𝑖
(𝑖 = 1, 2) to the set 𝐸. 𝐸

is an HFS, where 𝐸 = {⟨𝑥
1
, {0.1, 0.4}⟩, ⟨𝑥

2
, {0.1, 0.5, 0.7}⟩}.

Definition 3 (see [54]). For an HFE ℎ, let 𝑙(ℎ) be the number
of values in ℎ, and then 𝑠(ℎ) = (1/𝑙(ℎ))∑

𝛾∈ℎ
𝛾 is called the

score function of ℎ. For two HFEs ℎ
1
and ℎ

2
, if 𝑠(ℎ

1
) > 𝑠(ℎ

2
),

then ℎ
1
is superior to ℎ

2
, denoted by ℎ

1
≻ ℎ
2
; if 𝑠(ℎ

1
) = 𝑠(ℎ

2
),

then ℎ
1
is indifferent to ℎ

2
, denoted by ℎ

1
∼ ℎ
2
.

3. HFLNs and Their Operations

HFLNs, as the elements and special case of HFLSs, have great
significance for information evaluation. In this section, the
advantages and applications of HFLNs are firstly introduced.
Then, new operations and comparison laws of HFLNs, which
will be used in the latter analysis, are also presented.

3.1. HFLSs

Definition 4 (see [31]). Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a fixed set

and 𝑠
𝜃(𝑥)

∈ 𝑆. An HFLS 𝐴 in𝑋 is an object:

𝐴 = {⟨𝑥, 𝑠
𝜃(𝑥)

, ℎ
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

where ℎ
𝐴
(𝑥) is a set of finite numbers in [0, 1] and denotes

the possible membership degrees that 𝑥 belongs to 𝑠
𝜃(𝑥)

.

When 𝑋 has only one element, the HFLS 𝐴 is reduced
to ⟨𝑠
𝜃(𝑥)

, ℎ
𝐴
(𝑥)⟩. For computational convenience, we call 𝛼 =

⟨𝑠
𝜃(𝛼)

, ℎ
𝛼
⟩ as an HFLN.

When ℎ
𝐴
(𝑥) = {𝑟} has only one element, it indicates that

the degree that 𝑥 belongs to 𝑠
𝜃(𝑥)

is 𝑟. For example, ⟨𝑠
2
, 0.3⟩

is called a fuzzy linguistic number, which is a special case of
HFLN.

Example 5. Let𝑋 = {𝑥
1
, 𝑥
2
} be a universal set. If anHFLS𝐴 =

{⟨𝑥, 𝑠
𝜃(𝑥)

, ℎ
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} = {⟨𝑥

1
, 𝑠
5
, {0.4, 0.6, 0.7}⟩,

⟨𝑥
2
, 𝑠
6
, {0.1, 0.5, 0.7}⟩} is divided into two subsets that contain

only one object, respectively, then ⟨𝑠
5
, {0.4, 0.6, 0.7}⟩ and

⟨𝑠
6
, {0.1, 0.5, 0.7}⟩ areHFLNs. 0.4, 0.6, and 0.7 are the possible

membership degrees that 𝑥
1
belongs to 𝑠

5
; 0.1, 0.5, and 0.7 are

the possible membership degrees that 𝑥
2
belongs to 𝑠

6
.

AnHFLN is an extension of a linguistic term and anHFE.
Compared to linguistic terms, HFLNs embody the possible
membership degrees that an evaluation object attaches to
the linguistic term, and they can depict the fuzziness more
accurately than an uncertain linguistic variable does. When
compared to HFEs, HFLNs add linguistic terms and assign
the membership function to a specific linguistic evaluation
value, whichmake themembership degrees no longer relative
to a fuzzy concept, but to linguistic terms, such as “poor” or
“good.”

In fuzzy set theory, the hesitant values in HFLNs are
called possible membership degrees, which are caused by the
hesitancy and uncertainty of decisionmakers. In the example
of the performance evaluation of a car, suppose that “good
(𝑠
5
)” is an acceptable evaluation result for the car and is given

by three decision makers. Then, each decision maker uses
a value to express his/her opinion about the car under the
evaluation of “good (𝑠

5
).” Decision maker A may give the

value 0.4 for “good,” whilst decisionmaker Bmay give 0.6 and
decision maker C may give 0.7. In this case, HFLNs may be
a better choice, and the evaluation result can be denoted by
⟨𝑠
5
, {0.4, 0.6, 0.7}⟩.
HFLSs and linguistic hesitant fuzzy sets (LHFSs) [55]

are different concepts. An HFLS is defined on a finite set
(a set of objects) 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}, while an LHFS is de-

fined for one object 𝑦. For example, 𝐴 = {⟨𝑥
1
, 𝑠
2
, {0.6, 0.8}⟩,

⟨𝑥
2
, 𝑠
5
, {0.4, 0.6}⟩, ⟨𝑥

3
, 𝑠
6
, {0.1, 0.5, 0.7}⟩} is an HFLS, and

𝐵 = {⟨𝑠
2
, {0.6, 0.8}⟩, ⟨𝑠

5
, {0.4, 0.6}⟩, ⟨𝑠

6
, {0.1, 0.5, 0.7}⟩} is an

LHFS. In the HFLS 𝐴, ⟨𝑠
2
, {0.6, 0.8}⟩, ⟨𝑠

5
, {0.4, 0.6}⟩ and

⟨𝑠
6
, {0.1, 0.5, 0.7}⟩ are evaluation values for objects 𝑥

1
, 𝑥
2
, and

𝑥
3
, respectively. In the LHFS 𝐵, ⟨𝑠

2
, {0.6, 0.8}⟩, ⟨𝑠

5
, {0.4, 0.6}⟩,

and ⟨𝑠
6
, {0.1, 0.5, 0.7}⟩ are considered as a whole, which

are the evaluation values for 𝑦. To some extent, an LHFS
can be considered to be composed of several HFLNs. The
elements in 𝐵, that is, ⟨𝑠

2
, {0.6, 0.8}⟩, ⟨𝑠

5
, {0.4, 0.6}⟩, and

⟨𝑠
6
, {0.1, 0.5, 0.7}⟩, are regarded as three HFLNs. Such a

processing may distort the initial definitions of HFLNs and
LHFSs but can make some useful operations and algorithm
of HFLNs be feasible for LHFSs. In summary, LHFSs are
more complex for experts or decision makers to express their
preference than HFLNs because both the linguistic terms
and their membership degrees in LHFSs are uncertain and
inconsistent simultaneously.
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3.2. Linguistic Scale Functions. To use data more efficiently
and to express the semantics more flexibly, linguistic scale
functions assign different semantic values to linguistic terms
under different situations [48].They are preferable in practice
because these functions are flexible and can give more
deterministic results according to different semantics.

Definition 6 (see [48]). If 𝜃
𝑖
∈ [0, 1] is a numeric value, then

the linguistic scale function 𝑓 that conducts the mapping
from 𝑠

𝑖
to 𝜃
𝑖
(𝑖 = 0, 1, 2, . . . , 2𝑡) is defined as follows:

𝑓 : 𝑠
𝑖
󳨀→ 𝜃
𝑖

(𝑖 = 0, 1, 2, . . . , 2𝑡) , (4)

where 0 ≤ 𝜃
0
< 𝜃
1
< ⋅ ⋅ ⋅ < 𝜃

2𝑡
.

Clearly, the symbol 𝜃
𝑖
(𝑖 = 0, 1, 2, . . . , 2𝑡) reflects the

preference of the decision makers when they are using the
linguistic term 𝑠

𝑖
∈ 𝑆 (𝑖 = 0, 1, 2, . . . , 2𝑡). Therefore, the

function/value in fact denotes the semantics of the linguistic
terms.

(1) Consider

𝑓
1
(𝑠
𝑖
) = 𝜃
𝑖
=

𝑖

2𝑡
(𝑖 = 0, 1, 2, . . . , 2𝑡) . (5)

The evaluation scale of the linguistic information given
above is divided on average.

(2) Consider

𝑓
2
(𝑠
𝑖
) = 𝜃
𝑖
=

{{{{

{{{{

{

𝑎
𝑡
− 𝑎
𝑡−𝑖

2𝑎𝑡 − 2
(𝑖 = 0, 1, 2, . . . , 𝑡) ,

𝑎
𝑡
+ 𝑎
𝑖−𝑡
− 2

2𝑎𝑡 − 2
(𝑖 = 𝑡 + 1, 𝑡 + 2, . . . , 2𝑡) .

(6)

With the extension from themiddle of the given linguistic
term set to both ends, the absolute deviation between adja-
cent linguistic subscripts also increases.

(3) Consider

𝑓
3
(𝑠
𝑖
) = 𝜃
𝑖
=

{{{{

{{{{

{

𝑡
𝛼
− (𝑡 − 𝑖)

𝛼

2𝑡𝛼
(𝑖 = 0, 1, 2, . . . , 𝑡) ,

𝑡
𝛽
+ (𝑖 − 𝑡)

𝛽

2𝑡𝛽
(𝑖 = 𝑡 + 1, 𝑡 + 2, . . . , 2𝑡) .

(7)

With the extension from themiddle of the given linguistic
term set to both ends, the absolute deviation between adja-
cent linguistic subscripts will decrease.

To preserve all the given information and facilitate the
calculation, the above function can be expanded to 𝑓∗ : 𝑆 →

𝑅
+
(𝑅
+
= {𝑟 | 𝑟 ≥ 0, 𝑟 ∈ 𝑅}), which satisfies𝑓∗(𝑠

𝑖
) = 𝜃
𝑖
, and is

a strictly monotonically increasing and continuous function.
Therefore, themapping from 𝑆 to𝑅+ is one-to-one because of
its monotonicity, and the inverse function of 𝑓∗ exists and is
denoted by 𝑓∗−1.

3.3. Operations of HFLNs

Definition 7 (see [31]). Let 𝛼 = ⟨𝑠
𝜃(𝛼)

, ℎ
𝛼
⟩ and 𝛽 = ⟨𝑠

𝜃(𝛽)
, ℎ
𝛽
⟩

be two HFLNs. Some operations of 𝛼 and 𝛽 are defined as
follows:

(1) 𝛼 ⊕ 𝛽 = ⟨𝑠
𝜃(𝛼)+𝜃(𝛽)

, ∪
𝑟
1
∈ℎ
𝛼
,𝑟
2
∈ℎ
𝛽

{𝑟
1
+ 𝑟
2
− 𝑟
1
𝑟
2
}⟩;

(2) 𝜆𝛼 = ⟨𝑠
𝜆𝜃(𝛼)

, ∪
𝑟∈ℎ
𝛼

{1 − (1 − 𝑟)
𝜆
}⟩;

(3) 𝛼 ⊗ 𝛽 = ⟨𝑠
𝜃(𝛼)×𝜃(𝛽)

, ∪
𝑟
1
∈ℎ
𝛼
,𝑟
2
∈ℎ
𝛽

{𝑟
1
𝑟
2
}⟩;

(4) 𝛼𝜆 = ⟨𝑠
𝜃(𝛼)
𝜆 , ∪
𝑟∈ℎ
𝛼

{𝑟
𝜆
}⟩.

The operations proposed in [31] have some obvious limi-
tations. (a) All operations are carried out directly based on the
subscripts of linguistic terms, which cannot reveal the critical
differences of final results under various semantic situations.
(b) The two parts of HFLNs are processed separately in the
additive operation, that is, (1) of Definition 7, which may
ignore the correlation of them. Take 𝛼 = ⟨𝑠

2
, {0.3, 0.4}⟩; for

example, 0.3 and 0.4 are the possiblemembership degrees that
the object belongs to 𝑠

2
; that is, {0.3, 0.4} is the explanatory

part of 𝑠
2
and should be closely related to 𝑠

2
in the additive

operation.
In order to overcome the existing limitations given above,

new operations of HFLNs based on linguistic scale functions
are defined as follows.

Definition 8. Let 𝛼 = ⟨𝑠
𝜃(𝛼)

, ℎ
𝛼
⟩ and 𝛽 = ⟨𝑠

𝜃(𝛽)
, ℎ
𝛽
⟩ be two

HFLNs. Some operations of 𝛼 and 𝛽 are defined as follows:

(1)

neg (𝛼) = ⟨𝑓
∗−1

(𝑓
∗
(𝑠
2𝑡
) − 𝑓
∗
(𝑠
𝜃(𝛼)

)) , ⋃
𝑟∈ℎ
𝛼

{1 − 𝑟}⟩ ,

(8)

(2)

𝛼 ⊕ 𝛽 = ⟨𝑓
∗−1

(𝑓
∗
(𝑠
𝜃(𝛼)

) + 𝑓
∗
(𝑠
𝜃(𝛽)

)) ,

⋃
𝑟
1
∈ℎ
𝛼
,𝑟
2
∈ℎ
𝛽

{
𝑓
∗
(𝑠
𝜃(𝛼)

) 𝑟
1
+ 𝑓
∗
(𝑠
𝜃(𝛽)

) 𝑟
2

𝑓∗ (𝑠
𝜃(𝛼)

) + 𝑓∗ (𝑠
𝜃(𝛽)

)
}⟩ ,

(9)

(3)

𝜆𝛼 = ⟨𝑓
∗−1

(𝜆𝑓
∗
(𝑠
𝜃(𝛼)

)) , ℎ
𝛼
⟩ , 𝜆 ≥ 0, (10)

(4)

𝛼 ⊗ 𝛽 = ⟨𝑓
∗−1

(𝑓
∗
(𝑠
𝜃(𝛼)

) 𝑓
∗
(𝑠
𝜃(𝛽)

)) , ⋃
𝑟
1
∈ℎ
𝛼
,𝑟
2
∈ℎ
𝛽

{𝑟1 𝑟2}⟩ ,

(11)

(5)

𝛼
𝜆
= ⟨𝑓

∗−1
((𝑓
∗
(𝑠
𝜃(𝛼)

))
𝜆

) , ⋃
𝑟∈ℎ
𝛼

{𝑟
𝜆
}⟩ , 𝜆 ≥ 0. (12)
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According to Definition 6, it is known that 𝑓∗ is a
mapping from the linguistic term 𝑠

𝑖
to the numeric value

𝜃
𝑖
and 𝑓∗−1 is a mapping from 𝜃

𝑖
to 𝑠
𝑖
. So, the first part of

(1)–(5) is a linguistic term. In addition, it is obvious that the
second part of (1)–(5) is an HFE. In summary, according
to Definition 4, it is known that the results obtained by
Definition 8 are also HFLNs.

The operations defined above are based on linguistic scale
functions, which can get different results when a different
linguistic scale function 𝑓∗ is utilized.Thus, decision makers
can flexibly select the linguistic scale function 𝑓∗ depending
on their preferences and the actual semantic situations. In
addition, the new addition operation of HFLNs is more
reasonable and reliable, because the final hesitant fuzzymem-
bership has closely combined each element of the original
HFLNs.

𝛼⊕𝛽,𝜆𝛼,𝛼⊗𝛽, and𝛼𝜆 necessarily appear in defining basic
operations, but their results have no practical meaning. In the
aggregation process, for example, using weighted operators,
𝛼 ⊕ 𝛽 is combined with 𝜆𝛼 and 𝛼 ⊗ 𝛽 is combined with 𝛼𝜆;
therefore, the calculation results are interpretable in practice.

Example 9. Let 𝑆 = {𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
, 𝑠
6
} = {very poor,

poor, slightly poor, fair, slightly good, good, very good}, 𝛼 =

⟨𝑠
2
, {0.1, 0.3}⟩, 𝛽 = ⟨𝑠

3
, {0.2}⟩, and 𝜆 = 2.

If 𝑓∗
1
(𝑠
𝑖
) = 𝑖/6 (0 ≤ 𝑖 ≤ 6), then

(1) neg(𝛼) = ⟨𝑠
4
, {0.7, 0.9}⟩;

(2) 𝛼 ⊕ 𝛽 = ⟨𝑠
5
, {0.16, 0.24}⟩;

(3) 2𝛼 = ⟨𝑠
4
, {0.1, 0.3}⟩;

(4) 𝛼 ⊗ 𝛽 = ⟨𝑠
1
, {0.02, 0.06}⟩;

(5) 𝛼2 = ⟨𝑠
0.667

, {0.01, 0.09}⟩.

If 𝑎 = 1.4,

𝑓
∗

2
(𝑠
𝑖
) =

{{{{

{{{{

{

𝑎
𝑡
− 𝑎
𝑡−𝑖

2𝑎𝑡 − 2
(0 ≤ 𝑖 ≤ 𝑡) ,

𝑎
𝑡
+ 𝑎
𝑖−𝑡
− 2

2𝑎𝑡 − 2
(𝑡 < 𝑖 ≤ 2𝑡) ,

(13)

then

(1) neg(𝛼) = ⟨𝑠
4
, {0.7, 0.9}⟩;

(2) 𝛼 ⊕ 𝛽 = ⟨𝑠
5.532

, {0.156, 0.244}⟩;

(3) 2𝛼 = ⟨𝑠
4.976

, {0.1, 0.3}⟩;

(4) 𝛼 ⊗ 𝛽 = ⟨𝑠
0.835

, {0.02, 0.06}⟩;

(5) 𝛼2 = ⟨𝑠
0.622

, {0.01, 0.09}⟩.

If 𝛼 = 𝛽 = 0.8,

𝑓
∗

3
(𝑠
𝑖
) =

{{{

{{{

{

𝑡
𝛼
− (𝑡 − 𝑖)

𝛼

2𝑡𝛼
(0 ≤ 𝑖 ≤ 𝑡) ,

𝑡
𝛽
+ (𝑖 − 𝑡)

𝛽

2𝑡𝛽
(𝑡 < 𝑖 ≤ 2𝑡) ,

(14)

then

(1) neg(𝛼) = ⟨𝑠
4
, {0.7, 0.9}⟩;

(2) 𝛼 ⊕ 𝛽 = ⟨𝑠
4.534

, {0.163, 0.237}⟩;

(3) 2𝛼 = ⟨𝑠
3.326

, {0.1, 0.3}⟩;

(4) 𝛼 ⊗ 𝛽 = ⟨𝑠
1.053

, {0.02, 0.06}⟩;

(5) 𝛼2 = ⟨𝑠
0.627

, {0.01, 0.09}⟩.

It can be easily proven that all the results given above
are also HFLNs. In terms of the corresponding operations of
HFLNs, the following theorem can also be proven easily.

Theorem 10. Let 𝛼
𝑖
= ⟨𝑠
𝜃(𝛼
𝑖
)
, ℎ
𝛼
𝑖

⟩ (𝑖 = 1, 2, 3) be any three
HFLNs; thus the following properties are true.

(1) 𝛼
1
⊕ 𝛼
2
= 𝛼
2
⊕ 𝛼
1
;

(2) 𝛼
1
⊗ 𝛼
2
= 𝛼
2
⊗ 𝛼
1
;

(3) (𝛼
1
⊕ 𝛼
2
) ⊕ 𝛼
3
= 𝛼
1
⊕ (𝛼
2
⊕ 𝛼
3
);

(4) (𝛼
1
⊗ 𝛼
2
) ⊗ 𝛼
3
= 𝛼
1
⊗ (𝛼
2
⊗ 𝛼
3
);

(5) 𝜆(𝛼
1
⊕ 𝛼
2
) = 𝜆𝛼

1
⊕ 𝜆𝛼
2
, (𝜆 ≥ 0);

(6) (𝛼
1
⊗ 𝛼
2
)
𝜆
= 𝛼
𝜆

1
⊗ 𝛼
𝜆

2
, (𝜆 ≥ 0).

Proof. According to Definition 8, it is known that Properties
(1), (2), and (5) are obvious, so the proof of Property (3) is
provided now.

(3) Consider

(𝛼
1
⊕ 𝛼
2
) ⊕ 𝛼
3

= ⟨𝑓
∗−1

[𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)] ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2

{
𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1
+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2

𝑓∗ (𝑠
𝜃(𝛼
1
)
) + 𝑓∗ (𝑠

𝜃(𝛼
2
)
)

}⟩

⊕ 𝛼
3

= ⟨𝑓
∗−1

{𝑓
∗
[𝑓
∗−1

(𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
))]

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)} ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{(𝑓
∗
{𝑓
∗−1

[𝑓
∗
(𝑠
𝜃(𝛼
1
)
)

+𝑓
∗
(𝑠
𝜃(𝛼
2
)
)]}

×
𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1
+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2

𝑓∗ (𝑠
𝜃(𝛼
1
)
) + 𝑓∗ (𝑠

𝜃(𝛼
2
)
)
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+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3
)

× (𝑓
∗
{𝑓
∗−1

[𝑓
∗
(𝑠
𝜃(𝛼
1
)
)

+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)]}

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
))
−1

}⟩

= ⟨𝑓
∗−1

{[𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)]

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)} ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{([𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)]

×
𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1
+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2

𝑓∗ (𝑠
𝜃(𝛼
1
)
) + 𝑓∗ (𝑠

𝜃(𝛼
2
)
)

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3
)

× ([𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)]

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
))
−1

}⟩

= ⟨𝑓
∗−1

[𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)] ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{(𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1
+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3
)

× (𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
))
−1

}⟩ ,

𝛼
1
⊕ (𝛼
2
⊕ 𝛼
3
)

= 𝛼
1
⊕⟨𝑓

∗−1
[𝑓
∗
(𝑠
𝜃(𝛼
2
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)] ,

⋃
𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{
𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2
+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3

𝑓∗ (𝑠
𝜃(𝛼
2
)
) + 𝑓∗ (𝑠

𝜃(𝛼
3
)
)

}⟩

=⟨𝑓
∗−1

{𝑓
∗
(𝑠
𝜃(𝛼
1
)
)

+ 𝑓
∗
[𝑓
∗−1

(𝑓
∗
(𝑠
𝜃(𝛼
2
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
3
)
))]} ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{(𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1

+ 𝑓
∗
{𝑓
∗−1

[𝑓
∗
(𝑠
𝜃(𝛼
2
)
)

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)]}

×
𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2
+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3

𝑓∗ (𝑠
𝜃(𝛼
2
)
) + 𝑓∗ (𝑠

𝜃(𝛼
3
)
)

)

× (𝑓
∗
(𝑠
𝜃(𝛼
1
)
)

+ 𝑓
∗
{𝑓
∗−1

× [𝑓
∗
(𝑠
𝜃(𝛼
2
)
)

+𝑓
∗
(𝑠
𝜃(𝛼
3
)
)]})
−1

}⟩

=⟨𝑓
∗−1

{𝑓
∗
(𝑠
𝜃(𝛼
1
)
)

+ [𝑓
∗
(𝑠
𝜃(𝛼
2
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)]} ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{(𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1

+ [𝑓
∗
(𝑠
𝜃(𝛼
2
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)]

×
𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2
+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3

𝑓∗ (𝑠
𝜃(𝛼
2
)
) + 𝑓∗ (𝑠

𝜃(𝛼
3
)
)

)

× (𝑓
∗
(𝑠
𝜃(𝛼
1
)
)

+ [𝑓
∗
(𝑠
𝜃(𝛼
2
)
)

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)])
−1

}⟩

=⟨𝑓
∗−1

[𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
3
)
)] ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2
,𝑟
3
∈ℎ
𝛼3

{(𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1
+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2

+ 𝑓
∗
(𝑠
𝜃(𝛼
3
)
) 𝑟
3
)

× (𝑓
∗
(𝑠
𝜃(𝛼
1
)
) + 𝑓
∗
(𝑠
𝜃(𝛼
2
)
)

+𝑓
∗
(𝑠
𝜃(𝛼
3
)
))
−1

}⟩ .

(15)
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So, (𝛼
1
⊕ 𝛼
2
) ⊕ 𝛼
3
= 𝛼
1
⊕ (𝛼
2
⊕ 𝛼
3
).

Similarity, Properties (4) and (6) can be easily proven.

3.4. Comparison Method for HFLNs

Definition 11. Let 𝛼 = ⟨𝑠
𝜃(𝛼)

, ℎ
𝛼
⟩ be an HFLN. The score

function 𝐸(𝛼) of 𝛼 can be represented as follows:

𝐸 (𝛼) = 𝑓
∗
(𝑠
𝜃(𝛼)

) × 𝑠 (ℎ
𝛼
) , (16)

where 𝑠(ℎ
𝛼
) is the score function of ℎ

𝛼
.

Example 12. Let 𝛼 = ⟨𝑠
3
, {0.2, 0.4, 0.5, 0.7}⟩. If 𝑡 = 3 and

𝑓
∗

1
(𝑠
𝑖
) = 𝑖/2𝑡, by applying (16), then

𝑠 (ℎ
𝛼
) =

0.2 + 0.4 + 0.5 + 0.7

4
= 0.45,

𝐸 (𝛼) =
3

6
× 0.45 = 0.225.

(17)

Definition 13. Let 𝛼 = ⟨𝑠
𝜃(𝛼)

, ℎ
𝛼
⟩ = ⟨𝑠

𝜃(𝛼)
, ∪
𝑟∈ℎ
𝛼

{𝑟}⟩ be an
HFLN. A variance function 𝐷(ℎ

𝛼
) of ℎ

𝛼
can be denoted by

𝐷(ℎ
𝛼
) = (1/𝑙(ℎ

𝛼
))⋅∑
𝑟∈ℎ
𝛼

[𝑟−𝑠(ℎ
𝛼
)]
2. So, the accuracy function

𝐷(𝛼) of 𝛼 can be represented as follows:

𝐷 (𝛼) = 𝑓
∗
(𝑠
𝜃(𝛼)

) ⋅ [1 − 𝐷 (ℎ
𝛼
)] , (18)

where 𝑙(ℎ
𝛼
) is the number of the values in ℎ

𝛼
.

Example 14. Let 𝛼 = ⟨𝑠
3
, {0.3, 0.6}⟩. If 𝑡 = 3 and𝑓∗

1
(𝑠
𝑖
) = 𝑖/2𝑡,

by applying (18), then

𝐷(ℎ
𝛼
) =

1

2
× [(0.3 − 0.45)

2
+ (0.6 − 0.45)

2
] = 0.0225,

𝐷 (𝛼) =
3

6
× (1 − 0.0225) = 0.489.

(19)

Definition 15. Let 𝛼
1
= ⟨𝑠
𝜃(𝛼
1
)
, ℎ
𝛼
1

⟩ and 𝛼
2
= ⟨𝑠
𝜃(𝛼
2
)
, ℎ
𝛼
2

⟩ be
any two HFLNs.

(1) If 𝐸(𝛼
1
) > 𝐸(𝛼

2
), then 𝛼

1
> 𝛼
2
.

(2) If 𝐸(𝛼
1
) = 𝐸(𝛼

2
), then

if𝐷(𝛼
1
) > 𝐷(𝛼

2
), then 𝛼

1
> 𝛼
2
;

if𝐷(𝛼
1
) = 𝐷(𝛼

2
), then 𝛼

1
= 𝛼
2
.

Example 16. Let 𝛼 = ⟨𝑠
3
, {0.3, 0.6}⟩ and 𝛽 = ⟨𝑠

6
, {0.15, 0.3}⟩.

If 𝑡 = 3 and 𝑓∗
1
(𝑠
𝑖
) = 𝑖/2𝑡, then 𝐸(𝛼) = 𝐸(𝛽) = 0.225, 𝐷(𝛼) =

0.489,𝐷(𝛽) = 0.994, and thus 𝛼 < 𝛽.

4. Hesitant Fuzzy Linguistic Prioritized
Aggregation Operations and
Their Applications in MCDM Problems

In this section, two prioritized aggregation operators for
HFLNs are proposed based on the PA operator, and some
desirable properties are also analyzed. Subsequently, these
operators are extended to a generalized form. Finally, a
method for solvingMCDMproblems withHFLNs, where the
criteria are in different priority levels, is developed.

The PA operator was originally introduced by Yager [49]
and is shown as follows.

Definition 17 (see [49]). Let 𝐺 = {𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
} be a

collection of criteria and ensure that there is a prioritization
between the criteria expressed by the linear ordering 𝐺

1
≻

𝐺
2
≻ 𝐺
3
≻ ⋅ ⋅ ⋅ ≻ 𝐺

𝑛
, which indicates that the criteria 𝐺

𝑗

has a higher priority than 𝐺
𝑘
, if 𝑗 < 𝑘. 𝐺

𝑗
(𝑥) is an evaluation

value denoting the performance of the alternative𝑥 under the
criteria 𝐺

𝑗
and satisfies 𝐺

𝑗
(𝑥) ∈ [0, 1]. If

PA (𝐺
𝑗
(𝑥)) =

𝑛

∑
𝑗=1

𝑤
𝑗
𝐺
𝑗
(𝑥) , (20)

where 𝑤
𝑗
= 𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖
, 𝑇
1
= 1 and 𝑇

𝑗
= ∏
𝑗−1

𝑘=1
𝐺
𝑘
(𝑥) (𝑗 =

2, . . . , 𝑛), then PA is called the PA operator.

PA operators have usually been used in situations where
input arguments are exact values. Therefore, PA opera-
tors could be extended to accommodate situations where
the input arguments are hesitant fuzzy linguistic informa-
tion. Based on Definition 17, assume {𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
} and

{𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
} are two sets of criteria values under criteria

{𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
}, where 𝐺

1
≻ 𝐺
2
≻ 𝐺
3
≻ ⋅ ⋅ ⋅ ≻ 𝐺

𝑛
. Now the

PA operators under a hesitant fuzzy linguistic environment
will be analyzed in the following subsections.

4.1. The Hesitant Fuzzy Linguistic Prioritized Weighted Aver-
age (HFLPWA) Operator. In this subsection, the prioritized
weighted average operator under a hesitant fuzzy linguistic
environment is investigated. The definition of the HFLPWA
operator and its relevant theorems are given as follows.

Definition 18. Let 𝛼
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HFLNs, and then the HFLPWA operator can be defined as
follows:

HFLPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

=
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕

𝑇
𝑛

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝑛

=

𝑛

⨁
𝑗=1

(
𝑇
𝑗
𝛼
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

) ,

(21)

where 𝑇
𝑗
= ∏
𝑗−1

𝑘=1
𝐸(𝛼
𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇

1
= 1, and 𝐸(𝛼

𝑘
) is

the score function of 𝛼
𝑘
.

Based on the operations of HFLNs described in
Section 3, Theorem 19 can be deduced. The HFLPWA
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operator defined in Definition 18 is an abstract expression,
whereas Theorem 19 gives the specific expression for it.

Theorem 19. Let 𝛼
𝑗
= 𝐺
𝑗
(𝑥) = ⟨𝑠

𝜃(𝛼
𝑗
)
, ℎ
𝛼
𝑗

⟩ (𝑗 = 1, 2, . . . , 𝑛)

be a collection of HFLNs. Then the aggregated value, obtained
by using the HFLPWA operator, is also an HFLN, and

HFLPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

=
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕

𝑇
𝑛

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝑛

= ⟨𝑓
∗−1

(

𝑛

∑
𝑗=1

(
𝑇
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑛
∈ℎ
𝛼𝑛

{

{

{

∑
𝑛

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
) 𝑟
𝑗
𝑇
𝑗

∑
𝑛

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

}

}

}

⟩,

(22)

where 𝑇
𝑗
= ∏
𝑗−1

𝑘=1
𝐸(𝛼
𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇

1
= 1, and 𝐸(𝛼

𝑘
) is the

score function of 𝛼
𝑘
.

Proof. Clearly, according to Definition 8, the aggregated
value is also an HFLN. In the following, (22) is proven by
using a mathematical induction on 𝑛.

(1) For 𝑛 = 2, since

𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
= ⟨𝑓

∗−1
(

𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
1
)
)) , ℎ
𝛼
1

⟩,

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2
= ⟨𝑓

∗−1
(

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
2
)
)) , ℎ
𝛼
2

⟩,

(23)

we have

HFLPWA (𝛼
1
, 𝛼
2
)

=
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2

= ⟨𝑓
∗−1

(
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
1
)
) +

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
2
)
)) ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2

{
𝑓
∗
(𝑠
𝜃(𝛼
1
)
) 𝑟
1
𝑇
1
+ 𝑓
∗
(𝑠
𝜃(𝛼
2
)
) 𝑟
2
𝑇
2

𝑓∗ (𝑠
𝜃(𝛼
1
)
) 𝑇
1
+ 𝑓∗ (𝑠

𝜃(𝛼
2
)
) 𝑇
2

}⟩.

(24)

(2) If (22) holds for 𝑛 = 𝑘, then

HFLPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
)

=
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕

𝑇
𝑘

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝑘

= ⟨𝑓
∗−1

(

𝑘

∑
𝑗=1

(
𝑇
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑘
∈ℎ
𝛼
𝑘

{

{

{

∑
𝑘

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
) 𝑟
𝑗
𝑇
𝑗

∑
𝑘

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

}

}

}

⟩.

(25)

When 𝑛 = 𝑘 + 1, by the operations described in Section 3, we
have

HFLPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘+1
)

= ⟨𝑓
∗−1

(

𝑘

∑
𝑗=1

(
𝑇
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑘
∈ℎ
𝛼
𝑘

{

{

{

∑
𝑘

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
) 𝑟
𝑗
𝑇
𝑗

∑
𝑘

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

}

}

}

⟩

⊕⟨𝑓
∗−1

(
𝑇
𝑘+1

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑘+1
)
)) , ℎ
𝛼
𝑘+1

⟩

=⟨𝑓
∗−1

(

𝑘+1

∑
𝑗=1

(
𝑇
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑘+1
∈ℎ
𝛼
𝑘+1

{

{

{

∑
𝑘+1

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
) 𝑟
𝑗
𝑇
𝑗

∑
𝑘+1

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

}

}

}

⟩;

(26)

that is, (22) holds for 𝑛 = 𝑘+1.Thus, (22) holds for all 𝑛. Now

HFLPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

=
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕

𝑇
𝑛

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝑛

= ⟨𝑓
∗−1

(

𝑛

∑
𝑗=1

(
𝑇
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑛
∈ℎ
𝛼𝑛

{

{

{

∑
𝑛

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
) 𝑟
𝑗
𝑇
𝑗

∑
𝑛

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

}

}

}

⟩.

(27)

Theorem 20 (boundedness). Let 𝛼
𝑗

= 𝐺
𝑗
(𝑥) =

⟨𝑠
𝜃(𝛼
𝑗
)
, ℎ
𝛼
𝑗

⟩ (𝑗 = 1, 2, . . . , 𝑛) be a collection of HFLNs. If
𝛼
−
= ⟨min

𝑗
{𝑠
𝜃(𝛼
𝑗
)
}, 𝑟
−
⟩, 𝛼+ = ⟨max

𝑗
{𝑠
𝜃(𝛼
𝑗
)
}, 𝑟
+
⟩, where 𝑟− =

min
𝑟
𝑗
∈∪
ℎ𝛼1
,ℎ𝛼2
,...,ℎ𝛼𝑛

{𝑟
𝑗
} and 𝑟+ = max

𝑟
𝑗
∈∪
ℎ𝛼1
,ℎ𝛼2
,...,ℎ𝛼𝑛

{𝑟
𝑗
}, then

𝐸 (𝛼
−
) ≤ 𝐸 (𝐻FLPWA (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)) ≤ 𝐸 (𝛼

+
) . (28)
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Proof. Let HFLPWA(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = 𝛼 = ⟨𝑠

𝜃(𝛼)
, ℎ
𝛼
⟩, and

then 𝐸(𝛼) = 𝑓∗(𝑠
𝜃(𝛼)

) ⋅ 𝑠(ℎ
𝛼
).

Since min
𝑗
{𝑠
𝜃(𝛼
𝑗
)
} ≤ 𝑠
𝜃(𝛼
𝑗
)
≤ max

𝑗
{𝑠
𝜃(𝛼
𝑗
)
} for all 𝑗, we have

min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}

= 𝑓
∗−1

(

𝑛

∑
𝑘=1

(
𝑇
𝑘

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
})))

≤ 𝑓
∗−1

(

𝑛

∑
𝑘=1

(
𝑇
𝑘

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(𝑠
𝜃(𝛼
𝑘
)
)))

= 𝑠
𝜃(𝛼)

≤ 𝑓
∗−1

(

𝑛

∑
𝑘=1

(
𝑇
𝑘

∑
𝑛

𝑖=1
𝑇
𝑖

𝑓
∗
(max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
})))

= max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
} ,

(29)

and then

min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
} ≤ 𝑠
𝜃(𝛼)

≤ max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
} . (30)

Similarly, since

𝑠 (𝑟
−
) = 𝑟
−

= 𝑠(
∑
𝑛

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗
⋅ 𝑟
−

∑
𝑛

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

)

≤ 𝑠( ⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑛
∈ℎ
𝛼𝑛

{

{

{

∑
𝑛

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
) 𝑟
𝑗
𝑇
𝑗

∑
𝑛

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

}

}

}

)

= 𝑠 (ℎ
𝛼
)

≤ 𝑠(
∑
𝑛

𝑗=1
𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗
⋅ 𝑟
+

∑
𝑛

𝑗=1
𝑓∗ (𝑠
𝜃(𝛼
𝑗
)
)𝑇
𝑗

)

= 𝑟
+
= 𝑠 (𝑟
+
) ,

(31)

therefore

𝐸 (𝛼
−
) = 𝑓
∗
(min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}) ⋅ 𝑠 (𝑟

−
)

≤ 𝑓
∗
(𝑠
𝜃(𝛼)

) ⋅ 𝑠 (ℎ
𝛼
)

≤ 𝑓
∗
(max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}) ⋅ 𝑠 (𝑟

+
) = 𝐸 (𝛼

+
) .

(32)

So

𝐸 (𝛼
−
) ≤ 𝐸 (HFLPWA (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)) ≤ 𝐸 (𝛼

+
) . (33)

Theorem 21 (commutativity). Let 𝛼
𝑗

= 𝐺
𝑗
(𝑥) =

⟨𝑠
𝜃(𝛼
𝑗
)
, ℎ
𝛼
𝑗

⟩ (𝑗 = 1, 2, . . . , 𝑛) be a collection of HFLNs

and (𝛼̃
1
, 𝛼̃
2
, . . . , 𝛼̃

𝑛
) be any permutation of (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
).

Then

HFLPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = HFLPWA (𝛼̃

1
, 𝛼̃
2
, . . . , 𝛼̃

𝑛
) .

(34)

The weight of 𝛼
𝑗
is decided by the priority and value

of 𝛼
𝑗
and will not be influenced by its position in the

permutation. So, Theorem 21 can be easily proven, and the
proof is therefore omitted.

It should be noted that the HFLPWA operator cannot
satisfy idempotency. Take 𝛼 = ⟨𝑠

2
, {0.2, 0.4}⟩, for exam-

ple, and if 𝛼
1

= 𝛼
2

= 𝛼, then HFLPWA(𝛼
1
, 𝛼
2
) =

⟨𝑠
2
, {0.2, 0.218, 0.382, 0.4}⟩ ̸= 𝛼. In addition, we do not

consider the monotonicity of HFLPWA because the weights
will be recalculated and vary if the values used in the
HFLPWA operator change. It is difficult to consider the
monotonic property when the parameters are irregularly
variable.

4.2. The Hesitant Fuzzy Linguistic Prioritized Weighted Geo-
metric (HFLPWG) Operator. In this subsection, the prior-
itized weighted geometric operator under a hesitant fuzzy
linguistic environment is investigated. The definition of the
HFLPWG operator and its relevant theorems are given as
follows.

Definition 22. Let 𝛼
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HFLNs, and then the HFLPWG operator can be defined as
follows:

HFLPWG (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= 𝛼
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
⊗ 𝛼
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝛼

𝑇
𝑛
/∑
𝑛

𝑖=1
𝑇
𝑖

𝑛

=

𝑛

⨂
𝑗=1

(𝛼
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

𝑗
) ,

(35)

where 𝑇
𝑗
= ∏
𝑗−1

𝑘=1
𝐸(𝛼
𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇

1
= 1, and 𝐸(𝛼

𝑘
) is

the score function of 𝛼
𝑘
.

Similar to the HFLPWA operator, the HFLPWG operator
satisfies the following properties.

Theorem 23. Let 𝛼
𝑗
= ⟨𝑠
𝜃(𝛼
𝑗
)
, ℎ
𝛼
𝑗

⟩ (𝑗 = 1, 2, . . . , 𝑛) be a
collection of HFLNs. Then the aggregated value, obtained by
using the HFLPWG operator, is also an HFLN, and

HFLPWG (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= ⟨𝑓
∗−1

(

𝑛

∏
𝑗=1

(𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑛
∈ℎ
𝛼𝑛

{

{

{

𝑛

∏
𝑗=1

(𝑟
𝛼
𝑗

)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖}

}

}

⟩,

(36)

where 𝑇
𝑗
= ∏
𝑗−1

𝑘=1
𝐸(𝛼
𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇

1
= 1, and 𝐸(𝛼

𝑘
) is the

score function of 𝛼
𝑘
.
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Proof. Clearly, according to Definition 8, the aggregated
value is also an HFLN. In the following, (36) is proven by
using a mathematical induction on 𝑛.

(1) For 𝑛 = 2, since

𝛼
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
= ⟨𝑓

∗−1
((𝑓
∗
(𝑠
𝜃(𝛼
1
)
))
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1

{𝑟
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
}⟩ ,

𝛼
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2
= ⟨𝑓

∗−1
((𝑓
∗
(𝑠
𝜃(𝛼
2
)
))
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
2
∈ℎ
𝛼2

{𝑟
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2
}⟩

(37)

we have

HFLPWG (𝛼
1
, 𝛼
2
)

= 𝛼
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
⊗ 𝛼
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2

= ⟨𝑓
∗−1

((𝑓
∗
(𝑠
𝜃(𝛼
1
)
))
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

⋅ (𝑓
∗
(𝑠
𝜃(𝛼
2
)
))
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1
,𝑟
2
∈ℎ
𝛼2

{𝑟
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
⋅ 𝑟
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2
}⟩ .

(38)

(2) If (36) holds for 𝑛 = 𝑘, then

HFLPWG (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
)

= 𝛼
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
⊗ 𝛼
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝛼

𝑇
𝑘
/∑
𝑛

𝑖=1
𝑇
𝑖

𝑘

= ⟨𝑓
∗−1

(

𝑘

∏
𝑗=1

(𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑘
∈ℎ
𝛼
𝑘

{

{

{

𝑘

∏
𝑗=1

(𝑟
𝛼
𝑗

)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖}

}

}

⟩.

(39)

When 𝑛 = 𝑘 + 1, by the operations described in Section 3, we
have

HFLPWG (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘+1
)

= ⟨𝑓
∗−1

(

𝑘

∏
𝑗=1

(𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑘
∈ℎ
𝛼
𝑘

{

{

{

𝑘

∏
𝑗=1

(𝑟
𝛼
𝑗

)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖}

}

}

⟩

⊗⟨𝑓
∗−1

((𝑓
∗
(𝑠
𝜃(𝛼
𝑘+1
)
))
𝑇
𝑘+1
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
𝑘+1
∈ℎ
𝛼
𝑘+1

{𝑟
𝑇
𝑘+1
/∑
𝑛

𝑖=1
𝑇
𝑖

𝑘+1
}⟩

= ⟨𝑓
∗−1

(

𝑘+1

∏
𝑗=1

(𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑘+1
∈ℎ
𝛼
𝑘+1

{

{

{

𝑘+1

∏
𝑗=1

(𝑟
𝛼
𝑗

)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖}

}

}

⟩;

(40)

that is, (36) holds for 𝑛 = 𝑘+1.Thus, (36) holds for all 𝑛. Now
HFLPWG (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= ⟨𝑓
∗−1

(

𝑛

∏
𝑗=1

(𝑓
∗
(𝑠
𝜃(𝛼
𝑗
)
))
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

) ,

⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑛
∈ℎ
𝛼𝑛

{

{

{

𝑛

∏
𝑗=1

(𝑟
𝛼
𝑗

)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖}

}

}

⟩.

(41)

Theorem 24 (boundedness). Let 𝛼
𝑗
= 𝐺
𝑗
(𝑥) = ⟨𝑠

𝜃(𝛼
𝑗
)
,

ℎ
𝛼
𝑗

⟩ (𝑗 = 1, 2, . . . , 𝑛) be a collection of HFLNs. If 𝛼− =

⟨min
𝑗
{𝑠
𝜃(𝛼
𝑗
)
}, 𝑟
−
⟩, 𝛼+ = ⟨max

𝑗
{𝑠
𝜃(𝛼
𝑗
)
}, 𝑟
+
⟩, where 𝑟

−
=

min
𝑟
𝑗
∈∪
ℎ𝛼1
,ℎ𝛼2
,...,ℎ𝛼𝑛

{𝑟
𝑗
} and 𝑟+ = max

𝑟
𝑗
∈∪
ℎ𝛼1
,ℎ𝛼2
,...,ℎ𝛼𝑛

{𝑟
𝑗
}, then

𝐸 (𝛼
−
) ≤ 𝐸 (HFLPWG (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)) ≤ 𝐸 (𝛼

+
) . (42)

Proof. Let HFLPWG(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = 𝛼 = ⟨𝑠

𝜃(𝛼)
, ℎ
𝛼
⟩, and

then 𝐸(𝛼) = 𝑓∗(𝑠
𝜃(𝛼)

) ⋅ 𝑠(ℎ
𝛼
).

Since min
𝑗
{𝑠
𝜃(𝛼
𝑗
)
} ≤ 𝑠
𝜃(𝛼
𝑗
)
≤ max

𝑗
{𝑠
𝜃(𝛼
𝑗
)
} for all 𝑗, we have

min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}

= 𝑓
∗−1

(

𝑛

∏
𝑘=1

(𝑓
∗
(min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}))

𝑇
𝑘
/∑
𝑛

𝑖=1
𝑇
𝑖

)

≤ 𝑓
∗−1

(

𝑛

∏
𝑘=1

(𝑓
∗
(𝑠
𝜃(𝛼
𝑘
)
))
𝑇
𝑘
/∑
𝑛

𝑖=1
𝑇
𝑖

)
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= 𝑠
𝜃(𝛼)

≤ 𝑓
∗−1

(

𝑛

∏
𝑘=1

(𝑓
∗
(max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}))

𝑇
𝑘
/∑
𝑛

𝑖=1
𝑇
𝑖

)

= max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
} ,

(43)

and then

min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
} ≤ 𝑠
𝜃(𝛼)

≤ max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
} . (44)

Similarly,

𝑠 (𝑟
−
) = 𝑟
−

= 𝑠(

𝑛

∏
𝑗=1

(𝑟
−
)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

)

≤ 𝑠( ⋃
𝑟
1
∈ℎ
𝛼1
,...,𝑟
𝑛
∈ℎ
𝛼𝑛

{

{

{

𝑛

∏
𝑗=1

(𝑟
𝛼
𝑗

)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖}

}

}

)

= 𝑠 (ℎ
𝛼
)

≤ 𝑠(

𝑛

∏
𝑗=1

(𝑟
+
)
𝑇
𝑗
/∑
𝑛

𝑖=1
𝑇
𝑖

)

= 𝑟
+
= 𝑠 (𝑟
+
) ,

(45)

and hence

𝐸 (𝛼
−
) = 𝑓
∗
(min
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}) ⋅ 𝑠 (𝑟

−
)

≤ 𝑓
∗
(𝑠
𝜃(𝛼)

) ⋅ 𝑠 (ℎ
𝛼
)

≤ 𝑓
∗
(max
𝑗

{𝑠
𝜃(𝛼
𝑗
)
}) ⋅ 𝑠 (𝑟

+
) = 𝐸 (𝛼

+
) .

(46)

So

𝐸 (𝛼
−
) ≤ 𝐸 (HFLPWG (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)) ≤ 𝐸 (𝛼

+
) . (47)

Theorem 25 (commutativity). Let 𝛼
𝑗
= 𝐺
𝑗
(𝑥) = ⟨𝑠

𝜃(𝛼
𝑗
)
, ℎ
𝛼
𝑗

⟩

(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFLNs and (𝛼̃
1
, 𝛼̃
2
, . . . , 𝛼̃

𝑛
)

is any permutation of (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
). Then

HFLPWG (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) = HFLPWG (𝛼̃

1
, 𝛼̃
2
, . . . , 𝛼̃

𝑛
) .

(48)

Similarly to Theorem 23, Theorem 25 can be easily
proven, and the proof is therefore omitted.

Besides, the HFLPWG operator cannot satisfy idempo-
tency. Take 𝛼 = ⟨𝑠

2
, {0.2, 0.4}⟩, for example; if 𝛼

1
= 𝛼
2
= 𝛼,

then HFLPWG(𝛼
1
, 𝛼
2
) = ⟨𝑠

2
, {0.2, 0.213, 0.376, 0.4}⟩ ̸= 𝛼.

Similarly, we do not consider the monotonicity of HFLPWG
because of the variability of weights.

4.3. The Hesitant Fuzzy Linguistic Generalized Prioritized
Weighted Aggregation (HFLGPWA) Operator. In general, the
HFLPWA operator emphasizes the impact of the overall
evaluation data and the compensation between different eval-
uation results, while the HFLPWG operator emphasizes the
balance in the system and the coordination between different
evaluation results. In this section, the generalized form of the
HFLPWA and HFLPWG operators will be proposed, that is,
the hesitant fuzzy linguistic generalized prioritized weighted
aggregation (HFLGPWA) operator.

Definition 26. Let 𝛼
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

HFLNs, and then the HFLGPWA operator can be defined as
follows:
HFLGPWA (𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= (
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝜆

1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝜆

2
⊕ ⋅ ⋅ ⋅ ⊕

𝑇
𝑛

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝜆

𝑛
)

1/𝜆

= (

𝑛

⨁
𝑗=1

(
𝑇
𝑗

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝜆

𝑗
))

1/𝜆

,

(49)

where 𝜆 > 0, 𝑇
𝑗
= ∏
𝑗−1

𝑘=1
𝐸(𝛼
𝑘
) (𝑗 = 2, . . . , 𝑛), 𝑇

1
= 1, and

𝐸(𝛼
𝑘
) is the score function of 𝛼

𝑘
.

Obviously, the HFLPWA andHFLPWG operators are the
special cases of the HFLGPWA operator.

(1) If 𝜆 → 0, then the HFLGPWA operator degenerates
into the HFLPWG operator:

HFLGPWG (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

= 𝛼
𝑇
1
/∑
𝑛

𝑖=1
𝑇
𝑖

1
⊗ 𝛼
𝑇
2
/∑
𝑛

𝑖=1
𝑇
𝑖

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝛼

𝑇
𝑛
/∑
𝑛

𝑖=1
𝑇
𝑖

𝑛
.

(50)

(2) If 𝜆 = 1, then the HFLGPWA operator degenerates
into the HFLPWA operator:

HFLGPWA (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
)

=
𝑇
1

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
1
⊕

𝑇
2

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
2
⊕ ⋅ ⋅ ⋅ ⊕

𝑇
𝑛

∑
𝑛

𝑖=1
𝑇
𝑖

𝛼
𝑛
.

(51)

4.4. An MCDM Method with HFLNs. In this subsection, the
HFLGPWAoperatorwill be applied toMCDMproblemswith
hesitant fuzzy linguistic information.

ForMCDMproblems with hesitant fuzzy linguistic infor-
mation, assume that there is a set of criteria {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑛
},

and the prioritization relationships that exist among them are
𝐶
1
≻ 𝐶
2
≻ ⋅ ⋅ ⋅ ≻ 𝐶

𝑛
. Every criterion in𝐶

𝑖
has a higher priority

than every criterion in 𝐶
𝑗
if 𝑖 < 𝑗. Under these criteria,

there is a set of alternatives {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} and the criteria

values of the alternatives are expressed as HFLNs 𝐶
𝑗
(𝑥
𝑖
) (𝑖 =

1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛). Suppose that 𝑅 = (𝐶
𝑗
(𝑥
𝑖
))
𝑚×𝑛

is the
decision matrix. Subsequently, a ranking of alternatives is
required.

In the following paragraphs, the HFLGPWA operator is
applied to MCDM problems with hesitant fuzzy linguistic
information.
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Table 1: The hesitant fuzzy linguistic decision matrix.

𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝑥
1

⟨𝑠
4
, {0.4}⟩ ⟨𝑠

5
, {0.25, 0.45}⟩ ⟨𝑠

4
, {0.55, 0.75}⟩ ⟨𝑠

3
, {0.45}⟩

𝑥
2

⟨𝑠
2
, {0.25, 0.65}⟩ ⟨𝑠

4
, {0.35, 0.55}⟩ ⟨𝑠

3
, {0.7}⟩ ⟨𝑠

4
, {0.35, 0.55}⟩

𝑥
3

⟨𝑠
3
, {0.35, 0.6}⟩ ⟨𝑠

4
, {0.4}⟩ ⟨𝑠

6
, {0.75, 0.85}⟩ ⟨𝑠

2
, {0.65}⟩

𝑥
4

⟨𝑠
2
, {0.35, 0.45, 0.55}⟩ ⟨𝑠

3
, {0.6}⟩ ⟨𝑠

2
, {0.4, 0.7}⟩ ⟨𝑠

2
, {0.85}⟩

𝑥
5

⟨𝑠
5
, {0.45, 0.8}⟩ ⟨𝑠

5
, {0.5}⟩ ⟨𝑠

3
, {0.6, 0.85}⟩ ⟨𝑠

4
, {0.75}⟩

This method involves the following steps.

Step 1 (normalize the decision matrix). The common types
of criteria in MCDM problems are maximizing criteria and
minimizing criteria. For the minimizing criteria the negation
operator in Definition 8 is utilized in order to normalize
HFLNs.

For convenience, the normalized criteria values of 𝑥
𝑖
(𝑖 =

1, 2, . . . , 𝑚) with respect to 𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are also

denoted by 𝐶
𝑗
(𝑥
𝑖
) = ⟨𝑠

𝜃(𝐶
𝑖𝑗
)
, ℎ
𝐶
𝑖𝑗

⟩.

Step 2 (calculate the comprehensive evaluation values for each
alternative). Obtain the comprehensive evaluation values
𝑋
𝑖
(𝑖 = 1, 2, . . . , 𝑚) of 𝑥

𝑖
by applying the formula as follows:

𝑋
𝑖
= HFLGPWA (𝐶

1
(𝑥
𝑖
) , 𝐶
2
(𝑥
𝑖
) , . . . , 𝐶

𝑛
(𝑥
𝑖
)) . (52)

Step 3 (calculate the score values and accuracy values of 𝑋
𝑖
).

Use Definition 11 to calculate the score values 𝐸(𝑋
𝑖
) (𝑖 =

1, 2, . . . , 𝑚) of the comprehensive values𝑋
𝑖
of the alternatives

𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑚), in order to rank all alternatives 𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑚) and then select the best one(s). If the score values
are 𝐸(𝑋

𝑖
) = 𝐸(𝑋

𝑗
) (𝑖 ̸= 𝑗), it is necessary to calculate

the accuracy values 𝐷(𝑋
𝑖
) and 𝐷(𝑋

𝑗
) and then rank the

alternatives 𝑥
𝑖
and 𝑥

𝑗
in accordance with these accuracy

values.

Step 4 (rank all the alternatives and select the best one(s)).
Use Definition 15 to rank all the alternatives and select
the best one(s) in accordance with 𝐸(𝑋

𝑖
) and 𝐷(𝑋

𝑖
) (𝑖 =

1, 2, . . . , 𝑚).

5. Illustrative Example

5.1. Background. The following case is adapted from [42].
ABC Nonferrous Metals Co. Ltd. is a large state-owned

company whose main business is producing and selling
nonferrous metals. It is also the largest manufacturer of
multispecies nonferrous metals in China, with the exception
of aluminum. To expand its main business, the company is
always engaged in overseas investment, and a department
which consists of executive managers and several experts in
the field has been established specifically to make decisions
on global mineral investment.

Recently, the overseas investment department decided to
select a pool of alternatives from several foreign countries
based on preliminary surveys. After thorough investigation,
five countries (alternatives) are taken into consideration,

that is, {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
}. There are many factors that affect

the investment environment and four factors are considered
based on the experience of the department personnel, includ-
ing 𝐶
1
: resources (such as the suitability of the minerals and

their exploration);𝐶
2
: politics and policy (such as corruption

and political risks); 𝐶
3
: economy (such as development

vitality and the stability); 𝐶
4
: infrastructure (such as railway

and highway facilities).
The decision makers, including the experts and executive

managers, have gathered to determine the decision infor-
mation. The linguistic term set 𝑆 = {𝑠

0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
, 𝑠
6
} =

{very poor, poor, slightly poor, fair, slightly good, good, very
good} is used. The evaluation information is given in the
form of HFLNs, where 𝐶

𝑗
(𝑥
𝑖
) is the evaluation value of

the alternative 𝑥
𝑖
on the criterion 𝐶

𝑗
. In 𝐶

𝑗
(𝑥
𝑖
) there is a

consensus on the chosen linguistic term and each decision
maker can use a value to express his/her opinion; in other
words, the value denotes to what degree 𝑥

𝑖
matches this

given linguistic term under 𝐶
𝑗
. Each decision maker gave

his/her own evaluations (membership degrees) based on the
surveys of the five countries as well as his/her knowledge and
experience. Then all the possible membership degrees under
each given linguistic term are gathered together. The same
membership degrees for a given linguistic term will appear
only once in an HFLN. Consequently, following a heated
discussion, they came to a consensus on the final evaluations
which are expressed by HFLNs as shown in Table 1.

5.2. An Illustration of the Proposed Method. Assume that the
prioritization relationship for the criteria is 𝐶

1
≻ 𝐶
2
≻ 𝐶
3
≻

𝐶
4
.
To get the optimal alternative(s), let 𝑓∗

1
(𝑠
𝑖
) = 𝑖/2𝑡 and

adopt the following steps.

Step 1 (normalize the decision matrix). Considering that all
the criteria are of maximizing type, the performance values
of the alternatives 𝑥

𝑖
(𝑖 = 1, 2, . . . , 5) do not need to be

normalized.

Step 2 (calculate the comprehensive evaluation values for each
alternative). Use Definition 26 and then the comprehensive
evaluation values of the alternatives are obtained and are
shown in Table 2.

Step 3 (calculate the score values of 𝑋
𝑖
). The score values

𝐸(𝑋
𝑖
) (𝑖 = 1, 2, . . . , 5) of the comprehensive evaluation values

𝑋
𝑖
of the alternatives 𝑥

𝑖
(𝑖 = 1, 2, . . . , 5) can be calculated and

are shown in Table 3.
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Table 2: The aggregation results by utilizing the HFLGPWA operator.

𝜆 → 0 (HFLPWG) 𝜆 = 1 (HFLPWA)
𝑋
1

⟨𝑠
4.15

, {0.373, 0.380, 0.418, 0.425}⟩ ⟨𝑠
4.17

, {0.374, 0.385, 0.421, 0.431}⟩

𝑋
2

⟨𝑠
2.23

, {0.272, 0.274, 0.288, 0.289, 0.599, 0.602, 0.633, 0.637}⟩ ⟨𝑠
2.31

, {0.295, 0.300, 0.338, 0.343, 0.581, 0.586, 0.624, 0.629}⟩

𝑋
3

⟨𝑠
3.21

, {0.380, 0.382, 0.566, 0.570}⟩ ⟨𝑠
3.28

, {0.402, 0.410, 0.571, 0.580}⟩

𝑋
4

⟨𝑠
2.1
, {0.378, 0.387, 0.466, 0.476, 0.551, 0.563}⟩ ⟨𝑠

2.12
, {0.399, 0.410, 0.477, 0.488, 0.555, 0.566}⟩

𝑋
5

⟨𝑠
4.66

, {0.491, 0.512, 0.674, 0.702}⟩ ⟨𝑠
4.72

, {0.488, 0.507, 0.692, 0.711}⟩

Table 3: The score values for the alternatives.

𝜆 → 0 (HFLPWG) 𝜆 = 1 (HFLPWA)
𝐸(𝑋
1
) 0.276 0.280

𝐸(𝑋
2
) 0.167 0.178

𝐸(𝑋
3
) 0.254 0.268

𝐸(𝑋
4
) 0.165 0.171

𝐸(𝑋
5
) 0.461 0.471

Table 4: Rankings of the alternatives.

Ranking
𝜆 → 0 (HFLPWG) 𝑥

5
≻ 𝑥
1
≻ 𝑥
3
≻ 𝑥
2
≻ 𝑥
4

𝜆 = 1 (HFLPWA) 𝑥
5
≻ 𝑥
1
≻ 𝑥
3
≻ 𝑥
2
≻ 𝑥
4

It has been ascertained that, with the increase of 𝜆,
the score values 𝐸(𝑋

𝑖
) would increase slightly, where 𝑖 =

1, 2, 3, 4, 5.

Step 4 (rank all the alternatives and select the best one(s)). In
accordance with the score values 𝐸(𝑋

𝑖
) (𝑖 = 1, 2, . . . , 5), the

rankings of the alternatives are shown in Table 4 (note that
“≻” means “preferred to”).

FromTable 4 we can see that the rankings obtained by the
HFLPWG and HFLPWA operators are the same. In addition,
the alternative 𝑥

5
is the best choice. This result can reveal the

stability of the proposed method.
In order to illustrate the influence of the linguistic scale

function𝑓∗ and parameter 𝜆 on the decision-making process
in this example, different𝑓∗ and 𝜆 are used in Steps 2 and 3 to
rank the alternatives.The ranking results are shown in Tables
5, 6, and 7.

We can conclude that the rankings of the alternativesmay
be a little different when a different linguistic scale function
𝑓
∗ or parameter 𝜆 is utilized. If 𝜆 ≤ 5, the best alternative is

𝑥
5
; if 𝜆 ≥ 8, the best one is 𝑥

3
. Moreover, the worst alternative

is always 𝑥
4
except for one situation.

5.3. Comparison Analysis and Discussion. To further illus-
trate the advantages of the proposedMCDM approach under
a hesitant fuzzy linguistic environment, the method in [31] is
used to solve the same illustrative example given above.

Lin et al. [31] utilized the hesitant fuzzy linguistic
weighted average (HFLWA) operator in order to obtain
the comprehensive overall of alternatives. Their aggregation

operator is now used with the scores of all alternatives being
calculated as follows:
𝑆 (𝑥
1
) = 1.720, 𝑆 (𝑥

2
) = 1.083, 𝑆 (𝑥

3
) = 1.632,

𝑆 (𝑥
4
) = 1.022, 𝑆 (𝑥

5
) = 2.974.

(53)
Since 𝑆(𝑥

5
) > 𝑆(𝑥

1
) > 𝑆(𝑥

3
) > 𝑆(𝑥

2
) > 𝑆(𝑥

4
), the ranking

is 𝑥
5
≻ 𝑥
1
≻ 𝑥
3
≻ 𝑥
2
≻ 𝑥
4
, and the most desirable car is 𝑥

5
.

Obviously, the rankings obtained by the proposed
method in this paper may be a little different from that
obtained by the method in [31]. The only difference is
the order of 𝑥

1
and 𝑥

3
, and this may be caused by the

different operations and comparisonmethod for HFLNs.The
operations and comparison method for HFLNs in [31] con-
sider only one semantic situation, while different linguistic
scale functions 𝑓∗ used in this paper are applicable and
effective under different semantic environment. In addition,
the HFLWA operator in [31] emphasized the impact of
the overall criterion values and the compensation between
different criterion values, while the proposed hesitant fuzzy
linguistic PA operators do not.

According to the above comparison analyses, the pro-
posed method for MCDM problems with HFLNs has the
following advantages.

First, HFLNs used in this paper can express the evaluation
information more flexibly. They can depict fuzzy linguistic
information more accurately and retain the completeness of
the original data or the inherent thoughts of decisionmakers,
which is the prerequisite of guaranteeing accuracy of final
outcomes.

Second, the operations of HFLNs in this paper are
defined based on linguistic scale functions, which can achieve
different results when a different linguistic scale function 𝑓∗
is used.Thus, decisionmakers can flexibly select the linguistic
scale function 𝑓

∗ depending on their preferences and the
actual semantic situations.

Third, the proposed hesitant fuzzy linguistic prioritized
aggregation operators can deal with MCDM problems under
the hesitant fuzzy linguistic environment inwhich the criteria
are in different priority levels. What is more, the criteria
weights, which are calculated by the prioritized aggregation
operator according to the criteria priority levels, are more
objective and reasonable than a set of known criteria weights.

6. Conclusions

To address situations where decision-making problems use
qualitative variables rather than numerical ones and to reflect
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Table 5: Rankings of the alternatives with different 𝜆 by using 𝑓∗
1
.

𝜆 → 0; 𝜆 = 1 𝜆 = 2; 𝜆 = 3; 𝜆 = 4; 𝜆 = 5; 𝜆 = 6 𝜆 = 7; 𝜆 = 8; 𝜆 = 9; 𝜆 = 10
𝑓
∗

1
𝑥
5
≻ 𝑥
1
≻ 𝑥
3
≻ 𝑥
2
≻ 𝑥
4

𝑥
5
≻ 𝑥
3
≻ 𝑥
1
≻ 𝑥
2
≻ 𝑥
4

𝑥
3
≻ 𝑥
5
≻ 𝑥
1
≻ 𝑥
2
≻ 𝑥
4

Table 6: Rankings of the alternatives with different 𝜆 by using 𝑓∗
2
.

𝜆 → 0 𝜆 = 1; 𝜆 = 2; 𝜆 = 3; 𝜆 = 4; 𝜆 = 5 𝜆 = 6; 𝜆 = 7; 𝜆 = 8; 𝜆 = 9; 𝜆 = 10
𝑓
∗

2
𝑥
5
≻ 𝑥
1
≻ 𝑥
3
≻ 𝑥
4
≻ 𝑥
2

𝑥
5
≻ 𝑥
3
≻ 𝑥
1
≻ 𝑥
2
≻ 𝑥
4

𝑥
3
≻ 𝑥
5
≻ 𝑥
1
≻ 𝑥
2
≻ 𝑥
4

Table 7: Rankings of the alternatives with different 𝜆 by using 𝑓∗
3
.

𝜆 → 0; 𝜆 = 1; 𝜆 = 2 𝜆 = 3; 𝜆 = 4; 𝜆 = 5; 𝜆 = 6; 𝜆 = 7 𝜆 = 8; 𝜆 = 9; 𝜆 = 10
𝑓
∗

3
𝑥
5
≻ 𝑥
1
≻ 𝑥
3
≻ 𝑥
2
≻ 𝑥
4

𝑥
5
≻ 𝑥
3
≻ 𝑥
1
≻ 𝑥
2
≻ 𝑥
4

𝑥
3
≻ 𝑥
5
≻ 𝑥
1
≻ 𝑥
2
≻ 𝑥
4

the uncertainty, hesitancy, and inconsistency of decision
makers, HFLSs have been introduced and used in this
paper. Considering the limitations in the existing litera-
ture, new operations of HFLNs were introduced. Then, on
the basis of the PA operator, two prioritized aggregation
operators for HFLNs were proposed and extended to a
generalized form. Furthermore, an MCDM method based
on the generalized prioritized aggregation operator under a
hesitant fuzzy linguistic environment was developed. Finally,
an illustrative example demonstrated the application of the
proposed method and comparison analysis was made with
the representative method. The results indicated that the
method proposed in this paper is feasible and effective in
solving MCDM problems with HFLSs.

It is well known that the PAoperator hasmany advantages
over other operators as it does not need to provide weight
vectors and, when using this approach, it is only necessary to
know the priority among criteria.The foremost characteristic
of these proposed operators is that they take into account
the priority among criteria. Although traditional prioritized
aggregation operators are generally suitable for aggregating
information which is in the form of numerical values or
simple fuzzy values, they are unable to deal with hesitant
fuzzy linguistic information.The proposed HFLGPWA oper-
ator can accommodate situations where the input arguments
consist of hesitant fuzzy linguistic information. In addition,
the results may change using different linguistic scale func-
tions, and the parameter 𝜆 may also influence the results.
Decision makers can select the most appropriate linguistic
scale function 𝑓

∗ according to their interests and actual
semantic situations. In a word, the main advantages of the
proposed method are not only that the proposed operators
accommodate a hesitant fuzzy linguistic environment, but
also its consideration of the priority among criteria, which
is more feasible and practical. In the future research, the
linguistic scale function can be applied in other linguistic sets,
such as ILSs, LHFSs, and HFLSs. Moreover, we believe that
the study of information measures and outranking relations
for HFLSs does make great sense.
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